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ABSTRACT

The Analysis of Chaotic Time Series
Joshua D. Reiss
232 Pages

Directed by Dr. William L. Ditto

Chaotic time series analysis methods were applied to several experimental systems. Anaysis of a
Poincare section of magnetoelastic ribbon time series was used to construct symbolic dynamics and
extract empirical quantities such as fractal dimension and Lyapunov exponents. In the pulse thermal
combustion engine, analysis of several data sets was used to establish high dimensionality and
complex dynamics. Data sets were also analyzed from an electric step motor. Low dimensional chaotic
dynamics were observed and quantified. Each of these systems exhibited nonstationarity and other
behaviors that made the analysis difficult and demonstrated flaws in established time series anaysis
techniques. Thus methods were devised to improve these techniques and synthesize them into a
coherent package. Finally, a new design was proposed for a chaotic sigma delta modulator. Techniques
from nonlinear dynamics and chaos theory were used to show that this modulator was stable and had

desirable properties not exhibited in previously proposed designs.



CHAPTER ONE
INTRODUCTION

1. Historical background

As opposed to the many fields of mathematical and scientific endeavour
which have grown out of philosophy, time series analysis has its roots in the social
sciences. The need for time series analysis came from emerging financial markets, the
population explosion and plague epidemics. The opportunity for time series analysis
came from more accurate recordkeeping.

Although time series have been used extensively in astronomy since data was
first gathered, the first work of detailed time series analysis is often attributed to a
London cloth merchant in 1662. John Graunt' devised a “Mathematiques of my
Shop-Arithmetique” that involved the creation of his own analytical tools to search
for, predict, and interpret cyclical patterns in time series data. Such tools included
histogram tables, averaging and windowing techniques, and error analysis.
Significantly, he was able to extract the plague-related deaths from the others, and
thus could give a detailed analysis of the long-term effects of plague epidemics. His
subsequent appointment to the Royal Society lead to a great many scientists and
mathematicians adopting his time series analysis techniques.

Most of the related mathematical work of the next two hundred years dealt
more with independent observations than with time series, per se. Pascal, Fermat,

Bernoulli and others laid down the framework for descriptions of statistical



processes.” In 1821, Gauss developed the concept of mean squared error, one of the
most important methods of quantifying error in data’ Simple time series analysis
continued primarily in the analysis of financial data. This was often done to obscure
the data, such as when the Bank of England chose to scale and index their data when
presenting time series data to parliament in 1797. * Some notable exceptions occured
in astronomy, such as Euler’s 1749 study of errorsin the observed orbits of planets.”

The late 19" century saw the exporting of financial time series analysis
techniques to other applications. A method of interpolation was suggested by Gauss
and Weber in 1836.% It was used in one of the first examples of simultaneous
observations, thus in the creation of multidimensional time series. Poynting, known
primarily for his work on magnetism, first provided a graph of moving averagesin a
study of public drunkenness in 1877° The following year, Jevons introduced the
semi-log plot to highlight cycles in meteorological and commercial data.” These and
other developments also lead to the gradual transition towards visualization of data as
opposed to presentation in tables (Ref. 2, p. 17-19).

It wasn’t until the 1920s that chaos was observed in an experimental time
series. However, Van der Pol dismissed it as “a subsidiary phenomenon.”® He
neglected to connect this to the behavior that Poincare had hypothesized at the turn of
the century.’ Perhaps this was because he was unable to extract and analyze the time
series.”

Statistical tools continued to be developed throughout the first half of the

twentieth century. In the first decade, Norton" developed tools for dealing with



nonstationary processes. In addition, Cave-Browne-Cave’, March” and Hooker"
developed tools for autocorrelations in time series. Anderson” and Student”
developed further techniques for elimination of noise. The 1920s saw the invention of
the correlogram, one of the most popular tools for classifying serial correlations and
oscillatory processes’’ This work was also important because it assumed that the time
series could be modeled as having self-determined dynamics. Most previous work
assumed that time series were functions of time (typically cyclical) and noise.

Several scientists of this era made the assumption that time series were strictly
functions of time and superimposed random errors. This allowed them to make full
use of Fourier's analysis tools In a comment published in 1879 regarding a previous
analysis of sunspots, Stokes® suggested the use of harmonic analysis to plot the
intensity of each harmonic (e.g. power spectra). Schuster”” and Turner” followed up
on this suggestion in two further works of sunspot analysis. Terms such as
periodograms and harmonic analysis entered the lexicon, and hence traditional signal
processing was born. Signal processing continued to gain in importance with the
growth of the electronics industry, and exploded in terms of usefulness with Cooley
and Tukey's invention of the Fast Fourier Transform computer program in 1965.”
Spectral analysis saw another fantastic leap with the introduction of wavelets in the
mid 1980s.” Now signal processing techniques could be effectively extended to
nonstationary time series.

The early 20™ century also saw time series given proper mathematical

underpinnings in the work of Kolmogorov?, Markov” and other Russian



mathematicians. By the 1940s time series analysis had advanced beyond the
application of satistical techniques to experimental data. With the invention of
information theory by Shannon and Weaver,” time series could be understood in
terms of symbolic dynamics.

It wasn't until 1963 that chaos was recognized in time series data. Lorenz, a
meteorologist, serendipitously noticed that his simulation was extremely sensitive to
initial conditions.” Chaos theory slowly gained acceptance through the work of
Smale, Yorke, May and others.” In the 1980s, a motley crew of researchers from UC
Santa Cruz developed the essential tools of chaotic time series analysis. In 1980,
Farmer and Crutchfield applied traditional signal processing techniques, in the form
of power spectral analysis, to cheotic time series.” * The following year, Packard
introduced the technique of delay coordinate embedding.” Shaw then applied
information theoretic techniques to chaotic time series analysis.” In these and other
papers, these four researchers and their collaborators introduced techniques for noise
reduction, prediction, extraction of symbolic dynamics, modeling and quantification
of chaotic time series, experimental or simulated. Much of the work described in this
thesisis built upon the techniques that they developed.

The introduction of these techniques provided a framework with which one
can analyze a chaotic time series. However, many questions remain unanswered
about the effectiveness and practicality of each technique. Even with the vast amount
of research within the past two decades, it is still often unclear which analysis

techniques are most appropriate to a given time series. From the perspective of a



researcher whose knowledge of time series analysisis limited, this question becomes

even more vexing.

2. Goals and motivations

“In calmer nonents we are all willing to concede that

there is a danger that the quantitative worker may
concentrate too exclusively upon those things which are
i ncapable of neasurenment, and nmay even shape his
concepts to the limted nature of his available data,
while the qualitative worker — the pure theorist — may
beconmre so pure as to be unhelpful in a world wheree
masureable quantities play an inportant role. Mreover
in the last resort neither school wll insist that it
can progress without entering the domain of the other.”
Transl ated from Marey, 1878

When a researcher is presented with time series data, he has several goals in

mind- classification, visuaization, understanding, and manipulation. The data is

analyzed with the goal of understanding more about the underlying system. What is

known about the underlying system determines the direction of future research. The

researcher seeks to answer several questions-

1

What can | determine about the underlying dynamical system which
generated the data?

How best should | visualize this system?

What processing of the data should be done that will reveal more about he
underlying dynamics?

Can |, from analyzing the dynamics, determine additional experiments that
should be done to generate future data?

Can | measure how well the data fit a certain model?

Can | measure the complexity of the data?



7. Can | extract distinct processes that are contributing to the dynamics
generating the data?

8. Can | measure the noise in the data, and if so, can | extract the signal from
the noise?

9. Can | determine how the data changes over time?

10. If | have severa time series, what analysis can be made to determine the
relationship between these series?

11. Have | taken enough datato do analysis? Can | get away with less?

Traditional methods of time series analysis come from the well-established
field of digital signal processing.” Digital signal processing seeks to answer al of the
above questions. Most traditional methods are well-researched and their proper
application is understood. One of the most familiar and widely used tools is the
Fourier transform. Indeed, many traditional methods of analysis, visualization, or
processing begin with the use of a Fourier transform on the data set. Thisis because a
Fourier transform changes a set of linear differential equations into an agebraic
problem where powerful methods of matrix manipulation may be used.

However, these methods are designed to deal with a restricted subclass of
possible data. The data is often assumed to be stationary, that is the dynamics
generating the data are independent of time. It is aso assumed that the dynamics are
fairly simple, both low dimensional and linear. Compound this with the additional

assumptions of low noise and a nonbroadband power spectrum, then it can be seen



that a very limited class of data is often assumed. With experimental nonlinear data,
traditional signal processing methods may fail because the system dynamics are, at
best, complicated, and at worst, extremely noisy.

In general, more advanced and varied methods are often required. These new
methods bring with them a collection of new questions. The researcher is then
concerned additionally with the implementation of these new methods.

1. Can| trust the results of a method of analysis or visualization?

2. Does the method provide away to measure its accuracy?

3. How long will it take to implement this method?

4. How difficult isit to implement this method?

5. What are the limitations of this method?

6. Aretheresultsof anaysisrepeatable?

7. How useful are the results of the analysis?

8. Can | make the implementation of this method simpler or more useful by

combining it with other methods?

9. Can| eiminate duplication by replacing other methods with this method?

Often when atime series analysis method is first presented, it is tested against
simulated systems where the expected results are known. To show how effectiveit is
with real data, it is applied to a well-known system with the addition of white or
gaussian noise. In those cases where the authors apply it to an experimental system, a
relatively ssimple well-studied system with low noise levels and low dimensiona

dynamics is often used. The goal of such an analysis is usually not to deal with the



peculiarities and issues presented by a particular data set, but instead to demonstrate
that application is at least sometimes possible. However, real world datais rarely so
simple. The analysis method may fail once applied to more realistic data, or require
an augmentation suitable to the system that is analyzed.

Therefore it is our hope that thorough analysis from a nonlinear dynamics
perspective may yield more fruitful results. However, this is not a straightforward
task. Calculation of empirical global nonlinear quantities, such as Lyapunov
exponents and fractal dimension, from time series data is known to often yield
erroneous results.™ *. The literature is replete with examples of poor or erroneous
calculations and it has been shown that some popular methods may produce
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circumspect results.”™ = Limited data set size, noise, nonstationarity and complicated
dynamics only serve to compound the problem.

So the researcher is now presented with additional complications. The
concerns about the data are compounded by concerns about analysis. For most
researchers, the analysis methods are simply tools for the researcher to gain a better
understanding of the system which generated the data. What is required are analysis
methods that are relatively simple to implement and simple to interpret. Ideally the
results of preliminary analysis should indicate the directions of further analysis, and
from there, further directions of research.

This is the goal of this thesis. It is hoped that a synthesis of new methods of

analysisin a consistent, unified form will enable researchers to perform analysis more

efficiently and more confidently.



The authors have taken a skeptical approach to the analysis. We demand that
guantitative results be confirmed by other independent methods. Even then we accept
the results only qualitatively. Wherever possible, we point out where these methods
may fail, and suggest criteria which may be used in validating results obtained using
these or similar methods on other data sets.

An additional problem is presented when new methods of data analysis are
performed. In order to maintain generality, algorithms are usualy presented with a
vast number of parameters. This has the effect of making methods versatile and easily
modifiable. However, suggested parameter values are often not available. A thorough
knowledge of the subject matter is necessary in order to achieve reasonable results.
Thus it is encouraged that the user first familiarize himself with the literature, the
method and the programming techniques before attempting analysis. Many laymen
and nonexperts are dissuaded from analyzing their data due to the amount of effort it
would take to achieve reasonabl e results.

Thus we argue that reasonable parameter values should be suggested wherever
possible. If possible, instructions should be given as to how to estimate or zero in on
ideal parameters, and criteria should be developed that help deny or confirm whether
the implementation is correct. Output from a numerical routine should aso be
extensive. Interpretations should be suggested, but the output should also be copious
so that, if the user prefers, he can modify and interpret the results as he wishes. We
feel thisissue has not been thoroughly addressed in the literature or in other nonlinear

dynamics software. Rather than complicating the question by requiring that a high



level of understanding be present when using the analysis tools, we fedl that it is
preferable to embed extra functionality into the software. In essence, wherever
possible, the software should incorporate the results of previous research on time
series analysis. The onus of interpretation should be on the software, not on the
researcher or user. We should stress that this is not ssimply a question of error bars.
Error bars don't tell about systematic errors and neither do they tell if the underlying
assumptions are justified.

Particular attention was paid to the graphical user interface. This is often
neglected in scientific software. This is understandable, because the priority is placed
on the algorithms used. However, lack of a graphical user interface also makes the
software difficult to use and can obscure the results. Thus, we felt that an improved
user interface would aid in the production and evaluation of quantitative results. In
addition, we thought that a few nonscientific features would add greatly to the
usefulness of the software. Therefore we wish to provide the ability to work with
many data sets at the same time, to interface with popular software, to handle multiple

data formats, and to customize the output extensively.

3. Overview

For these reasons the Nonlinear Dynamics Toolbox was created. The
Nonlinear Dynamics Toolbox (NDT) is a set of routines for the creation,
manipulation, analysis, and display of large multi-dimensional time series data sets,

using both established and original techniques derived primarily from the field of
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nonlinear dynamics. In addition, some traditional signal processing methods are also

availablein NDT. A screen shot of the NDT user interfaceis provided in Figure 1.
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Figure 1. A screenshot of the user interface for the Nonlinear Dynamics Toolbox. This software
was created by the author for the purpose of analyzing and visualizing chaotic time series data.

The Nonlinear Dynamics Toolbox is written entirely in portable C, and
consists of some 50,000 lines of original code. The programs utilize subroutines from
Numerical Recipes and LabWindows/CVI. In addition, some publicly available code
for time series analysis has been ported with only minor modifications. The software
has been designed for use under Windows 95, 98, NT, and all other similar variants.

However, it is semiportable, and versions for other platforms may be easily created.
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The modules are coded assuming a flat memory model, and virtual memory support,
al of which is handled by the operating system. On a Pentium Il based PC with 64
MB of memory, data sets of up to 1 million points can be manipulated in main
memory without paying a virtual memory overhead penalty. In some cases, notably
graphics, a user will notice significant differences between the modules on different
machines. However, with these few exceptions, NDT descriptions (and functionality)
are independent of the host computer.

The full power of NDT liesin the ability to manipulate multiple files in many
different ways from one simple interface. Information can be shared between
different routines so that multiple analyses can be performed quickly in one session.
Almost al analysis and visualization presented in this thesis was performed using
NDT.

Chapter 2 deals with ways that data can be generated or imported into the
analysis program. This chapter explains the data structures used for storing and
manipulating time series. It describes how data set parameters are stored, the format
of the data, and how simulations are created. This chapter also contains a complete
description of some of the most relevant routines used to analyze the data. Some
background information on analysis methods is included, and the methods are put in
the proper framework concerning how and when they should be applied.

Chapter 3 contains a description of the sorting and searching routines used.
These are at the heart of most of the time series analysis methods that were

implemented. The proper implementation of these methods alow complicated
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analysis to be performed in a highly efficient manner. We place primary importance
on the Kd-tree, which is the preferred implementation for many routines.
Benchmarking is performed comparing the Kd-tree with the KTree, a simple
multidimensional sort, and a box-assisted sort. A description is also given for the
multidimensional binary representation sort, which is preferred for caculation of
many information theoretic quantities.

In Chapter 4, we give a more detailed description of some origina analysis
methods as well as modifications to analysis methods that we believe represent
improvements over their original implementation. Some of the modifications are
quite small, such as the simplification to Alan Wolf's method of determining the
dominant exponent, while others, such as the method of determining generalized
dimensions, are entirely original. This chapter also deals with how to extract the
symbolic dynamics from atime series. A new method is devised and placed on afirm
mathematical basis. Its accuracy and efficiency are described, and its usefulness is
shown. Some examples of its use are presented, and it is compared with other
methods.

The results are presented in Chapter 5. Explicit description of al the
simulations and experimental systems analyzed in this thesis are described here. We
perform analysis on various experimental time series and particularly complicated
simulations. In these cases we do not have any direct knowledge of what the
outcomes should be. Thus the only confirmation of results possible is to compare the

results of routines that use completely different methods to estimate the same
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guantities. We also discuss the pitfalls of analysis of experimental data, especially
nonstationary, high dimensional, or noisy data of possibly small data sets. We make
some suggestions as to how best to treat such data.

In the conclusion, we summarize what was accomplished. We suggest some
further directions of study, and point to where the greatest improvements can be
made. We also speculate on the nature of this type of research, and on some of the
most problematic issues. Credit is given to everyone who generously contributed to

the work.
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CHAPTER TWO
SOFTWARE IMPLEMENTATION

1. Dataimporting and simulation

1.1. Introduction

Throughout this work, we restrict our discussion to time series data. Typically,
experimental time series data consists of a collection of data points sampled
uniformly in time. However, we wish to perform analysis on awide variety of datain
a consistent manner. The time series may be from a simulation or from an
experiment, and may also come in a wide variety of forms. If the data is from a
simulation, it may be generated externally from another program or internaly by the
analysis software. In either case, the time series may have several data values at each
time or be restricted to one data point per sample time. One would like to be able to
deal with many types of time series datain a uniform manner.

1.1.1. Notation

The vectors are assumed to be sampled uniformly in time. That is, at each

time interval at, a new vector is sampled, and at is a constant. Such a data set will be

referred to in the text as a series of M vectors X_OZ Xyu-1 Where each vector isN
dimensional, X, = (X%, X%,..XN) | If the time series is from a single channel, then

these vectors become scalar quantities, Z = Xi°. Alternately, the data set may be
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described as data from N channels, X°, X?,..., XN, where each channel consists of
M consecutive samples, X = (X!, XX,

Data sets, both experimental and simulated, come in two distinct forms that
need to be distinguished when implementing time series analysis methods. Thefirst is
true multidimensional data. This is data where the time series consists of multiple
channels, e.g., voltage and current values recorded simultaneously from a circuit. The
other form is scalar data, consisting of single channel data where only one
measurement is made at each time. In this case, other dimensions may be constructed
by manipulations of the original data. Consider data from a delay coordinate
embedding of the x dimension of Lorenz data. If only one variable from the system
can be observed, X(t), then (n+1)-dimensional vectors are constructed in the form
(X, X(t+T),....X(t+nT)). This is a delay coordinate embedding. It is one method of
phase space reconstruction, since it allows the phase space to be reconstructed from
only one coordinate.

Mané” and Takens” independently showed that delay coordinate embedding
was a valid technique for reconstructing vectors from scalar quantities. Packard, et.
al.,” applied this technique to experimental time series, and Eckmann and Ruelle”
showed that it was avalid method for examining dynamics of a system.

One dimension of the time series is extracted to use for embeddings. So we

consider the series le,ij,...Xj

npts *

The embedding is a reconstruction of vectors from

this time series. Two parameters are used for the reconstruction, a delay d and an
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embedding dimension, D. D describes the dimensionality of the reconstructed
vectors, and d describes the separation between data points from the original time
series that are used as successive points in avector. Suitable choices for each of these
parameters may be determined through analysis of the data (see Chapter 2). Thus,
from the time series, the following vectors are created

?o =(Xg, X4, ijd""x(jD—l)m)

?l = (xlJ 1 le+d ’ le+2d""le+(D—l)[El) (1)

Y 4-(D-)d — (Xr\]n -1~(D-1)@ » Xl\j/l -1~(D-2)d* erln )

The a™ component of the b™ vector of the embedding is related to the original
time series by

Y = X aaya )

Note that the reconstructed series contains (D —1) [d fewer vectors than the
time series. Thisis because each reconstructed vector extends over D [d consecutive

time series vectors. Any delay coordinate embedding vector past VY, g Would

have components which extend beyond the original time series.

1.1.2. Thedata set structure

One may wish to switch back and forth between the two representations. For
instance, if one wishes to compare the results of a Lyapunov exponent calculation
from an embedding with the results of an exponent calculation from the origina data,
then it would make sense to store all dimensions of the data, but manipulate the data

initsorigina form or as an embedding. Thus a general approach has been taken. All
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the original data is stored in memory. This data may be manipulated, analyzed and
visualized either as embeddings of one dimension or in its origina form. At no point
does the data need to be copied to create or manipulate embeddings. If another form
of phase space reconstruction is used, then a change needs to be made only to the
function that states how vectors are constructed. All other aspects of an analysis
routine may remain the same.

In addition, it is important that the parameters for each data set be saved. This
means that the program must store all relevant data set settings in memory while
working with the data, as well as saving these settings to disk for the next time the
data set is opened. This is accomplished by defining a data set type, which isa C
structure that stores all the datain a 2 dimensional array, and all data set settings. The
data set structure is in the following form. Some of the structure's data have been

removed from the description because they pertain primarily to user interface settings.

t ypedef struct
{
char nane[ 300] ;
int ndim
int npts;
| ong double **matri x;
doubl e sanpl erat e;
i nt datatype;
i nt datasanpling;
int initialpoint;
int finalpoint;
int step;
int enbed;
i nt dintoenbed;
i nt enbeddi ngtype;
int enbeddi m
int delaytine;
int kd-tree;
[/ addi ti onal optional paraneters...
} Dat aSet Type;
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ndim denotes the number of dimensions for each data point, and npts is the
total number of data points. The data is in the form of mat ri x[ npts] [ ndi m .
Thus all data sets are stored in memory as two dimensional arrays in the form
data[# of sanples][# of points at each sanpl e]. samplerateis
just one over the sample frequency. It is the time between consecutive samples, and is
typically given in seconds. datatype describes the type of data that is being dealt with.
This is an integer that assumes one of the following values: O if the data type is
unknown, 1 if the data comes from a simulation and 2 if the data is from an
experiment. datasampling describes how the data was sampled; O if thisis unknown,
1if the datais a Poincare section (or some similar form of sectioning flow data), 2 if
the datais from a flow (many samples per period), and 3 if the datais from a map (it
is not possible to take many samples per period).

initialpoint simply specifies which is the first point in the data set to use when
performing an analysis, processing, or visualization routine. This is useful when one
wants to remove the transients from the analysis, but does not want to remove the
transients from the data set. Similarly finalpoint specifies the last point in the data set
that will be used. step specifies how data points are skipped. If step =2, for instance,
then only every other data point is used.

The next few parameters deal with delay coordinate embedding. In NDT,
unless otherwise specified, delay coordinate embeddings are performed using the
above procedure. Thus the original data is not modified, and modifications are

performed ssimply by turning the embedding on or off and specifying parameters. The
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computational overhead is small. Equation (2) is used to determine the value of any
dimension of any coordinate in the reconstruction. In the C/C++ coordinate language,
arrays are indexed beginning at 0. The a” component of the b™ vector of the delay
coordinate embedding are thus determined from Equation (2) as

Y[ b][a] =X[ b+a*del ay] [] ] 3.

Thus the added computation is only in the integer multiplication of a* del ay.
However, the memory savings may be quite large. No additional memory is required,
since only the original seriesis used. In a common situation, the original datais one-
dimensional, and a three dimensiona embedding is required (for example, 3d
visualization). Under these circumstances, almost three times the original data storage
would have been required if anew array were created to store the embedded data.

embed is a boolean variable that is set to 1 if the datais to be embedded, and O

if not. embeddingtype is aso boolean. A value of 1 for the embeddingtype implies that

a forward embedding is used (e. g., Y=(x1,x2)), and a value of O implies a

backward embedding (e. g., X = (X,, X,)). dimtoembed describes which dimension

of the original data is to be embedded. embeddim is the embedding dimension of the
embedded data, and delaytime is the delay between data points in the embedding.
Further parameters may be used to specify properties of the vectors. Initial or
final vectors may be excluded, intermediate vectors may be skipped, or components
of each vector may carry associated weights. However, the essential components of

delay coordinate embedding have been fully described above.
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The kd-tree parameter is used to specify if a search tree has been built. Other
parameters, such as noiselevel, are specified but not used. These exist so that
additional functionality may be built into the data structure at alater date.

1.2. Generating Data

1.2.1. Dataacquisition

Analysis of any time series data set begins with the acquisition of the data
Whether experimental or simulated, this can be one of the most difficult tasks in the
analysis process. The data analyzed comes in three distinct forms- maps, differential
equations (or flows), and experimental data. For the experimental data, both the
method of generating data and of importing it into the analysis software are discussed.
In this section, the methods used to acquire data are discussed.

1.2.2. Dataimporting and exporting

Any data set in standard ASCII spreadsheet format may be read in as data.
The file is assumed to have the .dat extension and no header information. However
the .dat extension is optional and any other extension may be used. The spreadsheet
format consists of columns of numbers (floating point or integer) separated by tabs,
commas or spaces with no header. Thus a single time series would just be a series of

numbers, such as

0. 2345
-1. 2429
3. 4254472
0. 233

1

3.32
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Two dimensional data, such as position and velocity values would have two

columns, one for position, one for velocity.

234.1 0. 0235
230.1 0.3235
212.7 32.6
219.7 134.3

In conjunction with the data set, NDT looks for an ini file that stores
information about the data. If an ini file is not found, these values are set at defaults.
Similarly, data may be saved in ASCII spreadsheet format. Regardless of whether it is
one generated from a sample system or from a previously opened file, it may be saved
as a spreadsheet file with the dat extension. An associated ini file will also be saved.
The data may be reloaded using the Open Data Set routine at alater date.

1.2.3. Simulation

Many systems were built directly into the software, as opposed to having the
data collected elsewhere and then loaded into NDT. This was done for systems that
are investigated frequently or were of specia importance. It was aso done so that
many parameter settings could be compared quickly and easily.

In order to simulate these systems, an efficient and reliable scheme for
numerical integration of ordinary differential equations was required. Numerical
integration is often performed using the Euler method or Runge-Kutta integration.
However, these methods have tremendous drawbacks in their reliability™ * and do not
offer an effective measure of their error. Even higher order variable Runge-Kutta
integration may perform very poorly on stiff systems. For these reasons, a very

advanced numerical integration routine, CVode* was chosen.
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CVODE is asolver for stiff and nonstiff initial value problems for systems of
ordinary differential equation (ODES). The capabilities of many older, Fortran based
solvers have been combined in the C-language package CVODE. One key feature of
the CVODE organization is that the linear system solvers comprise a layer of code
modules that is separated from the integration agorithm, allowing for easy
modification and expansion of the linear solver array. A second key feature is a
separate modul e devoted to vector operations.

An ODE initia value problem can be written as

y=ftty). y)=Y, yOR (4)

where y denotes the derivative dy/dt. This problem is stiff if the Jacobian
matrix J =0df /dy has an eigenvalue with a large negative real part. That is, one or
more modes are strongly damped. Thus stiffness is a somewhat subjective call, but it
is also an important one since it implies that numerical integration is prone to error.
The underlying integration methods used in CVODE are variabl e-coefficient forms of
the Adams (the Adams-Moulton formula) and BDF (Backward Differentiation
Formula) methods. The numerical solution to an ODE initial value problem is
generated as discrete values y, at time points t,.

A nonlinear system must be solved at each time step. In the nonstiff case, this
is usually done with simple functional (or fixed point) iteration. In the stiff case, the
solution is performed with some variant of Newton iteration. This requires the
solution of linear systems. They are solved by either a direct or an iterative method.

The direct solvers currently available in CVODE include dense (full) and banded
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methods, and a diagonal approximate Jacobian method. The iterative method is the
Generalized Minimal Residual method.

The estimation and control of errors is an extremely important feature of any
ODE solver. In CVODE, local trunctation errors in the computed values of y are
estimated, and the solver will control the vector e of estimated local errors in
accordance with a combination of input relative and absolute tolerances. The vector e

is made to satisfy an inequality of the form

<1 (5)

”e”W RMS.emt —

where the weighted root-mean-square horm with weight vector w is defined as

[ vw)’

||V|L/v RMS,W I_T (6)

The CVODE error weight vector ewt has components

_ 1
M = RroL ;| + ATOL

()

where the non-negative relative and absolute tolerances RTOL and ATOL are
specified by the user. Here RTOL is a scalar, but ATOL can be either a scalar or a

vector. The local error test (5) controls the estimated local error € in component y; in

such a way that, roughly, |g| will be less than (ewt)™ = RTOL |+ ATOL, . The
local error test passesif in each component the absolute error |q| is less than or equal

to ATOL,, or the relative error |g|/|y;| is less than or equal to RTOL. RTOL = 0 is

used for pure absolute error control, and ATOL; = O for pure relative error control.
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Actual (global) errors, being an accumulation of local errors, may well exceed these

local tolerances, so RTOL and ATOL should be chosen conservatively.

2. Analysis routines

2.1. Introduction

At the core of all the work presented in this thesis are the routines that NDT
uses to process, analyze, and visualize the data. These routines are al original code,
and incorporate a mix of well-established methods and original implementations.
They are integrated together so that analysis and visualization can be performed in
tandem. All the data sets are analyzed using the routines described herein.

The software that was created for this work includes a large number of
routines that are not presented in thisthesis. Specialized routines, such as the unstable
periodic orbit analyzer, the information dimension routine, empirical mode
decomposition, the Rosenstein method of determining dominant Lyapunov exponent,
noise reduction and prediction routines have been successfully implemented but are
not used in the analysis of the featured data sets from Chapter Five. Visudization
routines, such as the two-dimensional histogram and the three-dimensional plotter are
not described because their use should be apparent. Finaly, the NDT software
includes a large number of built in simulations. Because the emphasis here is on
experimental systems, these simulations are not discussed.

2.2. Nonstationarity
Identification of nonstationarity or parameter drift in experimental data is a

very important task before attempting to do quantitative analysis. Most anaysis
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routines assume constancy of parameters, and quantitative results are very suspect if
that is not the case.

No single method can definitively state that parameter drift has not occured,
since some statistics may remain constant over the data set even while many of the
properties are changing rapidly. However, a few simple statistics can identify many
types of parameter drift easily and quickly. For the statistical drift routine, we look at
how common linear statistics such as mean, maximum, minimum, standard deviation,
skewness, and kurtosis may change when viewed over moving windows throughout
the data.

The main parameters to be concerned with here are the window length and the
discriminating statistic. A good choice of statistic is mean, since a fluctuating mean
indicates that the data may be gradudly rising or falling over time. With the
appropriate window, measuring the mean may also be useful in identifying very low
frequency fluctuations.

Suppose one looks at the mean with a data set of length n and window size w.
Then starting at the first point X;, the mean of points X; to X, is calculated. Thisis
plotted at X; on the X-Axis. Then the mean of points X, to Xy+1 is calculated. Thisis
plotted at X, on the X-Axis. One continues through the data set until the mean of
points X through X, has been plotted at point X,., on the X-axis. Thus one observes
how the mean value changes over time.

Picking the appropriate window size is very important. Too small of awindow

Size means that the original dynamics are recaptured, and too large of a window size
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will "average out" the fluctuations. Thus it is recommended that one should try a few
windows in order to decide which is best.
2.3. Choosing delay time
2.3.1. Autocorrelation

The autocorrelation is defined from the standard deviation of a time series X,
0, =+/(x—X)* . The correlation r between two time series x and y is then defined as:

r=(x=-x)(y-y)/ o0, (8
The autocorrelation r, is given by the correlation of the series with itself; use

X(t) and x(t+7) as the two time series in Equation (8). It measures how well correlated
x and y values are under different delays.

A good choice for the delay time to use when embedding the data should be
the first time the autocorrelation crosses zero. This represents the lowest value of
delay for which the x and y values are uncorrelated. However, since the
autocorrelation function is a linear measure it does not provide accurate results in all
situations. For Rossler data it provides a good choice of delay, but its results for
Lorenz data are not entirely clear. For the Mackey Glass equation at default settings
with timestep 0.25 autocorrelation should give a delay of about 50. For maps, it
should pick adelay of one.

2.3.2. Mutual Information

The mutual information of two continuous random variables, X and Y with

joint density function f(x,y), isgiven by
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I =1(X;Y) = J'f(x,y)log%dxdy (9)

and an efficient method for estimating it from time series data is given in chapter
four, section 6.

Inspection of the mutual information is away to determine a useful delay time
for plotting attractors. A good choice for the time delay T is one that, given X(t),
provides new information with measurement X(t+T). Given a measurement of X(t),
this provides an estimate of how many bits on the average can be predicted about
X(t+T). A graph of I(T) starts off very high (given a measurement X(t), we know as
many bits as possible about X(t+0)=X(t)). As T is increased, I(T) decreases, then
usually rises again. Fraser and Swinney suggest using the first minimum in 1(T) to
select T, thereby revealing the first instance when the original data shares little
information with its time delayed form .

The data is scaled and processed in the calculation, so the mutual information
that is found may not be the same as that found using other software. However, the
relative values of mutual information for different delays should be correct. One
should find a reasonable value of the delay to use when embedding at the first
minimum of the mutual information.

This is preferred over the autocorrelation function, because the mutual
information can measure nonlinear correlations whereas the autocorrelation function
only takes linear correlations into account. However, neither is definitive so it is

recommended that both functions be used.
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2.4. Dimension
24.1. Corréation
The Correlation Dimension routine provides an estimate of the correlation

43-45

dimension using the Grassberger-Procaccia algorithm.™ ™ The idea is to construct a
function C(¢) that is the probability that two arbitrary points on the orbit are closer
together than & Thisis usualy done by calculating the separation between every pair
of N data points and sorting them into bins of width de proportional to & The
correlation dimension is given by D =dlog(C)/dlog(¢) in the limit € - 0, and
N - o. The Correlation Dimension is defined as the slope of the curve C(¢) versus
& Cisthe correlation of the data set, or the probability that any two points in the set
are separated by a distance & A noninteger result for the correlation dimension
indicates that the data is probably fractal. For the Henon map, the correlation
dimension should be about 1.2. Using NDT, the correlation dimension can be
measured two ways.

Firgt, it can be measured from the slope of C(g) versus €. To obtain an
estimate, move the two markers to various points on the graph. For too low or too
high £ values, the results are inaccurate, so the slope must be measured in the
midrange of the curve. Second, it can be measured from the points on the y-axis of

the bottom plot. To obtain an estimate, move the markers to various points on this

graph. Again, for too low or too high & values, the results are inaccurate, so the
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estimate must also be measured in the midrange of the curve. A good value should be
in the region where measurements of the dimension are most stable.

In order to speed up computation, we use the fact that computers store floating
point numbers with a mantissa and integer exponent of 2. Thusit is possible to find
the integer part of log,(¢%) by extracting the appropriate bits of the variable €2
Standard C libraries are available to do this.

The algorithm is order n? so it should be tried on a small data set first. By
selecting quick, rough estimate, a fast estimate of the correlation dimension can be
found. If the step size is increased to a value n, only every nth point is used in
estimating correlation dimension. Thus a step size of 4 will make the program run
roughly 4 times as fast. Nearby points in time may have a high correlation that can
distort the estimate of correlation dimension. This problem may be overcome either
by reducing the sample rate (using the reduce data routine) or by having a large
number of orbitsin relation to the data set size.

2.4.2. False Nearest Neighbors

The False Near Neighbors routine is a method of choosing the minimum
embedding dimension of a one-dimensional time series. This method finds the nearest
neighbor of every point in agiven dimension, then checksto seeif these are till close
neighbors in one higher dimension.” The percentage of False Near Neighbors should
drop to zero when the appropriate embedding dimension has been reached. The
appropriate embedding dimension is a bit of a judgement call. If the number of fase

near neighbors is not zero but is very small, the embedding dimension may still be
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suitable for most forms of analysis. For Lorenz data at default settings, an embedding
of 4 should clearly demonstrate that a 3-dimensional embedding is appropriate. If the
data is noisy, then it will not reach zero, but it should reach a low plateau at the
appropriate embedding dimension. For the Henon map, the False Nearest Neighbors
method should suggest an embedding dimension of 2.

An n-dimensional neighbor is considered false if the distance between the
point and its neighbor in the n+1% dimension is greater than a criterion times the
average distance between the point and its neighbor in each of the previous n
dimensions.

For each vector X= (X1,Xz,...Xn) in the time series ook for its nearest neighbor
Y=(Y1,Y2,...Yy) in an n-dimensional space. Calculate the distance ||X-Y||. Iterate both
points and compute R, = || Xq+1 - Yoer ||/ [IX-Y|| . The first criterion isif Rn exceeds a
user-specified threshold then this point is considered a false nearest neighbor. False
nearest neighbors may also be identified by a second criterion, if ||X- Y|| > Tolerance,
where Tolerance is a user specified tolerance times the size of the attractor. If either
criterion holds, then a false neighbor has been identified. An appropriate embedding
dimension is one where the percentage of false nearest neighborsis close to zero.

2.4.3. Generalized dimensions

First we define the generalized entropies. For g=0,1,2...,

H, (&) :1_i|n Nf PI(e)...q#1
o
H, () = —Z P(&)InP(¢)
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Pi(€) is the probability, out of all occupied boxes, of a point being in the i™
occupied box. € is the length of the side of a box. The generaized dimensions are

then defined as

D(g) = ~limHa')
e-» |ng

(11)

There are two ways to approximate the generalized dimensions for time series
data. Thefirst isif € is sufficiently small such that the limit is approximately correct,

but that we have enough data to get an accurate measurement for H,(€). In which
case we may use D, (&) =-H,(&)/Ine. D(0) is the box counting dimension, D(1) is

the information dimension, and D(2) is the correlation dimension.

However, the preferred method is to simply look at the slope of a plot of

H, (&) vsIn(e).

2.5. Lyapunov Exponents

The determination of Lyapunov exponents from noisy, experimental datais a
difficult task. Although many methods have been presented, there are a'so numerous
examples of these methods breaking down when tested against real data, as well as
questions concerning the validity of the methods. Thus the results of exponent
determination were held to scrutiny. Criteria were established for identification of
Lyapunov exponents.

There should be agreement between exponents as measured from different
algorithms, and some measurement of error should be provided. Embedding

parameters used in estimating exponents must be confirmed independently by other
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methods. The results should remain consistent under various parameter settings for
exponent estimation. For flow data, a zero exponent should be clearly found. If itis
possible to obtain both flow and sectioned data, estimation of exponents from each
data set should be in agreement. The sum of all the exponents must be negative, and
the sum of the positive exponents should be less than or equal to the metric entropy.
In fact, for many cases they should be equal.4’” Under the proper conditions, the
Lyapunov exponents should all, approximately, switch sign when measured from a
timereversal of the data.32

The Lyapunov dimension may be defined as

Z)I (12)

4 L+1|

where L is the maximum integer such that the sum of the L largest exponents

L+1
is still non-negative. That is, Z/\ >0, and ZA <0. The Kaplan-Yorke

j= i=

conjecture” proposes that this is equal to the information dimension. Within error
bounds, this seems to be true. Therefore, a final criterion is that the Lyapunov
dimension estimates should agree with information dimension estimates.4°

It is doubtful that all criteria can be satisfied unless one is dealing with along,
noise-free time series of low dimensional simulated data. Noise, high dimensionality
and short time series length (few orbits or small number of points or both) negatively
affect all methods of analysis. Some criteria, such as confirmation of embedding
parameter choices are avirtual necessity before any calculation is made. Others, such

as agreement between the Lyapunov dimension and information dimension, are very
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strong indicators that Lyapunov exponents have been reasonably determined. Still
other criteria require calculations of quantities that are particularly difficult to
compute from time series, such as metric entropy. If the dynamics of the system are
unknown, results cannot be accepted or rejected based on definitive verification of the
criteria. Rather, the worth of each criterion should be weighed and a subjective call
as to the validity of Lyapunov exponent estimates should then be made. A more
rigorous, statistical approach would be the use of Lyapunov exponents as a
discriminating statistic between the time series and surrogate data.  This has been
attempted in the past, but the complexities of exponent estimation and the flaws in
exponent estimation algorithms have made this method extremely difficult. Previous
authors chose to reject the use of estimated Lyapunov exponents as discriminating

statistics.50
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CHAPTER THREE
SEARCHING AND SORTING METHODS

1. Introduction

Analysis of data often requires that al points in a data set that fulfill some
criteria be selected. For analysis of multidimensional data, efficient searching
becomes essential. If no sorting is performed, then searching may require that each
data vector be examined. This is the brute force method, and it is a very time-
consuming task. To find the nearest neighbor of each point in a data set of n vectors

requires the comparison of n(n-1)/2 distances when using a brute force method.

Considerable work has been done in devising searching and sorting routines that can
be run far more efficiently. An extensive review of the multidimensional data

51, 52

structures that might be required is described by Samet, et a™ . Non-hierarchical
methods, such as the use of grid files” and extendable hashing,” have been applied to
multidimensional searching and analyzed extensively. In many areas of research the
kd-tree has become accepted as one of the most efficient and versatile methods of
searching. This and other search mechanisms have been applied extensively
throughout the field of computational geometry.™ * However, little work has been
made within the nonlinear time series analysis community in this regard. It is our
hope that we can shed some light on the beneficial uses of kd-trees in this field, and

how they can be adapted and modified to the peculiarities of time series analysis from

a nonlinear dynamics perspective. In this chapter, a variety of searching and sorting
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routines are investigated and compared. It is shown when different routines may be
preferred, how the routines may be optimized, and how they may be tailored for a
variety of different situations.

There are a variety of searches that are often performed on multidimensional
data” Idedlly, a sorting and searching routine should be able to perform al the
common types of searches, and be adaptable enough so that it may be made to
perform any search. Of course, even for an unusual search, the searching and sorting
routine should perform at least as efficiently as the brute force method.

Perhaps the most common type of search, and one of the simplest, is the
nearest neighbor search. This search involves the identification of the nearest vector
in the data set to some specified vector, known as the search vector. The search vector
may or may nhot also be in the data set. Expansions on this type of search include the
radial search, where one wishes to find all vectors within a given distance of the
search vector, and the weighted search, where one wishes to find the nearest N
vectors to the search vector.

Each of these searches (weighted, radial and nearest neighbor) may come with
further restrictions. For instance, points or collections of points may be excluded from
the search. Additional functionality may also be required. The returned data may be
ordered from closest to furthest from the search vector, and the sorting and searching
may be required to handle the insertion and deletion of points. That is, if points are

deleted from or added to the data, these additiona points should be added or deleted
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to the sort so that they can be removed or included in the search. Such a feature is
essential if searching isto performed with real-time analysis.

One clear example of how search methods may need to be modified for
nonlinear dynamics comes out of delay coordinate embedding theory. Here one is
presented with data consisting of a single series of numbers (integer or floating point)
that is assumed to represent one dimension of an n-dimensional system. The
dynamics of that systems may be reconstructed by constructing multidimensional

vectors from the original data via the use of atime delay . The original time series

X, X,,...X isthustransformed into n-dimensional vectors

Yy = (Xy Xpars Xpsor --'X1+(n—1)r)
Y, = (X5, Xours X2+2T7"'X2+(n—1)2') ()

To do this efficiently, especially in regards to memory use, any sorting and
searching should work only by accessing the original, one-dimensiona data, instead
of acting on n-dimensional copies of the data. This requires modifications to the
implementation of any multidimensional search method. Ideally these modifications
should be implemented such that they are small, encapsulated, and allow for further
modifications at a later date. Each of the search methods discussed will be compared

in their ability to adapt to delay coordinate embedded data.
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2. The Kd-tree

2.1. Method

The K-dimensional binary search tree (or kd-tree) is a highly adaptable, well
researched method for searching multidimensional data. This tree was first introduced
in Bentley, et a.,” studied extensively in Ref. 59 and a highly efficient and versatile
implementation was described in Ref. 60. It is this second implementation, and
variations upon it, that we will be dealing with here.

There are two types of nodes in a kd-tree, the buckets (or terminal nodes) and
the internal nodes. The internal nodes have two children, a left and aright son. These
children represent a k-dimensional partition of the hyperplane. Records on one side of
the partition are stored in the left subtree, and on the other side are records stored in
the right subtree. The terminal nodes are buckets which contain up to a set amount of
points. A one dimensional kd-tree would in effect be a simple quicksort.

The building of the kd-tree works by first determining which dimension of the
data has the largest spread, i.e., difference between the maximum and the minimum.
The sorting at the first node is then performed along that dimension. A quickselect
algorithm, which runsin order n time, finds the midpoint of this data. The dataisthen
sorted along a branch depending on whether it is larger or smaller than the midpoint.
This succeeds in dividing the data set into two smaller data sets of equal size. The
same procedure is used at each node to determine the branching of the smaller data

sets residing at each node. When the number of data points contained at a node is
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smaller than or equal to a specified size, then that node becomes a bucket and the data
contained within is no longer sorted.

Consider the following data.

(71'3)
(4,2)

('61 7)
(21'1)
(8,0)

(11'8)
(51'6)
('8! 9)
(9,8)

('3!'4)

Table 1. Sample data used to depict the sorting and sear ching methods.

TIOmMmMUO®m>

[

Figure 2 depicts an example partition in 2 dimensions for this data set. At each
node the cut dimension and the cut value (the median of the corresponding data) are
stored. The bucket size has been chosen to be one. The corresponding partitioning of
the plane is given in Figure 3. We note that this example comes from a larger data set
and thus does not appear properly balanced. This data set will be used as an example

in the discussion of other methods.

39



X,0.5

Y,2.5 Y,0.0

J X,-7.0 Y,-4.5 YA4.0

H C X,3.0 X,4.5 X,6.0

Figure 2. The kd-tree created using the sample data.
H

Figure 3. The sample data as partitioned using the kd-tree method.
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A nearest neighbor search may then be performed as a top-down recursuve
traversal of a portion of the tree. At each node, the query point is compared with the
cut value along the specified cut dimension. If along the cut dimension the query
point is less than the cut value, then the left branch is descended. Otherwise, the right
branch is descended. When a bucket is reached, all points in the bucket are compared
to see if any of them is closer than the distance to the nearest neighbor found so far.
After the descent is completed, at any node encountered, if the distance to the closest
neighbor found is greater than the distance to the cut value, then the other branch at
that node needs to be descended as well. Searching stops when no more branches
need to be descended.

The drawbacks of the kd tree, while few, are transparent. First, if searching is
to be done in many different dimensions, either a highly inefficient search is used, or
additional search trees must be built. Also the method is somewhat memory intensive.
In even the simplest kd tree, a number indicating the cutting value is required at each
node, as well as an ordered array of data (similar to the quicksort). If pointers to the
parent node or principal cuts are used then the tree must contain even more
information at each node. Although this increase may at first seem unimportant, one
should note that experimental data typically consists of 100000 floating points or
more. In fact, some data analysis routines require a minimum of this many points. If
the database is al'so on that order, then memory may prove unmanageable for many

workstation computers.
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Bentley recommends the use of parent nodes for each node in a tree structure.
A search may then be performed using a bottom-up approach, starting with the bucket
containing the search point and searching through a small number of buckets until the
appropriate neighbors have been found. For nearest neighbor searches this reduces
computational time from O(log m) to O(1). This however, does not immediately
improve on search time for finding near neighbors of points not in the database.
Timed trials indicated that the increased speed due to bottom-up (as opposed to top-
down) searches was negligible. Thisis because amost all computational time is spent

in distance calculations, and the reduced number of comparisonsis negligible.

3. TheKTree

K-trees are a generalization of the single-dimensional M-ary search tree. Asa
data comparative search tree, a K-tree stores data objects in both internal and |eaf
nodes. A hierarchical recursive subdivision of the k-dimensional search space is
induced with the space partitions following the locality of the data. Each node in a K-
tree contains K=2" child pointers. The root node of the tree represents the entire
search space and each child of the root represents a K-ant of the parent space.

One of the disadvantages of the K-tree is its storage space requirements. In a
standard implementation, as described here, a tree of N k-dimensional vectors

requires a minimum of (2% +k) N fields. Only N-1 of the 2 branches actually point

to anode. Therest point to NULL data. For large k, this waste become prohibitive.
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Consider the case of two-dimensional data (k=2, K=4). This K-tree is known
as a quadtree, and is a 4-ary tree with each node possessing 4 child pointers. The
search space is a plane and the partitioning induced by the structure is a hierarchical
subdivision of the plane into digoint quadrants. If the data consists of the 10 vectors
described in the above section, then the corresponding tree is depicted in Figure 4 and
the partitioning of the plane in Figure 5. Note that much of the tree is consumed by

null pointers.

Figure 4. Thektree created using the sample data.



Figure5 The sample data as partitioned using the k-tree method.

Searching the tree is a recursive two-step process. A cube that corresponds to
the bounding extent of the search sphere is intersected with the tree at each node
encountered. The bounds of this cube are maintained in a k-dimensional range array.
This array is initialized based on the search vector. At each node, the direction of
search is determined based on this intersection. A search on a child is discontinued if
the region represented by the child does not intersect the search cube. This same
general method may be applied to weighted, radial, and nearest neighbor searches.

For radial searches, the radius of the search sphere is fixed. For nearest neighbor



searches it is doubled if the nearest neighbor has not been found, and for weighted

searches it is doubled if enough neighbors have not been found.

4. Multidimensional quicksort

4.1. Description

For many analyses, one wishes to search only select dimensions of the data. A
problem frequently encountered is that most sort methods are optimized for only one
type of search and a different sort would need to be performed for each search based
on adifferent dimension or subset of all the dimensions.

An example of this comes out of delay coordinate embedding theory, as
described in the Introduction. The choice of an embedding dimension is never a clear
one. There are methods of finding a suitable embedding dimension that consist of
comparing the results of various embedding dimensions and then the lowest
dimension for which some criterion holds is typically chosen (61 and references
therein). Also one may wish to compare the results of analyses under different
embeddings.

Using conventional methods, this would require sorting and searching the data
for each embedding. The overhead in building a search tree or sorting the data is
considerable. It is typically assumed that the data will only be sorted once, and so
speed in the sort is willingly sacrificed in favor of devising an optimal search. But
here, conventional sorts may perform poorly. If changing the embedding dimension

requires a new sort, then an optimal search may still be slow due to the many long
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sort times. For analyses that require many different embedding dimensions, the goals
are modified. One would like to be able to sort the data quickly, and in such a way
that avariety of searches can be performed.
4.2. Method

The data is described as a series of N vectors where each vector is n
dimensional, X_k =(X¢, X7Z,..X). A quicksort is performed on each of the n
dimensions. The original array is not modified. Instead, two new arrays are created
for each quicksort. Thefirst is the quicksort array, an integer array where the value at
position k in this array is the position in the data array of the k™ smallest value in this
dimension. The second array is the inverted quicksort. It is an integer array where the
value at position k in the array is the position in the quicksort array of the value k.

Keeping both arrays allows one to identify both the location of a sorted value in the

origina array, and the location of a vaue in the sorted array. Thus, if 71 has the
second smallest value in the third dimension, then it may be represented as X_23 . The

value stored at the second index in the quicksort array for the third dimension will be
1, and the value stored at the first index in the inverted quicksort array for the third
dimension will be 2. Note that the additional memory overhead need not be large. For
each floating point value in the original data, two additional integer values are stored,
one from the quicksort array and one from the inverted quicksort array.

We begin by looking at a ssmple case and showing how the method can easily

be generaized. We consider the case of two dimensional data, with coordinates x and
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y, where we make no assumptions about delay coordinate embeddings or uniformity

of data.

Suppose we wish to find the nearest neighbor of the vector A=(x,y) .If this
vector’s position in the x-axis quicksort isi and its position in the y-axis quicksort is |
(i and j are found using the inverted quicksorts), then it may also be represented as

A=A =0 %) = A, = (X0 ).

Using the quicksorts, we search outward from the search vector, eliminating

search directions as we go. Reasonabl e candidates for nearest neighbor are the nearest

neighbors on either side in the x-axis quicksort, and the nearest neighbors on either
side in the y-axis quicksort. The vector E =(X_1x1¥i.1,) corresponding to position
i-1 in the x-axis quicksort is the vector with the closest x-coordinate such that
X_ 1 <X. Similarly, the vector H = (X410 Yisrx) corresponding to i+1 in the x-
axis quicksort is the vector with the closest x-coordinate such that x, > x. And from

the y-axis quicksort, we have the vectors A, =(X_,,Y,,,) and

A1y = (Xi1y1Yjay) - These are the four vectors adjacent to the search vector in the

two quicksorts. Each vector's distance to the search vector is calculated and we store

the minimal distance and the corresponding minimal vector. If |x_,, — x| is greater

than the minimal distance, then we know that all vectors A _,, , A _,, K must also

be further away than the minimal vector. In that case, we will no longer search in

decreasing values on the x-axis quicksort. We would also no longer search in
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decreasing values on the x-axis quicksort if A has been reached. Likewise, if

| %, —X| is greater than the minimal distance, then we know that all vectors

Ay Aoy Ay Must also be further away than the minimal vector. If either that

is the case or R has been reached then we would no longer search in increasing

values on the x-axis quicksort. The samerule appliesto |y, —yland |y,,,, — Y|

Wethen look at the four vectors, A_,, , A, A,y and A, . If any of these

is closer than the minimal vector, then we replace the minimal vector with this one,

and the minimal distance with this distance. If | x_, , — x| is greater than the minimal

distance, then we no longer need to continue searching in this direction. A similar

comparison ismade for | x.,,, = X|,|y;,, —Yland | y;.,, = YI.

This procedure is repeated for A, , A5, Ay and A, , and so on, until

all search directions have been eliminated. We find which of these four vectors is
closest to the search vector. We then search the next four closest points. If any of
these points is further away in its direction of search than the minimal distance, then
we can eliminate that direction from further search. Also, if we reach the end of the
data set in any direction, then we can eliminate that direction. We find the distance of
the four points from our point of interest and, if possible, replace the minimal
distance. We then proceed to the next four points and proceed this way until all

directions of search have been eiminated.
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The minimal vector must be the nearest neighbor, since all other neighbor
distances have either been calculated and found to be greater than the minimal
distance, or have been shown that they must be greater than the minimal distance.

Extension of this algorithm to higher dimensions is straightforward. In n
dimensions there are 2n possible directions. Thus 2n immediate neighbors are
checked. A minimal distance is found, and then the next 2n neighbors are checked.
This is continued until it can be shown that none of the 2n directions can contain a
nearer neighbor.

It is easy to construct data sets for which thisis a very inefficient search. For
instance, if one is looking for the closest point to (0,0) and one were to find a large
guantity of points residing outside the circle of radius 1 but inside the square of side
length 1 then all these points would need to be measured before the closer point at
(1,0) is considered. However, similar situations can be constructed for most
multidimensional sort and search methods, and preventative measures can be taken.

The power of this method comes into play when dealing with a delay
coordinate embedding. In this case, one can sort just the original data set and perform
all the searches from that sort. Neighbors to a point in any dimension are found from
the sorted array of the original data. The same method of search is used. For example,
consider 2 dimensional data constructed with a delay of one. The reconstructed data
then ranges from (Xo, X1 ) to (Xn-2 , Xn-1) To find the near neighbors of (X, Xn+1) we
find the near neighbors of X, from the sorted array and the near neighbors of Xp.1

from the same array. A near neighbor using X, in the second coordinate or Xy.1 in the
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first coordinate can immediately be eliminated from consideration because it is not
used in the reconstruction. Such a point would then be skipped over in our search. So
searches can be performed using any number of delays and any number of embedding

dimensions from only one quicksorted array.

5. The box-assisted method

The box-assisted search method was described by Schreiber, et al.” as a
simple multidimensional search method for nonlinear time series analysis. A grid is
created and all the vectors are sorted into boxes in the grid. Figure 6 demonstrates a
two-dimensiona grid that would be created for the sample data. Searching then
involves finding the box that a point is in, then searching that box and al adjacent
boxes. If the nearest neighbor has not been found, then the search is expanded to the
next adjacent boxes. The search is continued until all required neighbors have been

found.
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Figure 6 The sample data set as gridded into 16 boxes in two dimensions, using the box-assisted
method.

A benefit of this method is that it fits into the class of bin based sorts. Hence
the sort time is reduced from order O(nlog n), for tree based methods, to O(n). One of
the difficulties with this method is the determination of the appropriate box size. The
sort is frequently tailored to the type of search that is required, since a box size is
required and the preferred box size is dependent on the type of search to be done.
However, one usualy has only limited a priori knowledge of the searches that may be
performed. Thus the appropriate box size for one search may not be appropriate for

another. If the box size istoo small, then many boxes are left unfilled and many boxes
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will need to be searched. This results in both excessive use of memory and excessive
computation.

The choice of box dimensionality may also be problematic. Schreiber, et al.”
suggest 2 or 3 dimensional boxes. However, this may lead to inefficient searches for
high dimensional data. Higher dimensional data may still be searched although many
more boxes are often needed in order to find a nearest neighbor. On the other hand,
using higher dimensional boxes will exacerbate the memory inefficiency. In the
benchmarking results shown later in the chapter, we will consider both two and three

dimensional boxes.

6. The multidimensional binary representation

This method was designed with specific types of anaysis (calculation of
entropy, fractal dimension or generation of symbol dynamics) in mind. Consider a

time series Xi, X3, Xs..., Xy €mbedded in n dimensions with delay T, as described in
Eqn. (1). This creates a series of vectors, Y,,Y,,... It is these embedded vectors that

one would like to sort and search, not simply the original time series.

The generalized procedure is as follows:

First scale al points in the time series to lie between 0 and 2% —1. Thisis the
range of along unsigned integer on most computers.

Sort the data using a quicksort based on the following comparison scheme:

for vectors 7i:(Xi’xi+1"xi+2T""X —1)1') and YJ :(Xj1Xj+T’Xj+2T""Xj+(n—1)T)1

i+(n
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created from a delay coordinate embedding, one determines whether Y, <Y, Y, >Y;,
or Y, =Y, , by making the following comparisons.

If thefirst bit in the binary representation of X; is less than the first bit in the
binary representation of Xj, then Y <Y,. Else if the first bit in the binary

representation of X; is greater than the first bit in the binary representation of Xj, then

<]

Y,
If these first bits are equal, then we make the same comparison on the first bits

of Xi+zand X .

If these are equal then we make the comparison for X2 and X+2;, and so on
up to Xi+(n-1)r and Xj+(n-1)r-

If all of these are equal, then we compare the second bits of X; and X;, and
then, if necessary the second bits of X, and Xj:,, and so on up to Xi+(n-1)7 and X+(n-1)r-
Again, if these are all equal we move on to the third bits of the binary representation.

This procedure is completed until al bits of the binary representations of Y, and Y,

have been compared. If they are equal, then we know that these two vectors are equa
up to the resolution of the computer, and so they do not need to be ordered.

Notice that this means that the comparison of two vectors requires anywhere
from 1 to n[B2 binary comparisons. A uniform distribution implies that most vectors
could be sorted using just a few binary comparisons, but highly clustered data would
require far more, since for many vectors the binary representations would be quite

smilar.
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For a two-dimensional embedding, sorted scaled data may be ordered in the

following manner.

(0,0) -> 00 00 00 ..00 00 00
(0,1) -> 00 00 00 ..00 00 01
(1,0) -> 00 00 00 ..00 00 10
(0,2) -> 00 00 00 ..00 01 00
(0,3) -> 00 00 00 ..00 01 01
(2,1) -> 00 00 00 .00 10 01
(4,2) -> 00 00 00 ..10 01 00
(4,2) -> 00 00 00 ..10 01 00
(4,3) -> 00 00 00 .00 11 11
(7,4) -> 00 00 00 .11 10 10
(7,7) -> 00 00 00 .11 11 11

where the first bit states if the first coordinate ranges from 0-3 or 4-7, the
second bit if the second coordinate ranges from 0-3 or 4-7. The first and third bit
together describe whether the first coordinate ranges from 0-1, 2-3, 4-5 or 6-7, and so
on.

It should be noted that the vectors do not need to be stored in memory, since
they can always be reconstructed from the original time series. Likewise, the scaling
of the data may be performed within this step, so that the scaled data need not be
stored either. The procedure also works if the data is not from a delay coordinate
embedding. It can be generalized to any multidimensional time series.

The data is gridded into n-dimensiona boxes of equal length €, such that all
vectors lie within these boxes. Figure 7 depicts such a grid for data from the Henon

map. If abox islabeled i, then it has an associated probability, P (&), that a vector on

the attractor will reside within this box. £represents which of the 32 levels of the

binary representation we are considering. The data is now ordered so that all the
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vectors within a box of any of the & (1, %, ... 1/ (2*32 -1)) are ordered

consecutively.
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Figure7. A gridding of the Henon attractor using the multidimensional binary representation.
An 8 by 8 grid has been created where each squareisrepresented asa 2d, 3 bit vector (00 00 00
to 11 11 11). Only 31 of the 64 possible squares ar e occupied.

This suggests an accurate method to keep track of how many vectorslieinside
of each box of any size. One can scroll through the data and count how many vectors
are in each box. That is, a vector is compared with the previous vector. There are 32
levels. If on any of the dimensions of the two vectors, the binary representations of
the two vectors on that level are not equal, then we know that these vectors reside in

different boxes.
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An adaptation of this method that alows for insertion into the sorted data
could be highly effective for the case of when an arbitrary number of data points can
be generated. However, thisistypically not possible for the case of experimental data.

No use is made in the above method of the sequencing of the original data.
Consider a vector X, residing in the box i. If in addition to the quicksort a reverse
sort is maintained that maps a vector in the sorted data to the corresponding vector in
the time series, then one can determine the vector X, .,, and hence find the box j that
contains this vector. Thus allowable sequences of symbol dynamics can be quickly
determined. Benefits of this can be seen in the case of noisy data. Here, one sets an
£ based on the estimated noise level of the data. The presence of noise impliesthat the

estimate f (X,)=X,.,, may be incorrect. However, one can state that it might be

mapped to a location to which any of the vectors within box i are mapped. Thus we

have the information necessary to estimate a probability transition matrix [R], where
P =Pr{X,,=jl|X,=i}. Toestimate any P;j, we find the number of vectorsin box i

that get mapped to a vector in box j, and then divide by the total number of vectorsin

box j.

7. Theuniform KTree

This sort isavariation on the K-Tree that is used in estimating the generalized
mutual information of a multidimensional time series. It is an extension of and

variation upon a sort described by Fraser and Swinney.” Its application is described in
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detail in Chapter 4. The data is described as a series of vectors X,, X,,..., X, Where

each vector is n dimensional, X, = (X?, X2,...X""), and the number of vectors, N, isa

power of two. The vectors are assumed to be sampled uniformly in time. That is, at

each time interval at, a new vector is sampled, and at is a constant. Alternately, the

data may be described as n time series data sets, 71X=2X=n where each data set

consists of N, data points, X, = (X!, Xb,...X\,). We will use both of these notations
depending on the situation.
One important issue is determining the range of possible values for a point

X/ DX=I.. It is somewhat of an arbitrary choice, since the data set is confined to at

most N distinct values, yet the full range of values may be infinite. The algorithm
involves gridding the n dimensional space into n dimensional hypercubes and treating
each occupied hypercube as an alowable symbol. The data is gridded into
equiprobable partitions. Thisis seen in Figure 8 in the case of 16 2-dimensional data

points. This has the added benefit that p(x,) = p(x,)... = p(X,) .
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Figure 8. An example grid used to compute the mutual information of two time series. The cuts
are made such that a point may occupy each row or column with equal probability.

A change of variables is first performed on the data, so that each time series
Ti:(xli,xiz,...XiN) is transformed into integers, \=(i:(Y1i,Y2‘,...Y,L) such that the
integer values fill the range 0 to N-1 and X < X, implies Y/ <Y, . Thus the change
of variables gives vectors \Z\?Z\TN . Thisdatais used to create a 2" — ary tree (the

n=2 tree is depicted in Figure 9). At each level of the tree a vector is sorted into one
of the 2" branches, depending on the value of each vector coordinate. At each node in

the tree, the number of elementsin or below that nodeis stored.
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TR, e TN TN~

Figure9. A portion of a 2-ary tree (quadtree) used to compute the mutual information of two
time series.

Recall that N is a power of two (if not, then data points are removed), N = 2¢.
The levels of the tree define successive partitions of the n-dimensiona space,

G,.G,,..G,_,. For a given level of the tree Gy, the space is partitioned into 2™
hypercubes, R,(0),R,(),...R,(2"m-1) such that Ry(j) may be partitioned into the
hypercubes R .,(2"}),R,..(2"]+)),..R (2"j+2"-1). Each hypercube has an

associated probability P(Rm(j)), which is estimated by its frequency, the number of
vectors in that hypercube divided by the total number of vectors, Ny(j) /N. This
allows one to compute probabilities for each level of the tree. Pi(Ru(j)) is the
probability of finding the i™ coordinate of a vector to reside in the same partition

along the ™ direction as Ry(j). Due to the equiprobable nature of the partitions,

P(R,(j))=1/2" fordliandj.

8. Benchmarking and comparison of methods

In this section we compare the suggested sorting and searching methods,
namely the box assisted method, the KD-Tree, the K-tree, and the multidimensional

quicksort. All of these methods are, in general, preferable to a brute force search.
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However, computational speed is not the only relevant factor. Complexity, memory
use, and versatility of each method will also be discussed. The versatility of the
method comes in two flavors- how well the method works on unusual data and how
adaptable the method is to unusua searches. The multidimensional binary
representation and the uniform K-Tree, described in the previous two sections, are not
compared with the others because they are specialized sorts used only for exceptional

circumstances.

8.1. Benchmarking of the Kd-tree

One benefit of the kd-tree is its rough independence of search time on data set
size. Figure 10 compares the average search time to find a nearest neighbor with the
data set size. For large data set size, the search time has a roughly logarithmic
dependence on the number of data points. Thisis due to the time it takes to determine
the search point’ s location in the tree. If the search point were already in the tree, then
the nearest neighbor search time is reduced from O(log n) to O(1). This can be
accomplished with the implementation of Bentley's suggested use of parent pointers
for each node in the tree structure.”. This is true even for higher dimensional data,

although the convergence is much slower.
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Figure 10. The dependence of average sear ch time on data set size.

In Figure 11, the kd-tree is shown to have an exponential dependence on the
dimensionality of the data. This is an important result, not mentioned in other work
providing diagnostic tests of the kd-tree.” * It implies that kd-trees become highly
inefficient for high dimensional data. It is not yet known what search method is most

preferable for neighbor searching in a high dimension (greater than 4).
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Figure 11. A log plot of search time vsdimension.

Figure 12 shows the relationship between the average search time to find n
neighbors of a data point and the value n. In this plot, 10 data sets were generated
with different seed values and search times were computed for each data set. The
figure shows that the average search time is amost nearly linearly dependent on the
number of neighbors n. Thus a variety of searches (weighted, radial, with or without

exclusion) may be performed with only alinear lossin speed.
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Figure 12. A plot of the average search time to find n neighbors of a data point, as a function of
n. This showsthat the relationship remains nearly linear over small n. 10 random data sets were
generated with different seed values and the average time it takes to find a given number of
neighborswas computed for each data set.

The drawbacks of the kd tree, while few, are transparent. First, if searching is
to be done in many different dimensions, either a highly inefficient search is used, or
additional search trees must be built. Also the method is somewhat memory intensive.
In even the simplest kd tree, a number indicating the cutting value is required at each
node, as well as an ordered array of data (similar to the quicksort). If pointers to the
parent node or principal cuts are used then the tree must contain even more
information at each node. Although this increase may at first seem unimportant, one
should note that experimental data typicaly consists of 100000 floating points or
more. In fact, some data analysis routines require a minimum of this many points. If
the database is also on that order, then memory may prove unmanageable for many

workstation computers.
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We have implemented the kd-tree as a dynamic linked library consisting of a

set of fully functional object oriented routines. In short, they consist of the functions

Create(*phTree, nCoords, nDi ns, nBucketSize, *aPoints);

Fi ndNear est Nei ghbor ( Tr ee, *pSear chPoi nt, *pFoundPoi nt);

Fi ndMul ti pl eNei ghbors(Tree, *pSearchPoint, *pnNei ghbors, *aPoints);
Fi ndRadi al Nei ghbor s(Tree, *pSearchPoint, radius, **paPoints,

*pnNei ghbor s) ;

Rel easeRadi al Nei ghbor Li st (*aPoi nts) ;

Rel ease(Tree);

8.2. Comparison of methods

The kd-tree implementation was tested in timed trials against the
multidimensional quicksort and the box-assisted method. In Figure 13 through Figure
16 we depict the dependence of search time on data set size for one through four
dimensional data, respectively. In Figure 13, the multidimensional quicksort reduces
to a one dimensiona sort and the box assisted method as described by 62 is not
feasible since it requires that the data be at least two dimensional. We note from the
slopes of these plots that the box-assisted method, the KDTree and the KTree all have

an O(n log n) dependence on data set size, whereas the quicksort based methods have

1.5) 1.8)

approximately O(n™~) dependence on data set size for 2 dimensional data and O(n
dependence on data set size for 3 or 4 dimensional data. As expected, the brute force
method has O(n?) dependence.

Despite its theoretical O(n log n) performance, the ktree still performs far
worse than the box-assisted and kdtree methods. This is because of a large constant

factor worse performance that is still significant for large data sets (64,000 points).

This constant worse performance relates to the poor balancing of the ktree. Whereas
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for the kdtree, the data may be permuted so that cut values are always chosen at
medians in the data, the ktree does not offer this option because there is no clear
multidimensional median. In addition, many more branches in the tree may need to be

searched in the ktree because at each cut, there are 2Xinstead of 2 branches.
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Figure 13. Comparison of search timesfor different methods using 1 dimensional random data.
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Figure 14. Comparison of search timesfor different methods using 2 dimensional random data.
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Figure 15. Comparison of search timesfor different methods using 3 dimensional random data.
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Figure 16. Comparison of search timesfor different methods using 4 dimensional random data.

However, all of the above trials were performed using uniform random noise.
They say nothing of how these methods perform with other types of data. In order to
compare the sorting and searching methods performance on other types of data, we
compared their times for nearest neighbor searches on a variety of data sets. Table 2
depicts the estimated time in milliseconds to find all nearest neighbors in different
10,000 point data sets for each of the benchmarked search methods. The uniform
noise data was similar to that discussed in the previous section. Each gaussian noise
data set had a mean of 0 and standard deviation of 1 in each dimension. The Henon,”
Lorenz,” and electric step motor” data sets are each from chaotic simulations. The
identical dimensions and one vaid dimension data sets were designed to test

performance under unusual circumstances. For the identical dimensions data, uniform
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random data was used and each coordinate of a vector was set equa, e g.,
X, = (X}, X2, X3) = (X2, X}, XY . For the data with only one valid dimension,
uniform random data was used in only the first dimension, e g,

X, =(X! X2 X?) =(X},0,0).

Data set Dimension | Brute | Quicksort | Box (2) | Box(3) | KDTree | KTree
method | method
Uniform 3 32567 2128 344 210 129 845
noise
Gaussian 2 16795 280 623 X 56 581
Gaussian 4 44388 8114 54626 | 195401 408 3047
Henon 2 36707 a4 227 X 35 345
Lorenz 3 59073 373 19587 26578 49 2246
Step motor 5 102300 2019 4870 5015 174 13125
Identical 3 33010 19 1080 5405 42 405
dimensions
Onevalid 3 30261 31 1201 7033 37 453
dimension

Table 2. Nearest neighbor search timesfor data sets consisting of 20000 points. The bruteforce
method, multidimensional quicksort, the box assisted method in 2 and 3 dimensions, the KDTree
and the KTree were compared. An X indicatesthat it wasn’t possible to use this sear ch method
with thisdata. The fastest method isin bold and the second fastest method isin italics.

In al cases the Kd-tree proved an effective method of sorting and searching
the data. Only for the last two data sets did the multidimensional quicksort method
prove faster, and these data sets were constructed so that they were, in effect, one
dimensional. In addition, the box method proved particularly ineffective for high
dimensional gaussian data where the dimensionality guaranteed that an excessive
number of boxes needed to be searched, and for the Lorenz data, where the highly
nonuniform distribution ensured that many boxes went unfilled. The K-tree also
performed poorly for high dimensional data (four and five dimensional), due to the

exponentia increase in the number of searched boxes with respect to dimension.
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9. Conclusion

The Kd-search tree is a highly adaptable, well researched method for
searching multidimensional data. Assuch it isvery fast, but can be memory intensive,
and requires care in building the binary search tree. The K-tree is a ssmilar method,
less versatile, more memory intensive, but easier to implement. The box-assisted
method on the other hand, is used in a form designed for nonlinear time series
analysis. It falls into many of the same traps that the other methods do. Finally the
multidimensional quicksort is an original method designed so that only one search
treeis used regardless of how many dimensions are used.

Tests indicated that, in general, the Kd-tree was superior to the other methods.
Unlike, the box-assisted methods, its adaptability ensures that it is optimized for most
unusual data sets. Its construction as a binary tree offers a far quicker search
mechanism than the 2%-ary tree approach of the K-tree. Although there are situations
where other search methods may be preferred (such as when the time to build the tree
is important), it is clear from the above results and analysis that the Kd-tree is the

superior method for most searches on multidimensional data.
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CHAPTER FOUR
ORIGINAL ANALYSISMETHODS

1. Introduction

In the process of implementing existing analysis methods, many holes in the
theory of nonlinear data analysis were discovered. Existing methods were discovered
to have flaws, or found that simple corrections could improve their power or
efficiency. Likewise it was found that they could be extended to alow the
determination of more empirical quantities. In this section, we discuss some of the
origina improvements on existing analysis methods, as well as some original analysis

methods that were implemented.

2. Improvement to the false nearest neilghbors method of

determining embedding dimension.

2.1. Introduction
The identification of False Nearest Neighborsis a popular method of choosing
the minimum embedding dimension of a time series for the purpose of phase space
reconstruction. For a given embedding dimension, this method finds the nearest
neighbor of every point in a given dimension, then checksto seeif these are till close
neighbors in one higher dimension. The percentage of False Nearest Neighbors

should drop to zero when the appropriate embedding dimension has been reached.
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We argue that the criteria for choosing an embedding dimension, as proposed in
previous work, is flawed. We suggest an improved criterion that is still simple, yet
properly identifies random data and high-dimensional data. We also show the limits
of the method and of criteria that are used, and make suggestions as to how further
improvements can be made.

One of the goals of time series analysis is to gain an understanding of the
underlying dynamical system. However, this is a daunting task, since the time series
gives incomplete information about the dynamics. Only one variable is being
measured in atime series, yet adynamical system is often represented mathematically
by several differential or difference equations. The task then becomes how to
visualize the time series in such a way as to reveal the dynamics in the full phase
space of the system.

A phase space reconstruction is devised using a delay coordinate embedding.”
From manipulations of the time series, delay coordinate embeddings allow one to
reconstruct vectors representing the dynamics in the phase space. Rather than simply

stating that "the time series evolves from X o X2" the researcher can now state that
"the system evolves from state Y, 1 Y,." Two parameters are used for the
reconstruction, a delay 7 and an embedding dimension D. From the time series, the
vectors \70 =(Xos Xz0--Xopyr) » \_(1 = (X, Xpur o Xpu(pogyr ) »--- A€ created. T describes

the separation between data to be used as successive points in a vector and D

describes the dimensionality of the reconstructed vectors.
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The two parameters of importance here are the choice of 7 and the choice of
D. Various methods are suggested for the determination of an appropriate delay, all

42, 67, 68

with some measure of success. However, even after a suitable delay time has
been found, an appropriate embedding dimension is a subjective decision. One is
generally guaranteed that a very large embedding dimension will completely unfold
the attractor. The Takens embedding rule” states that, for an attractor of dimension
da, any embedding greater than 2da will be sufficient. With experimental data of
limited size, this rule may be used as a guideline for choosing an embedding

dimension. Yet one may often use a much smaller embedding dimension. For

instance the Henon map,” (da ~ 1.8)
X,y =1-1.4X 2 +0.3X, (1)
may be completely unfolded in atwo dimensional embedding and the Lorenz

attractor” (da ~2.1)

X=-0X+0gy
Yy=—XZ+rx-y (2
z=xy—-bz

requires only a three dimensional embedding to unfold its attractor. Using a
small embedding dimension may be preferable since it simplifies analysis and large
embeddings compound the effects of noise and often require many more points for
analysis. The question then becomes, what is the minimal embedding that is
sufficient?

To this end, Kenndl, et. al.,” ® propose the method of false nearest neighbors.

70-74

Thisis a popular analysis tool- it has been applied in awide variety of fields,  and
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61, 75, 76

its meaning and implementation is an ongoing area of research. The main
objective in this section is to correct an important problem associated with current
implementations of the method of false nearest neighbors. We will demonstrate that
an alternative definition of false nearest neighbors and their interpretation will more
accurately yield aminimal embedding dimension. This new definition is more robust
in the presence of noise or high dimensionality, provides a statistical measure of
confidence, and is easier to interpret. An added feature lies in its adherence to the
spirit and intent of the original method, without losing any of the simplicity that has
made identification of false nearest neighbors such a popular tool. The authors
strongly recommend that future data analysis use this alternative definition or a

similar implementation that corrects some of the problems associated with the

original method.

2.2. Method

Consider a phase space reconstruction that was created using a delay
coordinate embedding of a one-dimensional time series. If the embedding dimension
is too small then two points that appear to be close in the reconstructed phase space
may actually be quite far apart in the true phase space. These points are described as
false nearest neighbors. As an example, consider Figure 17. Each of the points A, B, C
and D in Figure 17 resides on a one-dimensiona curve. Embedded in 2 dimensions,
point C is the closest neighbor to point A. In a one-dimensional embedding, point D is

incorrectly identified as the nearest neighbor. Yet neither C nor D is the closest
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neighbor to A on this curve. Only in three dimensions are there no self-crossings of

this curve, and point B is shown to be the nearest neighbor of A.

2 dimensional

1 dimensional

Figure 17 An example of false nearest neighbors. Points A, B, C, and D lie on a one-dimensional
curve. In two dimensions, points A and C appear to be nearest neighbors. In one dimension,
point D appears to be the nearest neighbor of A. In three dimensions the curve would not
inter sect itself, and it could be seen that B isthe nearest neighbor to A.

Explicitly, the origina criteria for identification of false nearest neighbors are
as follows: consider each vector Y, =(X.,X.., XoszrrKnwo-gyr) 1N a delay
coordinate embedding of the time series with delay 7 and embedding dimension D.

Look for its nearest neighbor Vm=(Xm,Xm+,,Xm+2],,...xm+(D_l)U). The nearest

neighbor is determined by finding the vector Vm in the embedding which minimizes
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the Euclidean distance R, =||Y, =Y, ||. Now consider each of these vectors under a
D+1 dimensional embedding,

Yo =(X,, X Xn+2[T""Xn+(D—1)[T’ Xeoir)

1 n+7?

<
I

m (Xm’ Xm+1” Xm+2[T’ "'Xm+(D—1)[T’ Xm+D[T) '
In a D+1 dimensional embedding, these vectors are separated by the
Euclidean distance R, =||Y/-Y!||. The first criterion by which Kennel, et. a.,

identify afalse nearest neighbor isif

Criterion 1:,/(R?-R?)/R? = [Rusor = Xiwor |, R (3

R,

RroL is a unitless tolerance level for which Kennel, et. al., suggest a value of
approximately 15 . This criterion is meant to measure if the relative increase in the
distance between two points when going from n to n+1 dimensions is large. 15 was
suggested based upon empirical studies of several systems, although values between

10 and 40 were consistently acceptable. The other criterion Kennel, et. al., suggest is
Criterion 2: %A > Ag, - 4)

This was introduced to compensate for the fact that portions of the attractor
may be quite sparse. In those regions, near neighbors are not actually close to each
other. Here, Ra is a measure of the size of the attractor, for which Kennel, et. a., use

the standard deviation of the data, Ra= |- (x—<x>)2>- If either (3) or (4) hold, then

\Tm is considered a false nearest neighbor of \7n The total number of false nearest

neighbors is found, and the percentage of nearest neighbors, out of all nearest
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neighbors, is measured. An appropriate embedding dimension is one where the
percentage of false nearest neighbors identified by either method fallsto O.

Although, these combined criteria correctly identify a suitable embedding
dimension in many cases, they have severa shortcomings. We will deal with each
criterion in turn.

For criterion 1: Regardless of the data being considered, | X5, = X,wor |/ R,

in equation (3) approaches zero as the embedding dimension increases. This is

because, as one increases dimension, R, increases although | X, ., — X [, the

n+Dr — NmeDr
increased distance due to adding a new dimension, may not. This may lead to falsely
underestimating the correct number of embedding dimensions.

A neighbor may be considered false yet still be very close in the (D+1)™
direction. Thisis because this criterion only measures relative increase. So in the case
of two points are extremely close to each other in a D dimensional embedding, only a
small separation in the (D+1)" dimension is required to identify a false nearest
neighbor. A small amount of noise could easily generate such a situation. Whether or
not these points are actually false neighbors is uncertain.

As pointed out in Kenne, et. a.,” and Brown,” a point and its nearest
neighbor may not in fact be close to each other. Y et the original method still includes
this as a point to be considered. This creates serious problems because it implies that

small data sets (where near neighbors aren't close) R, may be quite large. Thus the

percentage of false nearest neighbors becomes dependent on data set size. For this
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reason, Kennel, et. a., suggested the second criterion. But as we shall see, that
criterion does not properly address this issue.

For criterion 2: For the same reason that criterion 1 approaches zero as

embedding dimension increases, this should gradually approach 100%. Criterion 2

may be written as R >R,A, , where the right hand side is constant. Yet R,
increases with each additional embedding dimension, since for each D, an extra
(Xpor = xmm[r)2 is contributed to R.*. So this criterion increases the percentage of

false nearest neighbors for high embedding dimension. This holds even when the
correct embedding dimension should be small.

This criterion labels nearest neighbors as false. However, it would be more
correct to say that these neighbors were never identified, correctly or incorrectly, as
close. In fact, if this criterion is ever nonzero, one would expect it to increase with
embedding dimension, regardiess of the correct embedding dimension or of the
structure or quantity of data.

Standard deviation, which is Kennel, Brown, and Abarbanel's suggested
measure of attractor size, may not be a good measure to use here. It measures the
clustering about the mean. However, the standard deviation may be much larger than
the distance between two neighbors, yet the neighbors may still not be close to each
other. For instance, the Lorenz attractor has two lobes, so it should have a large
standard deviation (points are clustered far from the mean). This implies that points

on the same lobe may be far from each other yet still considerably less than the
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standard deviation. A more appropriate measure should be less dependent on the
structure of the attractor.

For the above reasons, we choose a new method of identifying false nearest
neighbors. For this, we return to the essential goals of the method:

(1) A false nearest neighbor isfound if it may be correctly identified as a close
neighbor in n dimensions, yet identified as far in the (n+1)™ dimension.

(2) The percentage of false nearest neighbors is the percent of those neighbors
that are identified as close which are then shown to be false nearest neighbors by (1).

The correct minima embedding dimension is that for which the percentage of
false nearest neighbors falls to its minimal level. It may not be possible to identify the
correct embedding dimension if enough close nearest neighbors cannot be found. This
is why it is important to properly define 'close.’ Thus we provide a single explicit
criterion definition as follows:

The average distance between points, J, is estimated by taking a subsample of
the original time series, and finding the average distance between any two points from
this subsample. We note that this average distance is only used when multiplied by a
threshold factor (& o &). Hence other methods of estimating the average distance
should be acceptable as long as the thresholds are scaled accordingly.

The distance between a point and its nearest neighbor is computed in each of
the n dimensions. If, in each dimension, the distance is less than €;11, then this
neighbor is close. & is some small, user-defined threshold, large enough so that many

close neighbors can be found, but small enough so that these two points are still close.
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Trials indicated that £=0.01 was a reasonable value for simulated data with no
additive noise. A larger value is often necessary in the presence of white noise, since
noise serves to increase the chances of points being far away. However, there are
wide ranges of acceptable values for &, since we are concerned with which
embedding dimension gives a minimum in the percentage of false nearest neighbors,
not the actual number for this percentage.

If the nearest neighbor is close to the original point, and the distance between
the point and its nearest neighbor in the (n+1)™ dimension is greater than &4, then
this is a false nearest neighbor. & is another user defined constant that adequately

describes when two points are considered distant from each other.

2.3. Results
In Figure 18, we present the results of the use of this method with 1,000,000
points of uniform noise. Because the noise made it extremely difficult to find near
neighbors, the thresholds for the new criterion were loosened. & was set to 0.1 (as
opposed to 0.01) and & was set to J0.1. The value obtained from Criterion 1

dropped to 0, due to the fact that the average distance between nearest neighborsin n
dimensions increases as a function of n, even though the average (n+1)" distance is

constant. Criterion 2 increased with embedding dimension. This is because R
increased with embedding dimension D. But because R, aso increases with D, these

nearest neighbors were never identified as close. However, pure noise represents an
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infinite dimensional system. So the percentage of false nearest neighbors should be
independent of embedding dimension. The new criterion is correct in thisregard since
the percentage of false nearest neighbors it identifies remains constant with respect to

changing embedding dimension.
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Figure 18. Data from 1,000,000 points of uniform white noise. The squaresrepresent resultsfrom
thefirst criterion, the circles from the second criterion and the diamonds from the new criterion.
Close neighbors in n dimensions are defined as being separated by a distance no greater than
0.18 in each of the n dimensions, where dis the average distance between points. Far neighbors

are defined as being separ ated by at least J0.13inthe (n+1)™ dimension

In Figure 19, we show how the original criteria can overestimate the

embedding dimension, and how the new criterion can be used both as a measure of
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noise and as a measure of whether enough data has been given. The data is from
10,000 points of the Henon map (equation 1) with the addition of Gaussian noise with
0 mean and standard deviation at 5% the standard deviation of the original data. Since
the Henon map has a fractal dimension of 1.2, it is known that a 2 or 3 dimensional
embedding is appropriate. In fact, without the presence of noise, a 2 dimensional
embedding will suffice. The original criterion detects 5.7% false nearest neighbors in
3 dimensions. Thus the original method suggests an embedding dimension of at least
four. This is due to the fact that, in a low dimensional embedding, this method
incorrectly interprets the fluctuations in nearest neighbor distances due to noise as
identification of false nearest neighbors.

In contrast, the new method reaches a constant value of 24% false nearest
neighbors at an embedding dimension of 3. Because the Henon map has a fracta
dimension of approximately 1.2, the Takens embedding theorem suggests an
embedding dimension of 3 or less. Therefore this result is within reason for the
Henon map. For afive dimensional embedding, only 26 close nearest neighbors were
found from the original 10,000 points. Thus the inclusion of error bars was necessary.
Error bars were computed by computing a 95% confidence interval on the proportion
of false nearest neighbors. Higher dimensional calculations were not calculated
because for the parameters chosen, it was not possible to find enough close neighbors

to get an accurate percentage of the false ones.
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Figure 19. Data from 10000 points of the Henon map with Gaussian noise having a standard
deviation equal to 5% the standard deviation of the original data. Squares represent results from
thefirst criterion, circlesfrom the second criterion and diamonds from the new criterion. Error
bars correspond to a 95% confidence level. Close neighborsin n dimensions ar e defined as being
separ ated by lessthan 0.01din each of the n dimensions. Far neighbors ar e defined as being
separated by at least 0.1din the (n+1)™ dimension.

2.4. Conclusion

One possible problem with this method is the choice of parameters. If the
maximal distance for neighbors to be considered close is set too high, then
complicated dynamics can occur within aregion less than this distance. That is, even
with a suitable embedding dimension, neighbors can appear false simply because they
were incorrectly identified as close. A reasonable setting for €; is small enough that
the dynamics on this length scale may be considered approximately linear, but large
enough that a sizable number of nearest neighbors can be found. If an €, can not be
found fitting these qualifications, then the size of the data set does not permit use of

the fal se nearest neighbors method.
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Aswe move to higher and higher embedding dimension, the distance between
nearest neighbors in the embedding must get further apart. This is because each
additional dimension contributes additional distance. If we set the condition for
closeness too high, then these neighbors may not be identified as close. Thus we may
incorrectly find more false nearest neighbors with increasing dimension. This effect is
most noticeable in noise free data, such as the Lorenz system. Also regions of the
attractor may have both variable density and variable local dimension. For data sets of
small size, one may then be concerned with the question of when points are close, and
how this definition should vary for sparse regions or regions with complicated
dynamics. A very strict definition of closeness should, for a very large data set, be
sufficient to deal with this problem. However, this is not always possible, so we
strongly suggest the use of error bars and the use of as small of a closeness threshold
as possible (see Figure 19).

There is a tradeoff here between simplicity and accuracy. A more accurate
method would use all neighbors that can be considered close, rather than just the
nearest neighbor. It would take into account the variable density on the attractor, and
perhaps give a more quantitative interpretation of exactly what information is lost
when using too small of an embedding dimension. However, the benefit of the
method of false nearest neighborsis in its simplicity. It provides a simple method of
determining embedding dimension that can be easily interpreted. Since it is designed
for experimental systems, and it is designed for making reasonable estimates of a

sufficient embedding dimension, rigor is not of high importance. Simplicity is
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favored, as long as the method does not underestimate or grossly overestimate
embedding dimension.

Lastly we want to point out the relationship between dimensionality, data set
size, and closeness threshold. For a high dimensional system, a very large number of
points is needed to estimate fractal dimension. This is also true for estimating
embedding dimension. Close points must be close in all dimensions, and there are
few candidates for close neighbors until a large portion of the attractor is filled.
Following the reasoning in Ding, et. a.,” we suggest a minimum of 10° points to
reliably determine if D is a reasonable embedding dimension. Noise only compounds
the problem, since it causes nearby points to seem further away from each other in
each dimension. Of course, more neighbors can be found by loosening the threshold,
but this carries the risk of considering neighbors that are not close to each other. For
this reason error bars are suggested, indicating whether enough neighbors are being
considered. However, error bars only provide a measure of statistical confidence
assuming that the underlying method of finding false nearest neighbors is correct.

Thisis aproblem that may be alleviated with a more rigorous definition of closeness.
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3. Modification to the Wolf method of determining the

dominant Lyapunov exponent.

3.1. Introduction
This was probably the first method implemented to estimate the dominant
Lyapunov exponent of experimental data. Wolf” defined the exponents in terms of
the rates of divergence of volumes as they evolve around the attractor. For an n-
dimensional system, consider the infinitesimally small n-sphere centered around a
point on the attractor. As this evolves, the sphere will become an n-ellipsoid due to
the deforming nature of the attractor flow. Then the it Lyapunov exponent is defined

in terms of the exponential growth rate of thei™ principal axis of the elipsoid.

A =limiin 2O )
=t p(0)

where the exponents are ordered from largest to smallest. The largest exponent can be

approximated from Equation (6)

_ 1 5 L9
Ehivyy é'n L.(0) ©)

Here, At is the time (in seconds) of successive points in the time series. M is the
number of steps of size s used to traverse the entire data set. That is, if there are N
vectors, then M is the largest value such that Ms< N . L, (0) is the distance between
the ks™ point and an appropriately chosen near neighbor such that the vector between
these points is aligned along the direction of the first principal axis of the ellipsoid.

L. (s) isthe distance between these two points after they have been evolved forward
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s positions in the time series. Thus, in the limit of an infinitely long time series where
s — o, these two equations become equal ..

One difficulty with this method is the presence of two opposing requirements. L, ()

must be small enough such that the n-ellipsoid is reasonably small. This would be
guaranteed in the theoretical limit of an infinitesmally small initial n-sphere. At the

same time, L, (s) must be aligned along the direction of the principal axis. Wolf

suggests two parameter settings in the algorithm in order to meet both requirements.

Choice of the nearest neighbor must result in a length L, (0) less than a specified

value. In addition, the angle between these two vectors must be less than another
specified vaue.
In order to minimize parameter dependence, we used a variation on the Wolf method.

77-79

In previous work, " both maximum allowable displacement and maximum angular
displacement were left as free parameters. This makes it difficult to determine a
reasonable parameter setting. We suggest using one parameter- the number of near
neighbors to consider after a given number of iteration steps. Whether or not our new
vector is replaced is determined by finding the vector among those from the near
neighbors that has minimal angular displacement a, as defined in Equation (7). This
may be the original vector used. This would imply that the vector has not grown

enough to be out of the linear regime. If this point is not among the near neighbors,

then the near neighbor giving the least angular displacement is used.

XY
a =acos| —— @)
[IXIIYIJ
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This aleviates one of the problems that Wolf, et al., mentioned. An
appropriate maximum displacement is not the same over the entire attractor. In dense
regions, a small separation may be considered large and nonlinear. In sparse regions
of the attractor, alarger distance is acceptable. Thisis true of the Lorenz attractor. If
we consider a fixed number of neighbors, then these points will be closer in dense
regions of the attractor and further apart in sparse regions. This has the effect of
varying the maximum displacement as appropriate. In its current implementation, the
downside is that this increases the computation time significantly. However,

computation was not so slow asto be infeasible.

4. An efficient method of computing an arbitrary number of

generalized fractal dimensions.

4.1. Method
Consider a multidimensional time series, possibly generated from a delay
coordinate embedding. Using the multidimensional binary representation sort
described in Chapter 3, this data can be gridded into n-dimensional boxes of equal
length €, such that al vectors lie within these boxes. If abox is labeled i, then it has
an associated probability, P (&), that a vector on the attractor will reside within this
box. The generalized entropies, Ho, Hi, ... are defined in terms of the probabilities of

vectors occupying boxes. For g=0,1,2...,
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1 N(¢)
Hy(6)=——In ) P%e)...q#1
1-q9 =
NG (8)
H.(€) =~ R(£)InR(e)
i=1
In the following we keep the conventions common in dimension definitions
and use the natural logarithm as opposed to the log base 2. The generalized dimension

of order g isthen defined as

. H,(e)
D(q) =-lim—— 9
e-» Ing

Under this definition, D(0), D(1), and D(2) are the box counting dimension,
the information dimension and the correlation dimension, respectively. We also have
the property that if p>q, then D(p)<= D(q).

For the purposes of calculation we rewrite the generalized entropies as

N(e)

H, (&) :qi_l{ln N%-In Z Nﬁ(e)},...q,—t 01

N(€)

H,(&)=InN —% Z N, (€)InN. (&) (10)

H,(&) =InN(¢)
where N is the total number of vectors, N.(¢€) isthe number of vectorsin the ith box
of length & and N(¢)is the number of occupied boxes of length €. In this form it is

clear what is needed- an accurate method to keep track of how many vectorslie inside
of each box. Preferably, so as to measure convergence, one would like to be able to
compute entropies for many box sizes, and do so in reasonable time with limited

memory resources.
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£in the generalized entropy represents which of the 32 levels of the binary
representation we are considering. The data is now ordered so that all the vectors
within a box of any size € (1, Y, ... 1/ (2"32 —1)) are ordered consecutively. The
generalized entropies can be determined by scrolling through the data and counting
how many vectors are in each box. That is, a vector is compared with the previous
vector. Information is stored concerning each level of each generalized entropy to be
determined. There are 32 levels. If on any of the dimensions of the two vectors, the
binary representations of the two vectors on that level are not equal, then we know
that these vectors reside in different boxes. That means we can process the box we
were just looking at. Find where they disagree, and for each level below that add the
number of vectorsin the box. Each time we have determined how many vectors arein
a box, we process that value and add the result to a running taly for the given
entropy. When this is finished we have exactly what is needed for the generalized
entropies.

Once the generalized entropies have been determined, there are two ways to
approximate the generalized dimensions for time series data. The first is if £ is
sufficiently small such that the limit is approximately correct, and we have enough

datato get an accurate measurement for H () . In which case we may use
D,(e)=-H,(&)/Ine (11)
However, the preferred method is to simply look at the slope of a plot of

H, (&) vsIn(g), since this has a quicker rate of converge to the limit of e->0. We
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should mention that further information theoretic properties can be determined from
the analysis of this sorting, such as the generalized mutual information of high

dimensional data, 1,(X1,X,...X:), or estimation of the metric entropy.”

4.2. Accuracy

Unfortunately, athough this is an efficient way of determining generalized
dimensions and entropies, it is not necessarily accurate. Figure 20 and Figure 21 show
estimates of the generalized entropies and generalized dimensions for a data set
consisting of 5 million data points from the Ikeda map. Although convergence can be
seen, it is a poor estimate because such a large number of points is required for
convergence.

It has been shown that similar "box-assisted" methods often require huge
amounts of data, due to the very slow convergence to the limit of infinite data,
arbitrarily small & This means that an adaptation of this method that allows for
insertion into the sorted data could be highly effective for the case of when an
arbitrary number of data points can be generated. However, this is typicaly not
possible for the case of experimental data. Thus spatial correlation agorithms,
although generally more computationally intensive, are often preferred for
calculations of information dimension or correlation dimension. It is hoped that a
spatial correlation algorithm could be adapted to the determination of generalized

dimensions and generalized entropies.
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Figure 20 Thefirst five generalized entropies of the | keda map. 5 million data points were used
in order to get strong convergence. It can be seen that thereisa largerange of € over which the

slopesremain fairly constant.
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Figure 21 Thefirst five generalized dimensions of the Ikeda map. 5 million data points were used
in order to get strong convergence. Still thereislarge fluctuationsin the results, particularly in
Do, the box-counting dimension.

5. Computation of symbol dynamics and information theoretic

guantities

5.1. Transition matrix
No use is made in the above method of the sequencing of the origina data.

Consider a vector X, residing in the box i. If in addition to the quicksort, a reverse

sort is maintained that maps a vector in the sorted data to the corresponding vector in

the time series, then one can determine the vector X, ,,, and hence find the box j that

contains this vector. Thus allowable sequences of symbol dynamics can be quickly
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determined. Benefits of this can be seen in the case of noisy data. Here, one sets an

& based on the estimated noise level of the data. The presence of noise implies that the
estimate f (X,)=X,.,, may be incorrect. However, one can state that X, might be

mapped into any box for which any point in box i are mapped. Thus we have the
information necessary to estimate a probability transition matrix as well as entropy

rates.

The probability transition matrix is[ B, ], where B, =Pr{X_,, = j[ X, =i}.To
calculate any B, we find the number of vectors in box i that get mapped to a vector

in box j, and then divide by the total number of vectorsin box j. As shown in Ref. 81,

asimilar method can be used to identify periodic orbits from symbolic dynamics.

5.2. Entropy rate
Identification of the transition matrix allows one to measure the entropy rate

of the system, per symbol entropy of the n random variables.
.1
H(X)= IlmﬁH(Xl,Xz,..Xn) (12)

This is equivaent to the conditional entropy of the last random variable given the

past, where { X1} isastochastic process.
1
HOO= M= H (X, 1 X0 X2, X)) (13)

The entropy rate describes how the entropy of the sequence grows with n, and

thus quantifies the complexity of the system. If a suitable embedding dimension and
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delay have been found, or if we have multidimensional data from a simulation, then
the time series may be described as a Markov chain. Furthermore, if the process is

stationary, then the entropy rate becomes

HOY) ==Y 4R IR, (14)

where /4 represents the i™ eigenvalue of the transition matrix, that is, the probability
of a vector being in the i™ box. Unfortunately, this is a fairly difficult quantity to
compute, because it requires on the order of the square of the number of boxes to
calculate. This is a more accurate measure of information loss than the traditional
entropy since it takes into account the ordering of the data. However the entropy rate
is a fairly stable quantity when measured over a great range of data set size and of

gridding accuracy.

5.3. Topological entropy and periodic orbits
Suppose the time series data has been gridded into boxes of size &. According

to Baker and Gollub,?? the metric entropy is found from

h, :gimim{—%Nfe(g,T)m Pi(s,T)} (15)

i=1
where P(&,T) represents the probability of apoint being found in the i™ box of size &

after a time T. Computation of this quantity is quite difficult because of its

dependence on limits, but it can be estimated from the transition matrix, which gives
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P(&,T) for agiven and T. The topological entropy can also be directly estimated

from the transition matrix M, % using .

h =IimllntrM P (16)
P=>=p

This gives an upper bound on the metric entropy, Equation (15), and also provides an

estimate of the number of periodic orbits of period p, N, since

h =lim=InN (17)

Thus, with an appropriate embedding and the use of the multidimensional binary
representation mentioned in Chapter 3, topological entropy, metric entropy and the
entropy rate may al be estimated on the symbolic dynamics of a time series. We
should note here that there is still some disagreement over the definitions and
meanings of these quantities for multidimensiona embedded time series data

Nevertheless, they do provide a measure of information loss in the system.

5.4. Symbolic dynamics and Conley index theory
5.4.1. Introduction
Symbolic dynamics play a central role in the description of the evolution of
nonlinear systems. Y et there are few methods for determining symbolic dynamics of
chaotic data. One difficulty is that the data contains random fluctuations associated
with the experimental process. Using data obtained from a magnetoelastic ribbon
experiment we show how a topological approach can be used to obtain a description

of the dynamics in terms of subshift dynamics on a finite set of symbols. These
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topological methods have been developed in away that alows for experimental error
and bounded noise.

There has been considerable effort within the scientific community to develop
methods to determine whether a given dynamica system is chaotic (see Ref. 30 and
references therein). On the mathematical side three issues make rigorous analysis of
chaotic dynamics difficult. The first is that one is dealing with global nonlinearities
making it difficult to obtain the necessary analytic estimates. The second is that the
individual solutions are inherently sensitive to the initial conditions. Finally, the
objects of interest, namely invariant sets, can undergo dramatic changes in their
structure due to local and global bifurcations. The problem is dramatically more
complicated in the setting of experimental systems because of the introduction of
noise, parameter drift, and experimental error.

Topological techniques for the analysis of time series’ 8 have been
introduced which, at least on the theoretical level, can be used to overcome these
difficulties. As was shown in Ref. 81, these techniques can be successfully applied in
the context of an actual physical system, a magnetoelastic ribbon subject to a
periodically oscillating magnetic field. The actual implementation is described in
more detail below. For the moment we remark that our ideas are extensions of the
numerical methods developed by Mischaikow, et. a.8 8 adong with a
reinterpretation of what is an appropriate embedding theorems36. 37. 66 to justify the use

of time delay reconstructions.
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At the basis of our approach are three assumptions. The first is that the
dynamics of the physica system can be represented by a continuous map
f: XxA - X where X represents the phase space and A the experimentally relevant
range of parameter space. The second is that we are trying to describe the dynamics
of an attractor for f in X. The third involves the relationship between the physical
phase space and the values observed by the experimentalist. In particular, we allow
the experimental observation to be represented as a multivalued map
6:X - [a,,8]OR where |a, - 3| may be thought of as an upper bound for the
experimental error. However, we also assume that there is a continuous map
y: X - R such that y(x)08(x) for al xOX . One may view yas representing the
““true" measurement of the system. We hasten to point out that we are only assuming
the existence of such a y; but never assume that it is known. We should aso point out
that if it isimpossible to choose @and yas above, then for some pointsin the physical
phase space arbitrarily small changes in the physical system must lead to arbitrarily
large changes in measurements.

To describe the output of our method it is necessary to recall that a transition

matrix A on k symbolsisa kxk matrix whose entries g; take values of O or 1. Given
A one can define a subset of the set of bi-infinite sequences on k symbols,
,={s1s,0{12..k}anda, . ., =3 (18)
Let 0:%, - X, denote the shift dynamics o(s), =s,.,. If we choose the

dimension of the reconstruction space to be d, then applying our method results in a
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finite collection of regions N;, i =1,2,...,.k in R% and a kxk transition matrix A for
which the following conclusion can be justified. Given any sequence {/]n} OA and
any element slJZ, thereexistsan initial condition xJ X such that

O 17 (xA,))x0( 17 (%A ) ). x6( £ (X, Ap0g)) 0 N 20 (29)

In other words, given any sequence of perturbations in the parameter settings,
there exists an initial condition such that, up to experimental error, the reconstructed
dynamics describes the observed physical dynamics.

5.4.2. Experimental setup

Data was gathered from the magnetoel astic ribbon experiment for the specific
purpose of providing data which could prove the validity of this technique. A full
description of this experiment is provided in Chapter Five, Section Three. The ribbon
was operated in a regime that appeared to give fairly low-dimensional, possibly
chaotic dynamics. Although environmental effects were minimized, the system was
extremely sensitive, and thus a significant amount of error needed to be taken into

account when doing the calculations. The data set consisted of 100,000 consecutive

data points {vn |n=1,...100, 000} taken from voltage readings on a photonic sensor,

sampled at the drive frequency of 1.2 Hz. The voltage readings were measured up to
10 volts, and corresponded to the position of the ribbon once per drive period.

5.4.3. Implementation of our method

In an attempt to provide a concise and coherent description of our method we

will present it in the context of our analysis of the above mentioned ribbon data. For
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an abstract mathematical description of the method the reader is referred to 81, We
selected 30,000 data {v, |n=30,001...60,000} from our data set. We chose a
reconstruction dimension of 2 producing the reconstruction plot of

U ={u, =(V,V,,)} O R®, asindicated in Figure 22,

Figure 22 Time delay plot of Uy=( Vp, Vns1), N=30,001,..., 60,000, where v, isthe n™ voltage.

In order to produce nontrivial topology for our reconstructed system we

divided R? into a grid of squares with each side of length 0.0106 volts. Let G denote
the set of squares which contain a point u,JU . Let Y O R?* denote the region

determined by this collection of squares Figure 23.
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Figure 23 Squares with edges of length 0.0106 volts that contain points U, JU of the time delay
reconstruction.

The next step is to define a dynamical system on Y. This dynamical system is
supposed to capture the observable dynamics of the experimental system. Since we
know that the physical system is subject to noise and experimental error the derived
dynamical system must be very coarse. With thisin mind we shall not try to describe

the dynamics on any scale smaller than that of the squares in G and our dynamical
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system will take the form of a multivalued map F which takes sgquares to sets of

squares.

To be more precise, let GOG and let {ua‘i :LZ,...I} OU be the set of

points which lie in G. From the time series we know that

u, :(va,va+l)|—> (vaﬂ,va“z):uw. Let G OG such that u

O0G . Then up to first

g +1
approximation we will require that G OF(G). Unfortunately, this definition is not

sufficient. One reason is that there may be very few samplesin the grid square G, so

that G,,G,,...,G,, are isolated squares far apart from each other. We would like
F (G) to be a connected set and to capture all possible images of points of G, not just

ones for which we have samples from the time series. Therefore, we include all grid

squares contained in the smallest rectangle enclosing G,,G,,...G, in F(G).

However, sometimes this is still not enough. This is because the images of four
squares meeting at one point may not intersect which prevents the map F from having
a continuous selector. We deal with this problem in the following way. For each grid
point we look at images of four grid squares which meet at that point. If they do not
intersect, we increase each image by the set of all squares which intersect the set
representing it. We iterate this process until there are no empty intersections. Finally,
since we want F act on G, we intersect each image of a grid square with G.

By means of this procedure we have constructed a multivalued map F which

we believe provides outer limits on the observable dynamics of the experimental
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system. Trgectories in this dynamical system consist of sequences of squares of the
form {G 0G|G,,,0F(G )} .

We must now face the issue of what dynamics is represented by F. To do this
we must make several dight theoretical digressions. Entirely ignoring the question of

the magnetoel astic ribbon for the moment, let g:R" — R" be an arbitrary continuous
map. Recall that SO R" isaninvariant set of g if for every xS there exists a bi-
infinite sequence {x}"_ O Ssuch that x=xo and X+1=g(x). While invariant sets are

the object of interest in dynamical systems, they can be extremely difficult to study
directly since they may change their properties dramatically through various local or
global bifurcations. For this reason we shall make use of the following notion. A
closed bounded set N [0 R" is an isolating neighborhood if the maximal invariant set
in N does not intersect the boundary of N. It is easily shown that if N is an isolating
neighborhood for the dynamica system generated by g, then it is an isolating
neighborhood for sufficiently small perturbations of g.

Returning to the magnetoel astic ribbon we look for isolating neighborhoods in

Y under the multivalued dynamical system F. We begin by choosing C, 0 G . There
are avariety of criteriathat can be used in choosing C,, the important point is that it
must be a strict subset of G. We now begin the following procedure. Define
C,=C, nF(C,) nF*(C,) where F(C,)={GOG|F(G)nC,#0}. Now delete a

component of C; which touches the boundary of C, relative to Y. This two step
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procedure is repeated until Cn.;=C,. The resulting set C, is an isolating neighborhood

for F (see Figure 24). Observe that C,, consists of 4 digoint setslabelled N;, i=1,2,...

A

\Nz NT
K

Figure 24 The four shaded regions labelled Ni,...N; make up the set C,. The darkly shaded
regions on the boundary of the N; areL.

Returning to the theoretical level we need to resolve the following issue. We
can compute isolating neighborhoods, but it is the structure of the corresponding
isolating invariant set that we are interested in. To pass from isolating neighborhoods
to the structure of the invariant set we will use the Conley index.” We only need the
following small portion of the theory for our purposes. Given an isolating
neighborhood N of g, apair of closed bounded sets (K,L) with L 0 K [0 N isan index

pair if the following conditions are satisfied:

« xOK and g(x)ON, then g(x)OK
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« xOL and g(x)ON, then g(x)OL
« xOK and g(x)ON, then xOL
» themaximal invariant set in N is a subset of the interior of K\L.
The importance of an index pair is that the homology groups H+(K,L) and a
homology map @. : H.(K,L) - H.(K,L) induced by g are invariants of the maximal

invariant set contained in N. If under a change in the dynamics N remains an isolating
neighborhood then the homology group and map does not change.

Returning to the multivalued dynamics of F, we produce an index pair as

follows. Let L consist of the elements of F(C,) which touch the boundary of C,

relativeto Y. Let K=C_ n L. Then, (K,L) isan index pair for F. Figure 24 indicates

the resulting index pair.
We now compute H+(K,L) using Z, coefficients and determine that it is a four

dimensional vector space and the corresponding map on homology is the matrix

0 001

0110
A= (20)
1000

0110

At this point we can describe the essential difference between this
development and that based on the embedding theorems mentioned earlier. The
embedding theorems assume that the points U [0 R? actually represent elements of
trajectories of a fixed smooth map on a subset of R? and that the dynamics of this

map can now be embedded into the dynamics of the physical system. We make no
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such assumption. Instead we use the existence of the continuous map y: X - R to

lift the algebraic topological quantities associated with A to X. This alows one to
conclude that A represents a transition matrix for a symbolic coding of the dynamics
in the physical phase space.

At the risk of being redundant this implies that given any small random

environmental effects on the experiment and any sequence bX,, there exists an

initial condition for the physical system such that using our observational method the
trajectory will, up to experimental error, pass through the regions labeled N, i=1,..4 in
the manner indicated by b. For example the sequence ...4132224134132413... liesin

>, and hence there exists an initial condition for the ribbon such that our

observations would indicate that up to experimental error its reconstructed trajectory
liesin the following sequence of regions

N, >N, - N; - N, - N, - N, - N, - N, - N; - N,... (21)

5.4.4. Conclusion

Our method provides an explicit description in terms of symbolic dynamics of
the chaotic behavior of the magnetoelastic ribbon. This is a much finer description of
the dynamics than is usually presented from experimental data. For example, given A
it is easy to conclude that the topological entropy for the ribbon must be greater than
In 1.4656.

Two other methods that are commonly used to analyze chaotic data involve

the approximation of Lyapunov exponents or the determination of a fractal
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dimension. Both the determination of the Conley index and of Lyapunov spectra

reguire some similar assumptions:

» The data provided is a reasonable approximation to what one would obtain if
measurements could be performed for an infinite amount of time;

» Phase gpace reconstruction provides a good approximation to the underlying
dynamics;

» Theunderlying system is governed by a deterministic set of equations.

For the computation of Lyapunov spectra one must assume that the
reconstruction has been done in a sufficiently high dimensional space. In our setting
this is no longer an assumption. In particular, whenever one computes nontrivial
algebraic topological quantities the resulting conclusions about the dynamics are
correct. Of course, if one chooses a dimension that is too low, then the resulting
multivalued map will either not contain any nontrivia isolating neighborhoods or the
corresponding algebra will be trivial. It is easy to construct examples where the
embedding fails but the algebrais still nontrivial.

An even more fundamental difference is that the Lyapunov exponent is a
global quantity that is highly dependent on noise and very sensitive to perturbations.
What's more a lot of questions about Lyapunov exponents are unanswered. How
much noise and parameter drift can there be before any estimate of the exponents
becomes meaningless? The Lyapunov exponent is limited in what it can tell us about
the dynamics. In its traditiona form, it is a global quantity that tells nothing about

what sort of changes occur in the local dynamics. Also it does not provide us with
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significant information for use in a symbolic dynamics. This sort of description which
we provide may be useful in applications such as control theory.

On a more concrete level we performed Lyapunov exponent calculations and
embedding dimension calculations on this data set. The dominant Lyapunov exponent
seemed to be roughly 0.48. However, under reasonable parameter regimes, the
computed Lyapunov exponent ranged between 0.45 and 0.99. This indicates that
computation of the Lyapunov exponent is extremely parameter dependent.

The same problems exist with a determination of fractal dimension. The
dimension tells us little about the underlying dynamics. In addition, a reasonable
estimate of dimension is very difficult to compute from experimental data. In theory,
because it isalimit that is reached only with infinite data, the fractal dimension is not
a computable object.

Measurement of the embedding dimension aso yielded somewhat
guestionable results. This agorithm identifies the percentage of false nearest
neighbors for a given embedding dimension. Although we found that an embedding
dimension of three should be sufficient, the minimum embedding dimension differed
greatly depending on our criteria for identification of a false nearest neighbor. In
some analyses, it seemed an embedding dimension of 5 was necessary to decrease the
percentage of false nearest neighbors to less than 5%. As noted before, the symbolic

dynamics approach implemented here does not have these problems.
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Figure25 Timedelay plot of u,=( Vp, Vns1), N=70,001,..., 100,000, where v, isthe n™ voltage.

Figure 26 The four shaded regions labelled Ni,..N, make up the set C,. The darkly shaded
regions on the boundary of the N; areL.

This approach appears to provide robust repeatable conclusions. We repeated

the above mentioned proceedure using the points {v, |n =70001,...100000} . As one
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can see from Figure 25 there are observable differences in this collection of data
points. After applying our procedure we obtain the index pairs indicated in Figure 26
which are also dightly different. However, on the level of the algebra and hence the
symbolic dynamics we obtained the same transition matrix given in Equation (20).

In conclusion, we have proposed a theoretically justified and experimentally
validated method which takes time series data as an input and produces the output of
a trangition matrix and its associated regions in reconstruction space which may be
used to rigorously verify chaos, anayze and identify invariant sets, and determine
properties of the global dynamics above the noise level. The power in this method is
that the noise has been taken into account before any analysisis done. All anaysisis
on a scale where the results of the analysis are robust with respect to noise. Where
commonly used, quantitative measures of chaos (such as Lyapunov exponent
estimates) may fail because of sensitivity in the analysis. In contrast verification of

chaos from analysis of the transition matrix is robust.

6. Computation of the mutual information function from

multidimensional time series.

6.1. Introduction
This work builds on the method of computing mutual information that was
suggested by Fraser and Swinney.#2 In that work, they suggested a method of
estimating the mutual information between two one-dimensional time series. The

mutual information of two random variables, X 01X and Y OW , isgiven by
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1(X:Y) = y)log_PY) 22
(X;Y) XDZ);%;D(X y)log 000 (Y) (22)

where the convention 0log0=0 is used. The logarithm is typically taken to

base 2 so that the mutual information is given in units of bits. This provides a
measure of the amount of information that a measurement of X contains regarding the
measurement of Y, and vice-versa. For instance, if X and Y are completely
independent, then 1(X;Y)=0. On the other hand, if X and Y have equal probability

mass functions, p(x) = p(y), then the mutual information function assumes its

maximum value,

1(X; X) == p(x)log p(x) (23)

XOX
which is the Shannon entropy of X. This definition has a straightforward
extension to the case of continuous random variables, with probability densities f(x)

and f(y),

1(X;Y) = [£(x y)Iog%dxdy (24)

Computation of the mutual information function from a time series of finite
length where the full range of dynamics are not known becomes a challenging
problem. In Ref. 42, 67 and 80, Fraser and Swinney gave a powerful method of
estimating the mutual information of two time series, and examined some of its uses
in phase space reconstruction. In particular, they conjectured on how it might be

extended to a computation of the mutual information, 1,,, common to n time series.

“l,is the nunber of bits that are redundant in a vector neasurenent
(I is the old mutual information). The redundancy occurs because
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know edge of some conponents of a vector measurenment can be used to
predi ct sonething about the other conponents. In an algorithmthat
calculated I, elenents would be subdivided into 2" parts at each

|l evel instead of just 4 and the statistical test would be altered,
but otherwi se the algorithmcould be the sane as the present

version. If the vector were a time-delay reconstruction, plots of

I n(T)...could be used to choose del ays for higher-di nensi ona
reconstructions. If n were |arge enough (larger than the nunber of
degrees of freedom), |, should be a nmonotonically decreasing function
of T, and ;he sl ope of I,/ n should give an estimate of the netric

entropy."4

This work picks up where they left off. In the following section, we describe

an efficient method of computing .

6.2. Method

The datais described as a series of vectors X,, X,,..., X,, Where each vector is

ndimensional, X, = (X!, X2,..X"), and the number of vectors, N, is a power of two.

The vectors are assumed to be sampled uniformly in time. That is, at each time

interval at, a new vector is sampled, and at is a constant. Alternately, the data may be

described as n time series data sets, 71X=2 X,, » Where each data set consists of N,

data points, TI =(X,, X3,...X},) . Both notations are used depending on the situation.

For the sake of simplicity, we use a dlightly different notation for the generalized
mutual information than was suggested by Fraser and Swinney. The generaized

mutual information is defined as

POL % X) o5

L= 1(X;, Xy X)) = el
=10 )= 2 PO X0 P
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For the case of time series data this may be written as

Y Y T P(X, %5 -+%,)
| =1(Xg, Xy X,) = s X ) 26
= )= 2 2, 2 PO log o) &

so that I, is the mutual information as typically defined. One important issue is
determining the range of possible values for a point X/ DX=J., and the associated

probability mass function. That is, if the mutual information is defined for aphabets
X and W, with associated probability mass functions p(x) =Pr{ X =x},x0X and
p(y) =Pr{Y =vy},yOW, then X and W need to be chosen. It is somewhat of an

arbitrary choice, since the data set is confined to at most N distinct values, yet the full
range of values may be infinite. The algorithm involves gridding the n dimensional
space into n dimensional hypercubes and treating each occupied hypercube as an
allowable symbol. Thus the resulting value of mutual information depends on our
gridding choice. However, mutua information is most useful in relative comparisons.
The criteria used for our gridding choice are the consistency and reliability of results,
as well as the efficiency of computation. Therefore we follow Fraser and Swinney’s
suggestion of gridding each dimension into equiprobable partitions. This allows us to

use the uniform KTree described in Chapter Three, Section 7. It has the added benefit

that p(x,) = p(X,)-.. = p(X,) -
The generalized mutual information is computed through a traversal of the
tree. The levels of the tree define successive partitions of the n-dimensional space,

G,.G,,...G¢_,. For a given level of the tree G, the space is partitioned into 2m
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hypercubes, R, (0),R,(@),...R,(2"m-1) such that the hypercube Ry(j)) may be
partitioned into R ,(2")),R,..(2"]+1),..R,(2"j+2" -1). Each hypercube has an

associated probability P(Ry(j)), which is smply the number of vectors in that
hypercube divided by the total number of vectors, Nn(j) /N. Thus the n-dimensional

mutual information may be estimated for any level m of the tree.

N P(R,(}))
= P | 27
n= 2 PRDIog g s R PR

where Pi(Rx(j)) is the probability of finding the i coordinate of a vector to

reside in the same partition along the i™ direction as Ry(j). Due to the equiprobable

nature of the partitions, P (R, (])) :%m for al i and . Hence

2m—

i, = mn+ Z P(R,(1))1og P(R,(})) (28)

Note that the  contribution to in of  Ruj) is

mnP(R_(j))+P(R,(j)IogP(R.(j)) and the contribution to im«; Of Ru(j) is
(m+1)nP(Rm(j))+2n(§)_lP(Rm+1(k))log P(R,..(K)) . So in going from im tO im+1 @

nP(R,(j)) is added and the P(R,(j))logP(R,(j)) term is replaced by

2"(j+1)-1
> P(R.(K)I0GP(R,,(K). If the m" level has no substructure, then

PR..(2"/)= P(R..(2"j+1))=.. P(R..(2"(j+1)-1). So the contribution to

im+1 Of Ry(j) isthe same as the contribution to iy, of Ry(j). So, 1, = F,(R,(0)) where,
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F(R.(1)) = P(R,(1))log P(R,(})) , if no substructure  (29)
2"(j+1)-1
F(R,(1))=nP(R,(}))+ Z F(R,..(K)), if thereis substructure.(30)
k=2"j
Fraser and Swinney suggest a x-squared test for substructure. However, thisis
a source of error and is unnecessary. Instead, we choose to stop the calculation when

no further subdivison of Ry(j) is possible, and hence we are guaranteed no

substructure.. This is the case if N(R,(j))<2, since 2 points will aways be

partitioned into 2 different cubes and one point can not be partitioned further. So,

[, ZW—DQN where,
F(R, (1)) =0,if N(R.(j)) <2 (31)
F(R.(1))=2,if N(R.(j))=2 (32)

2"(j+1)-1

F(R.(1))=nN(R,(iN+ > F(RL..(K)IfN(R,(j))>2(33)

k=2"j
Each node R,(j) in the tree contains N(R,(j)) and pointers to
R..1(2"),R,..(2"]+D),..R (2" j+2" -1). The tree is traversed from left to right
using equations (31)-(33) to keep a running sum of the mutua information. The
minimum value of the generalized mutual information occurs when 71X=2X=n

are completely independent. In which case, p(x,X,,...X,) = p(X) p(%,)...p(x,) and

| =0. The maximum value of the mutua information occurs when

n

X, =X, =..X, . Inwhich case p(x,%,,..X,) = P(%) P(x,)...p(x,) and
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1, (Xp, X, X0) ==~ (n=1) p(x,) log p(x,)

2n(K—l) -1

== Z (n=DP(R (1)) 1og P(R((})) (34)

2n(K—1) -1

= Y (n-DPR(I)(K -1 =(n-D(K -1

i=0

6.3. Implementation

The following functions are used by the Mutual Information routine.

struct Mitual Node *Buil dMutual Tree(struct Mitual Node *p, i nt
**j _array,int NunberPts,int NunmberD mi nt

Nurmber Cubes, i nt MaxLevel ,int Value,int Level,int *Cut);

voi d TraverseMut ual Tree(struct Mutual Node *p,int NunmberDi mint
Nunber Cubes, doubl e *F);

voi d FreeMutual Tree(struct Mitual Node *p,int Nunber Cubes);
doubl e Mutual Information (int **i_array,int NunberPts,int
Nurmber Di m) ;

and the following functions are used to sort a matrix for use by the Mutual

Information routine.

int InverseSortVector(double *array,int NunberPoints,int
*arraysort,int *arrayi nversesort);

int InverseSortMatrix(double **array,int NunberPoints,int
NunmberDimint **arraysort,int **arrayi nversesort);

int I nverseConpare(const void *vp,const void *vq);

6.4. Multichannel mutual infor mation of simulated systems

6.4.1. Lorenzattractor

The Lorenz wstem25 is a ssmple model of Rayleigh-Benard instability. The Lorenz

equations are given by:
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x=0o(y—Xx)
y=rx-y-x[z
z=x¥y-blz

where 0=10, b=8/3, and r=28. Figure 27 demonstrates the effect of scaling on the
data. Dense regions in the data are spread out, while sparse regions are compacted.

Although absolute distances are not preserved, relative distances are, thus making

computation of the mutual information possible.
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Figure27. The Lorenz attractor before and after sorting. @) isy vsx from the original data, b) y
vsx from the transformed data, ¢) zvsy from the original data, d) zvsy from the transformed
data, €) x vsz from theoriginal data, and f) isx vs z from thetransformed data. Each plot
contains 2’ points with a time step of 0.002.
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Figure 28 depicts mutual information as a function of time step for severa data sets
from the Lorenz system. This illustrates how mutual information can be used to
determine whether enough data has been collected in order to map out the structure of
the system. A sufficiently large time step implies that the proximity in space of
nearby points in time won't distort the measurements of information. Similarly, a
sufficiently large data set succeeds in minimizing the error, as can be seen by the

considerably larger error in measurements from the smaller data set in Figure 28.

32 —
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Figure 28. Mutual information as a function of time step for several data setsfrom the Lorenz
system, the dashed-dotted line represents 2'® data points of the 3 dimensional data (x, y, and z
coor dinates), the dotted line represents 2'2 data points of the 3 dimensional data, the dashed line
represents 2'° data points of the x and y coordinates and thefilled line represents 2'° data points
of thex and y coordinates. The y-axis of the graph ison alog scalein order to accentuate the
structure of each plot.
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Figure 29 depicts mutual information as a function of delay for the Lorenz system.
The first minimum of the mutual information function is easily identified from two
dimensional embeddings, but less easily identified using a three dimensional
embedding. This is because the information provided by the third coordinate is
sufficient to guarantee that a large amount of information is always shared between

the coordinates.

Mutual Information

0.0 0.5 1.0 1.5
Delay

Figure 29. Mutual information asa function of delay for 2’ points from the Lorenz system. The
sampling rateis 0.002 and the delay isgiven in terms of thetime step. They-axisison alog scale
in order to help distinguish the plots. Thetop straight lineisfrom a 3D embedding of the x data,
thetop dotted line from a 3D embedding of they data, the top dashed line from a 3D embedding
of the z data, the bottom straight line from a 2D embedding of the x data, the bottom dotted line
from a 2D embedding of they data, and the bottom dashed lineisfrom a 2D embedding of the z
data.
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6.4.2. Rossler chaos

The second system is the Rossler equati ons.87

X=-z-Yy

y=x+0.150

z=0.2+2z(x-10)

The effects of scaling are depicted in Figure 30. Here the distortion is dramatic when
compared with the results from the Lorenz system (Figure 27). This is because there
isavery strong correlation between the y and z coordinates, as well as between the x

and z coordinates. Scaling the data removes much of this correlation so that mutual

information can be measured effectively.
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Figure 30. The Rossler attractor before and after sorting. a) isy vsx from the original data, b) y
vs x from the transformed data, ¢) zvsy from the original data, d)z vsy from the transformed
data, €) x vsz from theoriginal data, and f) isx vs z from thetransformed data. Each plot
contains 2’ points with a time step of 0.002.
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Figure 31 depicts mutual information as a function of time step for several data sets
from the Rosder system. Compared with the Lorenz system, time step and data set
Size have a far greater effect on error for the Rossler system. This is because the
Rossler system has regions that are very rarely visited, so that small differences in
data sets may greatly effect how that region’s density is measured. Thisis less of a
problem for the Lorenz system where a relatively small portion of the attractor can

give agood estimate of the overall distribution
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Figure 31. Mutual information as a function of time step for several data setsfrom the Rossler
system, the dashed-dotted line represents 2*8 data points of the 3 dimensional data (x, y, and z
coordinates), the dotted line represents 2*2 data points of the 3 dimensional data, the dashed line
represents 2'® data points of the x and y coordinates and thefilled line represents 2' data points
of thex and y coordinates. The y-axis of the graph ison alog scalein order to accentuate the
structure of each plot.
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Figure 32 depicts mutual information as a function of delay for the Rossler system.
This is similar to aplot in Fraser, et. al.,42 Like the Lorenz system, minima are less
easly identified for three dimensional embeddings. One implication of thisis that the

delay timeislessimportant for high dimensional embeddings.
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Figure 32. Mutual information asa function of delay for 2" data points from the Rossler system
the sampling rateis 0.01 and the delay isgiven in terms of the time step. They-axis of the graph
ison alog scalein order to help distinguish the plots. Thetop straight lineisfrom a 3D
embedding of the x data, the top dotted lineisfrom a 3D embedding of they data, the top dashed
lineisfrom a 3D embedding of the z data, the bottom straight lineisfrom a 2D embedding of the
x data, the bottom dotted lineisfrom a 2D embedding of they data, and the bottom dashed line
isfrom a 2D embedding of the z data.
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CHAPTER FIVE
RESULTS OF ANALYSISON VARIOUS DATA

1. Introduction

Time series analysis of high dimensional experimental datais a difficult task.
Many methods of analysis fail when performed on data for which there is little a
priori knowledge of the underlying dynamics. The true test of the viability of an
analysis method is how well it performs on experimental data. In this chapter, we
look at the success of analysis methods used on both simulated data (from well-
known systems and from unexplored complex models) and from experimental data.
Specifically, the data was examined for evidence of chaotic and fractal dynamics.
Extracting fractal dimension and Lyapunov spectra from noisy data is known to be
problematic, so the results were interpreted with skepticism and validity criteria was

established for the results.

2. The Pulse Therma Combustor

2.1. Introduction
From the theoretical work by G. A. Richards et al.,” it was shown that the
thermal pulse combustor can have a number of advanced fossil energy applications.
The pulse combustor engine had its start in the 1940's when Germany used them to

propel the V-1 rockets. Some of its descendants are still used today in rockets and
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weapon propulsion systems. Certain heating systems use this engine as the main
burner since it produces more efficient burning than the standard burner. Some
power generating stations also use similar engines for the boilers.

Recent work on this combustor has shown that the engine has complex
dynamics ranging from steady combustion to regular pulsating combustion to
irregular pulsating combustion to flame-out or extinction. Daw et al. have shown
extensively (in both the model and the experimental system) that the thermal pulse
combustor can produce chaotic dynamics.” * Previously this was neglected due to the
lack of recognition of chaos as a separate state and the lack of tools to help identify it.
With the existence of chaos also comes the possibilities of other behaviors that are
catastrophic and undesirable such as the flaming out or quitting of the engine.

In the chaotic system it is often found that the chaotic attractor suddenly
ceases to exist when a parameter has changed beyond a critical point. The system
catastrophically falls into a new attractor with less desirable properties. Once the
system is in this new attractor, even changing the parameter back to a region where
chaos previoudy occurred can not reverse the sequence of events. This sudden
destruction of the chaotic attractor in favor of a steady-state or periodic motion is
called aboundary crisis. Asasystem parameter p is changed monotonically toward a
critical parameter p, the basin of attraction of the undesirable orbit approaches the
basin of attraction of the chaotic attractor. For p = p, the two basins touch, making
pathways for the orbit to exit the chaotic attractor. For p > pc, the chaotic attractor is

replaced by a chaotic transient. For initial conditions that place the system in aregion
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of phase space within the basin of the chaotic attractor, the system will pull in and
evolve into what seems like the chaotic attractor. After some time the system exits
this chaotic transient and moves to the other attractor.

In the thermal pulse combustor, lowering the fuel/air ratio parameter will
cause the engine to pulse chaotically. Reducing the parameter further will cause the
engine to suddenly flame-out. If one were to increase the parameter to where the
engine was pulsing before, the engine would not reignite. But the parameter close to
where the system makes the transition to flame-out has desirable characteristics if one
can keep it running at that point. First, the engine is running very lean because the
fuel to air ratio is lower than when it pulsed regularly. By running the engine lean
one can save fuel, lower atmospheric emissions (due to less unburned fuel), and
increase efficiency because of the large amplitude variation in the pressure inside the
combusting chamber. This large pressure variation also increases the heat transfer

rate because the wall temperature of the combustion chamber increases dramatically.

2.2. Theory
The thermal pulse combustor considered here has been described previoudy
by Richards et al.,89 In et al.9! and Daw et al.% The therma pulse combustor
consists of no moving parts. The two main components of the combustor are the
combustion chamber and the acoustic resonator (tailpipe). The experimental
combustion chamber has an interior diameter of 5.1 cm and internal volume of 295

cm’. The tailpipe, which acts as an acoustic resonator, has an internal diameter of 2.0
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cm and a variable length of 30.5t0 91.5 cm. By varying the length of the tailpipe, the
dominant acoustic frequency can be adjusted, thus tuning how the combustion
process and the acoustic resonator interact.

Gas propane fuel and ar are injected via two opposing jets into the
combustion chamber from its sides at the opposite end from the tailpipe as shown in
Figure 33 and Figure 34. Inside the combustion chamber the jets are deflected to swirl
the gases and to enhance mixing. The mixture isinjected at a high pressure to ensure
a choked flow, resulting in a constant mass flow into the combustion chamber even
during the large pressure changes present in the pulsating mode. Choked flow is used
to maintain constant air and fuel flow rates. The mass flow rate and equivalence ratio
are controlled by varying either the supply pressures or the diameters of the choke
orifices. A spark plug is used initialy to ignite the mixture; however, once the
combustor has warmed-up, the heat from the combustor wall and the recompression
effect of the reversed flow from the tailpipe after the exhaust phase causes the
mixture to auto-ignite, thus making the spark plug unnecessary.

The combustion chamber wall is maintained at a constant temperature with a
convection constant h. After combustion is completed, the hot gas accelerates
through the tailpipe and is exhausted into the surroundings. What makes the thermal
pulse combustor unique is that unlike conventional pulse combustors, it uses neither
mechanical nor aerodynamical valves to regulate the inlet fuel and air. The mixture
flows at constant rate into the chamber. A conventional pulse combustor regulates its

inlet fuel and air flows based upon the pressure inside the combustion chamber.
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Figure 33 Geometry of the model thermal pulse combustor.
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Figure 34 Geometry of the model thermal pulse combustor. The combustion product is moved
into thetailpipe.
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2.3. Modél

The thermal pulse combustor model was based on the assumptions that the gas
in the combustion zone is perfectly stirred, the combustion process is controlled by a
single-step, bimolecular reaction for air and propane, combustion gases behave as
ideal gases with constant specific heats (C, and C,), kinetic energy of gas is
negligible compared to the internal energy in the combustion zone; and flow in the
tailpipe has properties equivalent to those prevailing at its entrance. These
assumptions and conservation equations for momentum, mass, and energy lead to

four normalized ordinary differential equations:

d_f:y{LiA}i_{(y_l)Lim_%}if 0

dt Iy Ty I )P Po Ty Tl P
ﬁ:y i+i+i -y é+ TO T 2
dt Iy Ty I Po Tl

o (LT enE
at r, P (r.paH)P
. = RT,7, \T, ) >
Mez(p-g) 2 - teel D
d Lleo )R 2Dt |U,

T isthe combustion zone temperature normalized to the ambient temperature,

P is the combustion zone pressure normalized to the ambient pressure, Y, is the

mass of fuel per total mass inside the combustion zone (mass fraction), and U, is the
tailpipe velocity normalized with the cold flow tailpipe velocity. The variabler, is

the characteristic flow time or the combustion residence time for the combustion
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chamber and 7,,; is the characteristic heat transfer time. The 7, is the characteristic

combustion time, and it is the only time constant that is dependent on the state space

variables. Itisdefined as

-1
AH, P? T

T, = A—N—Yzexp(%“ﬂ (5
{ CT, T T

The other variables are standard, as defined in Table 3.

Nomenclature Description Initial Value

% Ratio of spcific hests 1.27

T Flow time 0.026670 s
Tyt Hesat transfer time 0.040110s

T, Combustion time caculate in process
o Ambient density 1.12 kg/m?®

T, Ambient temperature 300.0K

T, Combustor wall temperature 1200.0 K

Yo Inlet fuel mass fraction 0.06

C, Specific heat for constant pressure 1200.0 Jkg-K
AH Heat of reaction 4.6x10" Jkg
L, First characteristic length 0.0119m

L., Second characteristic length 0.8486 m

f Friction factor along tailpipe 0.03

h Heat transfer coefficient 120.0 W/m?-K
D Diameter of the tailpipe 0.0178 m

L Length of tallpipe 0.6100 m

\% Combustion volume 0.0001985 m®
C, Spexific heat at constant temperature  3.385x10°
Tacr Dimensionless activation temperature  50.0

P, Ambient pressure 1.01325x10° Pa
A’ Kinetic constant for fuel reactionrate  3.85x10°s™*

1S Usud mtvadue 3.141592

T, Maximum resident time for mixturein  0.0000 s

combustor chamber

FN% Pressure at tailpipe entrance dimensionless
fe Temperature a tailpipe entrance dimensionless

Table 3 Listing of the variables used in the model and initial values used in the numerical
simulation. The subscript zero indicates the ambient condition and the subscript eindicatesthe
condition at thetailpipe entrance.
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Theinitial conditions corresponded to filling the combustion chamber with the
fuel and air mixture to one atmospheric pressure. The initia high temperature of 5.0
times the ambient temperature ignites the fuel/air mixture. The combustion produces
an immediate pressure rise and accelerates the hot gases toward the tailpipe. When
the amount of gas quickly leaving the combustion zone exceeds the amount
remaining in the combustion zone, pressure begins to drop. As a result of the hot
gases moving rapidly down the tailpipe, it drops below the ambient pressure. The
combined effect of cooling and pressure drop quenches the combustion reaction. The
incoming fuel and air continues to mix in a relatively cool environment, along with
the remaining combustion product in the chamber. The gas flow in the tailpipe slows,
stops and then reverses direction. Recompression from the backflow and heat
transfer from the combustion chamber wall combine to cause the temperature to rise
as the fuel and air mixture builds up until reaching the critical point for combustion.

At this point the combustion cycle starts once more.
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Figure 35. Timeseriesof thefour statevariables. The parameter 7, wasset at 0.02670.

The differential equations, (1) - (4) were integrated using a 4™-order
Runge-K utta routine with a time step of 1.00x10™ second. The initial conditions for
the ssimulation are listed in Table 2. Figure 35 shows an example of the four state
space variables during the pulsing mode, and Figure 36 shows the projection of the
full phase space onto the temperature-pressure plane. Only the pressure variable was

used since only the pressure can be measured during actual experimental runs. From
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the pressure time series a peak detection algorithm was used to pick off the maximum
of each peak. The peak values were used to construct a return map by plotting the

current peak versus the previous peak.

9

I
1.0 15 2.0 25
P (norm.)

Figure 36. Projection of thetime seriesin Figure 35 onto the temperatur e-pressure plane.

Through the course of this numerical experiment, only the characteristic

resident time for the fuel/air mixture in the combustion chamber, 7,, was varied.
Since it is inversely proportional to the flow rate of the fuel/air mixture, lowering 7,

means increasing the flow rate. This parameter was used as the bifurcation parameter

and as a perturbing parameter. In addition, this choice also has a relevance to the
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actual experiment because the flow rate is the parameter that will be used to
manipulate system dynamics.

As 1, was decreased (the fuel/air flow increased), the thermal pulse

combustor model showed a period doubling route to chaos. Similar results were also

88, 92

obtained from previous work done on the model.™ ™ However their observable

variable was temperature instead of pressure. Decreasing 7, led to a crisis with
T: i @ About 0.026696, and the system eventually crossed the boundary of the

basin of attraction toward a stable fixed-point (flame-out state) at a much lower

temperature (Figure 37). Once flame-out had occurred, reversing 7, to avalue much

greater than 7, .., would not make the system pulse again.
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Figure 37. Projection of the flow onto the temperature-pressure plane. 7; wasdlightly below the

critical value for flame-out. The system evolved on a chaotic transient, then spiraled down
toward the flame-out state.

Note that the fuel mass fraction of the pulse combustor was fluctuating around
some mean value for regular pulsing. The fluctuations correspond to the combustion
cycle and the rebuilding of the fuel/air concentration in the combustion chamber. For
fluctuation in the chaotic parameter, the fuel mass fraction was oscillating around a
lower mean value, which indicates a higher percentage of the fuel burns during
combustion. Hence the combustion in the thermal pulse combustor is more efficient

when it is operating in the chaotic mode. Similar behavior has been observed in the
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actual thermal pulse combustor. Thus, the hope of the study is to extend the

operating range of the combustor to lower 7, vaues and yet to prevent it from

achieving flame-out. The method utilized here will be applicable to the actud

thermal pulse combustor as well as other systems exhibiting similar behaviors.

2.4. Data acquisition

Dynamic pressure measurements were made using a piezoelectric pressure
transducer (Kistler 206L). After analog band-pass filtering, the transducer output is
collected using a PC with a National Instruments A/D card (AT-MIO-16X). The
pressure tap is water-cooled to prevent overheating of the transducer. Since the tap
acts as a second acoustic resonator, an 8.5 m coil of 0.635 cm diameter tubing was
attached to reduce the tap’s acoustic frequency sufficiently to prevent any significant
perturbation of the combustion process.

The data consisted of a time series of voltage measurements at a very high
sampling rate (20 kHz) relative to the dominant frequency (approximately 200 Hz).
Data sampling began after the combustor had presumably reached thermal
equilibrium, in order to avoid the transients. (However, see comments later in this
section.) All of the following analysis is on a data set of 2%° data points, or portions

thereof. A small portion of this data set is depicted in Figure 38.
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Figure 38. A plot of 2500 pointsfrom the data set.

2.5. Analysisof data
2.5.1. Introduction
Although the fluid dynamics of this engine and its operation is relatively
simple, the dynamics of its motion are poorly understood. Traditional signal
processing methods may fail here because the system dynamics are, at best,
complicated, and, at worst, extremely noisy. Therefore it is our hope that analysis

from a nonlinear dynamics perspective may yield more fruitful results.

2.5.2. Power spectral density

The starting point for most analysis of a given data set is to see what the
frequency distribution might look like. If the dynamics is simple, then we might see
only a few sharp spectral lines with some low noise floor that tell most of the story

about the system’s behavior. Unfortunately it is not the case here. The spectral
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density for this data set is very broad (see Figure 39). The power spectral density is
taken on the full length of the data set of 1048576 (2%°) points using the Welch
windowing with segment length of 8192 points. The graph shows a peak at about
80.56 Hertz, which corresponds to the main resonant frequency of the thermal pulse
combustor. The subsequent peaks are the harmonics. In order to say something more

quantitative about the dynamics, we will rely on subsequent analyses.

10°
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Figure39. Thepower spectrum of the entire data set.

2.5.3. Nonstationarity

An important question to ask concerning complicated experimental data is
whether or not the parameters controlling the dynamics remain stable and stationary
throughout the data. Stability is guaranteed in a simulation, but in an experiment it is
far from certain. Hence the question becomes whether or not parameter drift is

significant.
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A few simple tests were performed that would identify strong drifts in the
data. The time series was divided into 128 pieces of equal length (8192 points each,
covering about 80 cycles). From this it was possible to compare statistics (mean,
standard deviation, skewness, kurtosis) on each piece of the data set. All of these
results except the mean did not change significantly over time. However, thisis not
definitive. A nonlinear system could undergo a change in the dynamics that does not
show up on any of these measurements. However, as can be seen from Figure 40, the
mean value undergoes a fluctuating trend that does not appear to be random. This
fluctuation is quite small in relation to the full extent of the data. The system may be
in a long-term transient stage, since the temperature of the chamber is steadily
decreasing because the combustor is running near a flameout regime where the fuel-
to-air ratio is very low. In this regime, there is less heat generated from the
combustion process. This causes a general decrease in the wall temperature that may
not damp out in experimentally accessible times. Accordingly the data used in this
analysis is limited to a portion where there is very little change in temperature over
time. The fluctuation in the mean is small (~ 1%) and on the order of the noise in the

system, so it was ignored.
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Figure 40. Nonstationary behavior of the data mean. Successive values of the average of
windows of length 8192 are computed throughout the entire data set of size 1,048,576.

2.5.4. Delay coordinate embedding

The phase space was reconstructed by taking the time series X, X,,...X,, and

creating D-dimensional vectors using atime delay . With a time series of unknown
nature, suitable values of the delay and embedding dimension may be determined
both through other analysis methods or by visual inspection. A reasonable value for
the delay may be suggested either by the first zero crossing of the autocorrelation
function or by the first minimum of the mutual information function, as either valueis

plotted as afunction of delay.
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Figure4l. Two techniquesfor estimating the delay to usein a delay coor dinate embedding of the
combustion data. The first method is to choose the first minimum of the mutual information
function. The second, less sophisticated method usesthe first zero crossing of the autocorrelation
function. Both methods suggest a delay of approximately 31.

However, for the combustion engine data, the mutual information function
and the autocorrelation function were in perfect agreement. As shown in Figure 41
both values suggested a delay of 31. This was in agreement with visual inspection
since 2 and 3 dimensional plots revealed the most structure near this value of delay
(see Figure 42 and Figure 43). Structure is clearly evident in these plots.
Unfortunately, they also reveal a complexity or noise dependence that makes the fine
scale structure very difficult to detect.

Choice of embedding dimension is not as precise. Theoretically, any number

greater than 2D is sufficient, where D is the box counting dimension of the object. .66
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If too high an

In practice however, one can often get away with alot less than that.

embedding dimension is used, then analysis becomes much more difficult and time

consuming.
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Figure42. A two dimensional plot of 8000 pointsfrom the data set, with a delay of 31.
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Figure43. A threedimensional plot of 30000 points from the data set, with a delay of 31.

The method of false nearest neighbors? was chosen as the primary technique
for determining the embedding dimension. The results agreed with what was
suggested for application with real world data. As shown in Figure 44, the percentage
of false neighbors dropped dramatically as the embedding dimension increases from 5
to 6. Aswill be shown later, thisisin at least rough agreement with what was found
to be a suitable embedding dimension for determination of Lyapunov exponents or

fractal dimensions.
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Figure 44 A plot of the results of the false nearest neighbor s routine. An appropriate embedding
dimension is found when the percentage of false near neighbors dropsto a value near zero. This
plot indicatesthat the embedding dimension should be at least 6.

2.5.5. Fractal dimension

The most common way to estimate the fractal dimension of a time series is
using the Grassherger-Proccacia algorithm43.93-95 to gpproximate the correlation
dimension. One determines the correlation function, C(¢), the probability that two

arbitrary points on the orbit are closer together than a distance €. In the limit
dlogC . : .
& - O,N 5 o, thevalue dloge converges on the correlation dimension.

The correlation dimension is determined where a plateau is found in the slope
of aplot of log(C(¢)) versuslog(¢). This method however, has several flaws. Oneis
often concerned with other definitions of dimension, such as the information
dimension. Although the correlation dimension and information dimension are
similar and usually very close, thisis the first of many approximations. Estimates of

correlation dimension using the Grassberger-Proccacia algorithm are highly
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susceptible to noise and data set size. Each of these diminishes the region of the
plateau. For higher dimensional data these problems are aggravated since minimal
noise and exponentially more data are required to identify the plateau region. In
addition, data with a high sample rate may exhibit strong correlations that skew the
estimates. Having alarge number of orbits compared to the sample rate may alleviate
this problem. The approximations due to noise, data set size, nonstationarity and so
on are inherent in the data set. But the Grassberger-Proccacia algorithm also uses an
approximation to the definition of correlation dimension. Additional approximations,
such as the use of the slope, are inherent in almost every dimension estimation

routine. Finally, the Grassberger-Proccacia algorithm is essentially O(N?), where N

is the number of points. Computation on alarge data set can take days, even with the
use of powerful computers. Comparing points against only a small sample of the
data, k points, can speed it up O(kN). But this is still technicaly an N-squared
algorithm, and this additional approximation further compounds the problems.
Analysis was attempted on data sets of varying size and varying embedding
dimension. Due to the high dimensionality and nonstationarity of the data, they
rarely showed a clearly defined plateau, nor did they show clear convergence with
large embeddings. This is not surprising, given the demands and limitations of the
Grassberger-Proccacia algorithm. At best they indicated a fractal dimension of
4.28+0.2 (Figure 45). Although this value agrees roughly with the choice of
embedding dimension, more analysis was necessary to confirm the results. It was

important to eliminate severa sources of error in the computation of dimension. It
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was aso necessary to compute many dimensions, such as the box counting,
information, and correlation dimensions directly. Second, because of the strong
dependence of dimension calculations on data set size, it was preferable that the entire

data set be used in computation. This last criterion required that the method used

must be fast- an O(N?) algorithm was out of the question.

log (C(c))

-4 -2 0 2
log,(¢)

Figure 45 A measurement of correlation dimension from the last 262144 points in the data set.
The correlation dimension is estimated from the slope of logy(C(g)) vs. logx(€). The straight line
plotted has slope 4.28.

For these reasons, a newly devised method to estimate an arbitrary number of

generalized dimensions in O(NlogN) time was used. A method of finding
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generalized entropies was described in Chapter 4. Once the generaized entropies
have been determined, the generalized dimensions may be found by calculating the

slope of aplot of -H_ (&) vsIn(e).
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Figure 46. The first four generalized entropies. These correspond to generalized dimensions of
D(0)=3.41+0.4,D(1) =4.02+0.25,D(2) =4.49+0.25,D(3) =4.44+0.3. Each of these was

calculated using the entire data set embedded in 7 dimensions.

Figure 46 presents the results of our calculations performed on combustion
data. Displayed are estimates of the first four generalized entropies for varying box
size with an embedding dimension of 7. Additional tests were also performed for the
embedding dimensions 3-6, and for the next four generalized entropies. The results

indicated that, for p>q, D(p) < D(q), which agrees with theory. For large box size,

the box counting dimension varies widely from the others. This is not surprising,
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since the box counting dimension is more susceptible to errors. It is also a poor
guantity to use since it says nothing about the density of the attractor, only about its
shape. However, the box counting dimension and all the others converge in the mid-
region, before diverging sightly and then dropping to zero (due to data set size). Itis
this mid region that parallels the plateau region of the Grassberger-Proccacia
algorithm. The estimates for fractal dimension ranged from 4.0 to 4.5, for all fractal
dimensions calculated when embedding dimension was greater than 4. With the
exception of the box counting dimension, this was true for all of the first eight
generalized dimensions. The correlation dimension, for instance, was estimated at

D(2) =4.49£0.25, where the error was estimated based on the fluctuation of the

dope of the entropy in the mid region. This agrees with our choice of 6 for the
embedding dimension, and is in rough agreement with the result from the
Grassberger-Proccacia algorithm. A fractal dimension of 4 to 4.5 indicates that an
embedding dimension as high as 9 may be necessary, but as is often the case, alower

embedding dimension may be used.

2.5.6. Lyapunov exponents

Before determination of Lyapunov exponents was attempted, the data was
embedded in 6 dimensions with a delay of 31, as suggested by the false nearest
neighbors routine, the autocorrelation function and the mutual information function.
Fractal dimension was estimated as between 4 and 4.5, so a local embedding

dimension of 5 was chosen, yielding 5 exponents in the calculation of the full spectra.
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As shall be seen, this is in agreement with the observation that the sum of the
exponents must be negative.

Two methods of determining Lyapunov exponents were implemented; the
method of Eckmann and Ruelle® for determining the Lyapunov spectra, and the
method of Wolf, et a.,’” for determining the largest exponent. Since these two
methods are fundamentally different, one would not expect agreement between the
estimates to be simply due to them both incorporating the same mistakes. The Wolf
method involves following a trgjectory in its path around the attractor. The rate of
growth between points on this trgjectory and a nearby trgectory is used to estimate
the largest Lyapunov exponent. When the distance between these trgectories
becomes too large, then a new nearby trgjectory is found that is within a reasonable
angular distance from the previous nearby trgectory. The Eckmann and Ruelle
method involves using a small neighborhood of points and iterating them forward to
estimate the local Jacobian, and then determining Lyapunov exponents from the
eigenvalues of the Jacobians around the attractor.

The folding of the attractor brings diverging orbits back together. So any
effects of nonlinearities will most likely serve to move all exponents closer to zero.
Hence a dlight underestimate of the positive exponents was expected.

One check on the Wolf agorithm was calculating the average angular
displacement. Thiswastypically less than 20%, well within reasonable bounds. Wolf
showed that the angular displacement errors are not likely to accumulate, but each

error may skew the largest positive exponent downwards.
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Ecknmann- Ruel | e Met hod

POTSIN | teration M Ao As As As
10 17 | 0036963 | 0018985 | 000268 | -0.020285 | -0.061305
10 18 | 0034956 | 0017727 | 0001948 | -0018823 | -0.062807
10 19 | 0032672 | 0018569 | 0000123 | -001854 | -0.057501
10 20 | 0031778 | 0016857 | 0000442 | -0018088 | -0.054543
10 21 | 0029999 | 0015513 | 0000411 | -0017223 | -0.052437

Modi fied Wol f Al gorithm

Number of Neighbors Average angular displacement A

16 0.770722 0.031167

Table 4. Estimation of Lyapunov exponents. All calculations were performed
with a 5 dimensional embedding and a delay of 31. An iteration step size of 19
represented the best estimate of the Lyapunov spectra (due to the high accuracy
of the zero exponent). An estimate of the dominant exponent from the Wolf
method isincluded to show that thereis agreement between the two methods.

In Table 4, results of exponent calculations are provided. All calculations
were performed with atime delay of 31, global embedding dimension (used to unfold
the attractor when identifying nearby points) of 6 and a local embedding dimension
(used in exponent calculations) of 5. The exponents are given in units of 1/time,
where the time scale is defined so that the time between samplesis 1. Many more

calculations were performed until a reasonable and stable parameter regime was
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found for both methods. Note that the zero exponent snaps into place for an
appropriate choice of the iteration step size.

Several of our criteria are determined immediately upon inspection. The zero
exponent was identified with a high degree of accuracy. The sum of the exponentsis
negative, while the sum of the first four is positive. This indicates that a fracta
dimension between 4 and 5 was a reasonable estimate. These exponents also give a
Lyapunov dimension of 4.571. Although there is large error in both Lyapunov
dimension and information dimension estimates, this value is within acceptable
limits. Results from the Wolf algorithm are included in order to show that the two
methods provide rough agreement. The Wolf method by itself is not sufficient since
there are few checks on its validity.

However, it was not possible to confirm al criteria.  Measurement of the
metric entropy is still ongoing work. Sectioning the data introduced additional noise
and measurement of exponents from the section was even more uncertain. Thus it
was not possible to get agreement between exponent estimates from the section and
from the flow, nor was it expected. Time reversal results were also inconclusive at
best. However, smulated data with the addition of noise would not usually switch
the signs of the exponents under time reversal either. So the sign change of

exponents when the datais reversed may not be a suitable criterion for noisy data.

2.5.7. Comparison with other work
To our knowledge, there has been one previous publication attempting to

analyze the nonlinear dynamics of a thermal pulse combustion engine. Some
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differences in approach are clear. Much of their work centered around comparisons
of results between theory (a simulated 4™ order ODE model of the combustor) and
experiment. They also attempted analysis of many small data sets, whereas the
analysis contained herein concentrated on one large data set. Some technical
differences are also quite clear. Although they calculated the mutual information
function, they chose to embed the system using the singular value decomposition
method (SVD) of Broomhead and King.68  In this section, the authors chose not to
use SVD because of the interpretation difficulties described by Fraser, et a. (Ref. 67
and references therein). However, the primary difference is their clam of low
dimensionality in the system. This was not seen in any of the methods used here-
false nearest neighbors, calculation of the generalized dimensions, or calculation of
the Lyapunov spectrum. Some of these differences may be explained by the use of
parameters in the data acquisition. The authors of this work also believe that more
stringent criteria was necessary in Daw, et a,” to verify chaos in the combustion
engine. In light of this and the previous work, it is clear that more analysis should be
done so that a firm conclusion may be reached and the differences between the two

approaches may be rectified.

2.5.8. Conclusion
The data from the combustion engine appears to represent a five dimensional
system with two positive Lyapunov exponents. This system may therefore be

considered high dimensional and hyperchaotic. As such, computation of fractal
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dimension and of Lyapunov exponents are difficult tasks. Some consistency was
achieved between results using various methods of analysis. However, precise
quantitative results were not possible. This was not a surprise since each of these
methods of analysis was susceptible to noise, drift and data set size, and the errors are
more problematic with high dimensional time series. The anaysis herein
demonstrated the limitations of many methods for time series analysis. This work

also showed how multiple analyses can be used to confirm each others results.

3. The Magnetoel astic Ribbon

3.1. Overview
The magnetoel astic ribbon™ has rich nonlinear dynamical behavior ranging
from periodic to chaotic and everything in between, but it is smple enough to be

100

described by a low dimensional model.” It was the first experimental system to
demonstrate chaos control.” Also observed in this system were quasiperiodic and
strange non-chaotic behavior™, crises”, scaling characteristics~ and stochastic

resonance . The experimental apparatusis presented in Figure 47.

dt T, P

av, _ (¥, —Yf)j_[ C,T, jf
P

r.AH )P ©)

153



Current
to X-Axis
<

Kepco
ower Supply

V

Current
to Y-Axis

Kepco
Bipolar Operating
Power Supply

Current

to Z-Axis
MTI 2000
Photonic _Sensor AC Volt DC Volt
|
HP 3458A HP 3325B
. ) Kepco Programmer
Multimeter ) A Function Generator

Digital to Analog

Trigger
GPIB Cable

PC

YA V.

( V

Figure 47 Instrumental layout for the magnetoelastic ribbon setup.

The magnetoel astic ribbon was clamped at the base in a Plexiglas holder such

that the free vertical length was greater than the Euler buckling length. This gave the

ribbon an initial buckled configuration (Figure 48). The holder and the ribbon were

placed within three mutualy orthogona pairs of Helmholtz coils. The coils were
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needed to compensate for the ambient field and to apply a nearly uniform vertical

5

magnetic field along the ribbon’s length, as illustrated in Ditto et al. **. In this
system, a magnetic field component Hy. produced from the dc current was applied to
the ribbon in order to center the operating region at a point where the ribbon is soft.
A magnetic field component Hy: produced from the ac current was then applied to
modulate the system around Hq.. The alternating magnetic field H,. made the ribbon
go from soft to stiff and back to soft again stiff again and finally soft again at a

driving frequency f. At a large enough Hy magnitude, the ribbon oscillated

chaotically. Any one of the parameters Hqc, Hac Or frequency f could be varied.

To Fotonic Sensor

Figure 48 The ribbon setup inside the Helmholtz coils. H is the applied magnetic field and g is
the gravitational pull on the ribbon. This measurement provides sufficient information to
completely describe the state of motion of the ribbon unless the frequency is high enough to
cause sections of the ribbon to move out of phase with each other. Such traveling waves
traversing theribbon istermed " shimmering."
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3.2. Experimental Setup

3.2.1. Ribbon

At the core of the setup was the magnetoelastic ribbon (Metglas 2605SC™),
an amorphous magnetic material (Fes;B135Si35C,) approximately 100 mm long by 3
mm wide by 0.025 mm thick. The material resembled stiff Christmas tinsel. When a
weak field was applied, the Young’'s modulus and the stiffness of the ribbon
decreased by an order of magnitude, causing it to buckle under its own weight. The
characteristic response of the ribbon’s Y oung’s modulus to the applied magnetic field
is shown in Figure 49. The Young's modulus of the ribbon decreased dramatically
with a small change of the magnetic field, which changed the ribbon from stiff to soft
very quickly. Asthe field was increased the ribbon’s Y oung’s modulus became level
between 0.7 and 1.0 Oe. The typical operating point for the experiments was in this
region. Any further increase in the field stiffened the ribbon quickly, as indicated by
asharp risein the curve. Overall the Young's modulus of the ribbon could change by

over afactor of 10 in response to a change of magnetic field.
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Figure 49 Normalized Young's modulus of the magnetoelastic ribbon as a function of applied
magnetic field. The modulus was normalized to zero field modulus. The solid line was the
theoretical prediction and the dots wer e the measured result. (Data courtesy of Mark L. Spano).

3.2.2. Cails

The setup consisted of three sets of Helmholtz coils that were used to generate
two orthogonal horizontal fields and a vertical field. The design of the coils was
based on the theory that a pair of coils, with optimal inter-coil spacing, produced the
most uniform field possible for that size coils. The two most important parameters
were the desired area of uniformity and the magnitude of magnetic field required.
The size of the coils was determined by the required area of the uniform magnetic
field, a cylinder 2 inches in diameter by 3 inches in length along the z-axis (vertical

axis). Table5 gives the complete specifications for the coils.

| Specification | X-Axis | Y-Axis | Z-Axis

157



2"x 3"

(Diameter x
Areaof Uniformity (cylinder) | Length)

Cylinder along

Z-axis
Uniformity <0.05% <0.05 % <0.05 %
Overall Outer Diam. 30.75" 27.0625" 23.25"
Nominal Intercoil Spacing (face 135" 11.875" 9.875"
to face)
Refsistance (per coil pair at 70 | 167 opms | 13.1 Ohms 3.0 Ohms
Rated Operating Current 1.0 Amps 1.0 Amps 4.0 Amps
Central Field at Rated 5.0 Oe 5.0 Oe 15.2 Oe
Operating Current
AC Operation (Yes/No) No No Yes
Nomina Inductance 38 mH
Maximum Frequency 100 Hz
Rated Operating Current 2.83 A (rms)
Voltage at Rated Operating
Current & Freguency 68.0V (rms)

Tableb5. A listing of the specifications of the Helmholtz coils

3.2.3. Power supplies

Kepco power supplies (model CC 21-1M) were connected to each pair of coils
that produced the horizontal fields. The coils were used to counteract ambient fields
in the room. The coils that produced the vertical field were powered by a Kepco
Bipolar Operating Power Supply (BOP 100-2M). The bipolar operating power
supply proportionally converted any input voltage into current. The voltage supplies
came from a function generator (Hewlett-Packard 3325B) which supplied the ac
component of the voltage, and from a dc voltage power source (Kepco voltage
programmer or digital-to-analog (D-A) converter). These were combined in a voltage

adder box before going into the bipolar operating power supply.
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3.2.4. Holder

A Plexiglas holder was set at the center of the coils (Figure 47). The holder
consisted of two vertical cylinder-like structures. One structure, which was placed at
the center of the platform, was used to hold the magnetoelastic ribbon. The other,
which was placed off-center, was used to hold the fiber optics of the fotonic sensor.
The ribbon holder and the fotonic sensor holder were capable of rotating horizontal
rotation, tilting and variable height. The base heights (the distance measured from the
Plexiglas platform to the top of the holder) were set at the level of the bottom of the

uniform vertical magnetic field cylinder.

3.2.5. Sensor

The fotonic sensor (MTI 2000 Fotonic Sensor) was used to measure the
position of the ribbon. The instrument consisted of a tungsten light source with
constant intensity. Light was sent through a set of randomly arranged fiber optics that
had half of its bundles used for emitting light and the other half used to detect light.
Light went through the fiber optics and exited at the other end, about haf a meter
from the tungsten light source. The light that reflected off the magnetoelastic ribbon
entered the detecting fiber bundles, which were arranged randomly among the
emitting fibers. At the other end of the bundle was a photodetector that would
determine the intensity of the reflected light. From thisintensity, the relative position
of the ribbon was determined using the relationship between the outgoing beam and
the reflected beam. This instrument measured the position with high accuracy and

minimal noise. A cdlibration was made to account for the placement distance
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between the ribbon and the end of the fiber optics as well as for the reflectivity of the
surface. The intensity of the source and the loss in the fiber bundles had been
determined and calibrated at the manufacturing site. The output of the fotonic sensor
was given in voltages and measured by the sensor with a high resolution multimeter
(Hewlett-Packard 3458A). This instrument could read up to 28-bit resolution from
the fotonic sensor output. Since the experiments were designed to take stroboscopic
data, the multimeter was triggered by a synchronizing signal sent from the ac function
generator. This allowed the multimeter to read the signal once per driving period of

the magnetic field.

3.2.6. Computer

A desktop computer (Dell 466ME) was connected to the multimeter, the
function generator, and the Kepco voltage programmer through a general purpose
interface board (GPIB). A custom program was written to communicate with each
instrument. Through this program the amplitude and frequency of the ac voltage
could be set on the function generator, and the dc voltage could be set on the Kepco
voltage programmer. The program could also communicate with the multimeter to

acquire data.

3.2.7. Calibration of the Helmholtz coils
The Helmholtz coils were calibrated to counteract the ambient fields at the
experimenta site. Using a high precision Gauss meter, the ambient field along one of

the horizontal axes of a pair of coils was determined. Current was applied to the
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corresponding set of coils until the produced field canceled the measured ambient
field. Next the probe was positioned along the axis of another set of coils. The
ambient field in this direction was determined. Current was applied to the appropriate
set of coils until the fields canceled each other. Along one horizontal axis (x-axisin
the experimental setup) a current of 41.0+1.0 mA was given to a pair of coils. The
other pair of coils (y-axis) was given acurrent of 12.0+1.0 mA.

The vertical field was used to drive the ribbon. Any ambient field in this
direction would ssimply change the zero of the dc field. To determine the relationship
between the requested voltage from the computer and the vertical magnetic field
produced in the Helmholtz coils, a series of dc voltage outputs were requested
through the Kepco programmer. The corresponding magnitude of the field produced
was then recorded for each voltage output. The field magnitude produced by the coils

was linearly dependent on the voltage programmer outputs.

3.2.8. Vibration isolation and temperature control

The magnetoelastic ribbon was very sensitive to temperature changes and
vibrations. To minimize this, the Helmholtz coils and the ribbon were placed on a
vibration isolation table (model TMC Micro-g) that was 3.5x6 feet. The table was
constructed from nonmagnetic stainless steel to prevent any interference with the
magnetic field produced by the Helmholtz coils. In addition, the table was tuned to
isolate low frequency vibrations ranging from 3 - 21 Hertz. Active vibration control
was avoided for fear of small control perturbations affecting the experiment. The

table was placed snugly inside a temperature controlled box. In order to minimize
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distortion due to magnetic fields, no metal was used in the construction. The box had
the dimensions of 4x7x6.5 feet (W x L x H). One inch thick Styrofoam was used to
insulate all six sides of the box and the box was constructed using only wood and
glue. To control the temperature inside the box, air was pumped at arate of 53 cubic
feet per minute through a temperature control unit (Omega CN9000A) then through 4
big heating resistors before passing back into the box. Since this unit could only add
heat to the box, it alone could not maintain the temperature.

The entire setup, except the computer and temperature control unit, was
placed inside a self-contained air conditioned room. The temperature of the room
was set at 70° F and the temperature of the box at 87°F. Thus, the low temperature of
the room brought the temperature inside the box down and the temperature control
unit added heat to counterbalance the room effect. The temperature inside the box
was maintained to within £0.5° F. In addition, a sealed Plexiglas rectangular cover
was placed over the ribbon and fiber optic holder inside the Helmholtz coils. The

temperature at the ribbon fluctuated to within +0.1° F.

3.3. Data Analysis
3.3.1. Acquired Data
A wide variety of data sets were acquired from this system. This was
primarily because before analysis was begun, there was little knowledge of the
parameter settings to use in order to observe a particular dynamics. This was also
done to gain familiarity with the experimenta system and to gain an appreciation for

the subtleties of temperature, vibration and humidity dependence in the system. Thus
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numerous bifurcation plots of the data, for ranges of applied dc and ac currents were
collected. Figure 50 depicts a typical bifurcation diagram of this system. It is from
this bifurcation plot that suitable parameters were chosen for a 100,000 point strobed
data set to analyse. The applied dc current was set to 2212.454212 mV, with the ac
current set at 3200mV, 0.95 Hz. The first fifty data points (transient stage) were
ignored and the total data acquisition time lasted approximately 29 hours and 15
minutes. All of the following analysisis performed on this 100,000 point data set.

A delay coordinate embedding plot of the data set is depicted in Figure 51. A
one dimensional wrapped string-like structure (similar to the Henon map) is evident.
However, the folding may be an artifact of nonstationarity in the data. That is,
parameter drift during the course of data acquisition may cause the data values to shift

dlightly.
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Figure 50. A bifurcation plot of strobed data from the magnetoelastic ribbon experiment. Data
was taken with applied DC voltage ranging from 1800 to 3680 mV in intervals of 20 mV.
Transients were ignored and the next 100 data points were acquired at each interval The ac
current was set at 3200mV, 0.95 Hz.
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Figure51. Timeonereturn map of the magnetoelastic ribbon data.

3.3.2. Nonstationarity

A window of length 8192 was applied to the time series From this it was
possible to compare how the windowed mean and the windowed standard deviation
varied as functions of time. As can be seen from Figure 52, the mean value
undergoes a fluctuating trend that does not appear to be random. This fluctuation is
quite small in relation to the full extent of the data, 3.2Volts. There are severa
possible causes of the nonstationarity. First, the system may be in a long term
transient stage. However, if this were so, then one would expect the mean value and
the standard deviation to be converging to constant values. To a small degree, thisis
evident in Figure 53, which plots the standard deviation of these windows. However,

the convergence is not sufficient to warrant remova of a portion of the data in order
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to analyze a stationary system. Thus we conclude that long term dynamics are evident
in the data.
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Figure 52. Nonstationarity of the mean in magnetoelastic ribbon data. Overlapping windows of
length 8192 were applied to the data and the mean of each window is plotted.

Ideally, a much longer data set should be acquired so that the long term
dynamics can be properly taken into account. But a longer data set would also
introduce drift due to temperature changes, so this was not considered. Because the
variation in the window mean (at most 22mV, or 0.6% of the range of the data) and
the variation in the window standard deviation (at most 35mV or 3.0% the standard
deviation of the entire data set) are relatively small, and because these appear to be

part of the dynamics of the system, as opposed to part of a drift in the parameters, it
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was assumed that nonlinear analysis was till possible. However, this nonstationarity
does imply that one should be circumspect concerning the exact values of the

quantitative results obtained on this data.
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Figure 53. Nonstationarity of the standard deviation in magnetoelastic ribbon data. Overlapping
windows of length 8192 wer e applied to the data and the standard deviation of each window was
plotted.

3.3.3. Fractal dimension

Fractal dimension was estimated using both the Grassberger-Proccacia
algorithm to approximate the correlation dimension and the method of finding
generalized entropies method described in Chapter 4. The correlation dimension is

determined where a plateau is found in the slope of a plot of 1og(C(¢)) versus log(é),
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where C(¢) is the correlation function and € is a distance (normalized to one for the
maximal distance between two pointsin the data). This plot is depicted in Figure 54.
Clearly, estimation of the dlope is difficult because the slope is nonconstant,
regardless of the embedding dimension chosen. Thisis in part because 100,000 data
points is not sufficient to get a reasonable estimate of dimensionality for an
embedding dimension of 4 or 5, and also because nonstationarity may appear as a
fractal structure. For small box size &, the distribution appears to be discrete points,
and the correlation dimension estimate thus approaches zero. But a relatively small
box size is necessary to identify the fine scale structure that may exist.
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Figure 54. Correlation dimension from the magnetoelastic ribbon data. The correlation
dimension is estimated from the slope of log(C(€)) vs. log(€). This function was estimated for the
data embedded in 2, 3, 4, and 5 dimensions.
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Thus we can not trust estimates of the slope for log(€)<-8, since this slope is
due to the finite number of data points. Luckily the slopes do assume a relatively
constant value for —4<log(e)<-7. Estimates of the dlope in this region are
approximately 1.055, 1.129, 1.310 and 1.351 for embedding dimensions of 2, 3, 4 and
5, respectively. This agrees with the visual inspection that suggests the structure is
similar to the Henon map (correlation dimension 1.2). One implication of this low
fractal dimension is that an embedding dimension of three (>2[1.351) should be
sufficient to capture the dynamics of the system. Therefore, further analysis is

performed using a three dimensional embedding.
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Figure 55. Plot of - H (&) vsIn(g) for the magnetoelastic ribbon data embedded in 3 dimensions.

These correspond to generalized dimensions of 1.33, 1.40, 1.24 and 1.16 for the zeroth, firdt,
second and third order fractal dimensions, respectively.

Figure 55 depicts the first four generalized dimensions of the data. Displayed

are estimates of the first four generalized entropies for varying box size with an
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embedding dimension of 3. With the exception of the box counting dimension D(0),

which is difficult to estimate, the results indicated that, for p>q, D(p)<D(q). This

agrees with theoretical arguments. In addition, for athree dimensional embedding, the
correlation dimension estimated using the Grassberger-Proccacia agorithm and
estimated here (D(2)), differ by only 5%. Therefore, we may assume that this is a

fairly reliable estimate.

3.3.4. Lyapunov exponents

The dominant Lyapunov exponent was estimated using the Wolf, et a.,’”
method. This is depicted in Table 6. Increasing the iteration step may sometimes
underestimate the dominant Lyapunov exponent because the distance between points
may approach the size of the attractor, and thus the rate of divergence is constrained
by that size. Also increasing the number of near neighbors used may underestimate
the value because this allows a larger distance between neighbors. For a significantly
chaotic system (A;>>0) this outweighs the accuracy improvement through aligning
the vectors along the direction of the dominant exponent. Furthermore, prior resultsin
estimation of fractal dimension suggested that an embedding dimension of three
should be used. Thus our best estimate of the dominant exponent is given by the bold
faced entry in Table 6, A;=0.898.

The Lyapunov spectrum was then estimated using the Jacobian based method
of Eckmann and Ruelle.” The data was embedded in two dimensions (as opposed to
three), because higher dimensional embeddings force near neighbors to be close in

time due to the finite number of data points. Ten neighbors were used in order to gain
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an accurate fit around each point, although the large number of neighbors and hence
large distances, guarantees some underestimation of all exponents. Finally, an
iteration step of two was used as a compromise between the effects of noise for low
step size and the underestimation of divergence for large step size.

Under these conditions, the Eckmann-Ruelle agorithm provides an estimate
of the Lyapunov spectrum as A;=0.2137 and A,=-0.7223. Because of all the inherent
difficulties with this method, we expect these values to be underestimates and hence
not in complete agreement with the estimate of A; from the Wolf method. However,
they do agree within an order of magnitude, the sum of the exponents is negative and

the Lyapunov dimension may be estimated as D, =1+;0.2137 =1.30, which

-0.7223

agrees with the estimate of the information dimension from Figure 55, D, =1.40.

Thus we have a rough confirmation of the Kaplan-Yorke conjecture and further

validation of the numerical anaysis.
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Embedding | Number of near | Iteration A

dimension | neighbors used step
2 10 1 1.55398
2 20 1 1.344258
2 10 2 1.239887
2 20 2 1.098532
3 10 1 0.898159
3 20 1 0.827021
3 10 2 0.820322
3 20 2 0.763024
4 10 1 0.680146
4 20 1 0.664335
4 10 2 0.673306
4 20 2 0.650527

Table 6. Estimates of the largest Lyapunov exponent using the divergence based Wolf method.
The bold faced row indicates the best estimate given knowledge of the correct embedding
dimension and knowledge of the imperfections of thisalgorithm.

4. The Electric Step Motor

4.1. Overview
The electric step motor is atype of motor that provides incremental motion, or
steps, in response to pulses of current that aternately change the polarity of the stator
poles. The main advantage of an electric step motor is its open-loop operation. That is
the position control can be achieved without shaft position feedback. The shaft can be
stopped in any position with a high degree of accuracy, thus producing incremental
displacements. It is used in numerous applications such as printers, hard disks, toys

and robots.
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b)1a=0,1g=1, Q) lg=Inlg=1s

Figure 56 Principle of the step motor

As depicted in Figure 56, the stator has windings, 1 and 3 in series fed by the

voltage U, and 2 and 4 in series fed by the voltage U, . |, is the current in the

a

windings 1 and 3 and |, is the current in the windings 2 and 4. The rotor has

permanent magnets. Torque is developed by the tendency of the rotor and stator
magnetic fields to pull into alignment according to the sequential feeding of the
phases. If phase a (windings 1-3) isfed, stator induction is horizontal and the rotor is
also horizontal (Figure 56, part @). If phase B (windings 2-4) is fed, stator induction is
vertical and the rotor turns one step (Figure 56, part b). If the two phases are fed
simultaneousdly, induction produced by the stator has an intermediate position, the
rotor turns a half step. Phases are switched alternately. Lets consider the following

cycle:

1(1,=Inl,==In),2(l,=In,1,=1In),

a =

3(l,==In,1,=In),4(l, ==In,1,=~In)
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The rotor has four stable positions during the switch cycle, which are -174,
14, 3174, and 5174. Thisis the supply mode that is most frequently used and is called
mode 2.

The torque has two origins. First, teeth on the stator and on the rotor create a
variable resistance. Second, the magnetization of the rotor creates an interaction
between the rotor magnets and the stator currents. According to the physica
phenomenon responsible for the torque, motors can be classified as variable
reluctance motors, permanent magnet motors, or hybrid motors. Variable resistance
motors have teeth on the stator and on the rotor, but no permanent magnet on the
rotor. In this case, the torque is due to the variable resistance. Permanent magnet

motors have rotors radially magnetized as described in Figure 56.

Figure57. Motor with Z, = 10[3]

The motor that we consider is a commercial motor, the Crouzet 82940 002. It

belongs to the third type of stepper motor, the hybrid motors. The hybrid motors are
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the most common type. The stator has salient poles, with two phases. The rotor
includes a cylindrical axial permanent magnet, mounted on the shaft and placed
between two iron disks with teeth (Figure 57). Due to the axial magnet, Z, teeth of the
same disk have identical polarity, that is, one disk bears Z, south poles and the other
bears Z, north poles. Teeth of the disks are shifted an electric angle 11, so a stator tooth
faces alternately north and south poles.

The studied motor has Z,=12 teeth on each rotor disk, so the rotor has

2%12=24 poles. It is fed in mode 2. That is, U,and U, are square voltages with a

phase shift of /2. Hence the motor has 48 stable positions. It is a 48 steps per tour
motor. With a stepping angle of 360/48=7.5".

The motor is supposed to operate at synchronous speed. The rotation speed is
usually proportiona to the supply frequency. But when the frequency increases,
erratic behavior occurs, leading to a loss of synchronism. Usual studies tend toward
elaborate motor control that avoids this problem. It is hoped that a nonlinear
dynamics approach will yield a better understanding and better controls.

We study a hybrid step motor, two-phased, 48 steps/tr. The motor is unloaded.

The two phases, respectively noted a and 3, are supplied by U and Ug in mode 2, i.e.

two sguare voltages shifted of g . The motor is modeled as follows

LI, =U,(t)-RI, +K.Q,sin(Z8,) 7)
LI, =U,(t)-Ri,-K.Q, cos(Z.6,) )
O, =Q,, 9)
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JQ, =Kl ,c08(Z,6,)-K,l,sin(Z.8,)-K,sin(42,8,)-FQ,-T, (10)

lo and 15: currents in phases a and B, @, : angular position, Q, : rotation
speed, R=45Q (phase resistance), L =275mH (phase inductance), Z =12 (teeth
number), J= 18.10° kgm? (inertia), Kyn=K=0,463 Nm/A (emf constant and torque
constant), Kq=16 mNm (detent torque), F=10* Nms/rd (friction coefficient), /=0
(load torque).

In previous work it has been shown that this motor might exhibit chaotic
behavior.” ™ In this section we will analyze time series from both the model and the
experiment. We will use a variety of techniques from chaotic time series anaysis to
show that the system is indeed chaotic and that there is considerable agreement
between the model and the experiment.

The analysis that follows concentrates on the simulation and four
experimental data sets- two Poincare sections and two flow data sets. The section data
sets both consist of 5,000 points of two dimensional data, and the flow data sets both
consist of 1,000,000 points of 2-dimensional data. Each data set is labelled by the
drive frequency times the number of steps per tour, 4, divided by the number of stable
positions, 12. Hence the flow data set, Crouz203, corresponds to a drive frequency of
50.75Hz. A typical time series from the flow data is shown in Figure 58. Results from
al the data sets will be analyzed and compared to show the dynamics of the

experiment and how these differ from the dynamics of the model.
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Figure58. A plot of 10,000 points from the data set, Crouz203 (points 10000 to 10999). This
portion istypical of the data.

4.2. Nonstationarity

A few simple tests were performed that would identify strong drifts in the
data. A diding window of length 20,000 points was applied to the two flow data sets.
Results of the drift in the mean are depicted in Figure 59. In both data sets, it is
clearly demonstrated that there was an abrupt change in the dynamics at the midpoint
of each data set. The cause of this change is unknown, but it is almost certainly an
artifact of the data acquisition system. However, this is not definitive. A nonlinear
system could undergo a change in the dynamics that does not show up on any of these

measurements. However, as can be seen from Figure 59, the mean value undergoes a
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fluctuating trend that does not appear to be random. This fluctuation is quite small in
relation to the full extent of the data. The system may be in a long-term transient
stage. The fluctuation in the mean is small (~1%) but it may affect the results of
chaotic time series analysis methods. Due to the abrupt change in the dynamics at the
midpoint of both data sets, it was decided that the analysis should be performed on

each half of each data set separately.
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Figure 59. Nonstationary behavior of the data mean. On the left are estimates of the mean for
windows of length 20000 from the data set Crouz203, on the right are estimates of the mean for
windows of length 20000 from the data set Crouz239.

4.3. Delay coordinate embedding
A reasonable value for the delay may be suggested either by the first zero
crossing of the autocorrelation function or by the first minimum of the mutual
information function, as either value is plotted as a function of delay. The mutua
information often gives a better value because it takes nonlinear correlations into
account. However, for the step motor data, the mutual information function and the

autocorrelation function were in perfect agreement. As shown in Figure 60 both
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values suggested a delay of approximately 13. Other estimates of the appropriate
delay from any of the flow data sets gave values between the range of 9 to 16. This
was in agreement with visual inspection since 2 and 3 dimensional plots revealed the
most structure near thisvalue of delay (see Figure 61). Structureis clearly evident in
these plots. Unfortunately, they also reveal a complexity or noise dependence that

makes the fine scale structure very difficult to detect.
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The second, less sophisticated method usesthe first zero crossing of the autocor relation function.
Both methods suggest a delay of approximately 13. Both plotsusethefirst half of the data set
Crouz203.
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Figure 61. A two dimensional plot of thefirst 50,000 points from Crouz203, with a delay of 11.

The method of false nearest neighbors was chosen as the primary technigue
for determining the embedding dimension. The results agreed with what was
suggested for application with real world data. As shown in Figure 7, the percentage
of false neighbors dropped dramatically as the embedding dimension increases from 5
to 6. Aswill be shown later, thisisin at least rough agreement with what was found
to be a suitable embedding dimension for determination of Lyapunov exponents or

fractal dimensions.
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Figure 62. A plot of theresults of the false nearest neighborsroutine as applied to thefirst half of
Crouz203. An appropriate embedding dimension is found when the percentage of false near
neighborsdropsto avalue near zero. This plot indicatesthat the embedding dimension should be
at least 4.

4.4. Fractal dimension
Analysis was attempted on data sets of varying size and varying embedding
dimension. Results of estimations of the correlation dimension for the second half of
Crouz239 are depicted in Figure 63. A plateau is evident for log(€) in the range —1.7
to —3.0. Here, the correlation dimension can be estimated to be between 1.1 and 1.5.
This is a fairly low dimensiona system and thus it should be relatively easy to
manipulate. Although this value agrees roughly with the choice of embedding

dimension, more analysis was necessary to confirm the results.
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Figure 63. Thismeasuresthe correlation dimension estimated from the second half of data set
Crouz239. The correlation dimension is estimated from the slope of log(C(g))vs. log(g). It can be
estimated from the plateau region of the plot, whereit is between 1.1 and 1.5.

Figure 64 presents the results of our calculations performed on step motor
data. Displayed are estimates of the first four generalized entropies for varying box
size with an embedding dimension of 4. Additional tests were also performed for the
embedding dimensions 3-6, and for the next four generalized entropies. The results
indicated that, for p>q, D(p) < D(q), which agrees with theory. For large box size,
the box counting dimension varies widely from the others, since the box counting
dimension D(0) is more susceptible to errors. Itisaso a poor quantity to use since it
says nothing about the density of the attractor, only about its shape. However, the

box counting dimension and all the others converge in the mid-region, before
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diverging slightly and then dropping to zero (due to data set size). It is this mid

region that parallels the plateau region of the Grassberger-Proccacia algorithm.
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Figure 64. Thefirst four generalized entropies. The values may be estimated as D(0) =2.08+0.1,

D(1) =2.09+0.1, D(2) =2.05+0.2 and D(0) =2.02+0.2. Each of these was calculated using the
second half of Crouz203 embedded in 4 dimensions.

The estimates for fractal dimension ranged from 1.8 to 2.2, for al fracta
dimensions calculated when embedding dimension was greater than or equal to 4.
With the exception of the box counting dimension, this was true for al of the first

four generalized dimensions. The correlation dimension, for instance, was estimated
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a D(2)=2.05%0.2, where the error was estimated based on the fluctuation of the

slope of the entropy in the mid region. This agrees with our choice of 4 for the
embedding dimension, and is in rough agreement with the result from the
Grassberger-Proccacia algorithm. A fractal dimension of up to 2.5 indicates that an
embedding dimension as high as 5 may be necessary, but as is often the case, alower

embedding dimension may be used.
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Figure 65. Thismeasuresthe correlation dimension estimated from thefirst half of data set
Crouz203. The correlation dimension is estimated from the slope of 1og(C(é€) vs. log(é). It can be
estimated from the plateau region of the plot, whereit isapproximately 2.2

4.5. Lyapunov exponents
Before determination of Lyapunov exponents was attempted, the data was

embedded with a delay of 13, as suggested by the false nearest neighbors routine, the
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autocorrelation function and the mutual information function. Fractal dimension was
estimated as between 2 and 4, so a local embedding dimension of 4,5 or 6 was
chosen, yielding 3, 4, or 5 exponents in the calculation of the full spectra. As shall be
seen, thisis in agreement with the observation that the sum of the exponents must be
negative.

The Eckmann-Ruelle® method was used to determine Lyapunov spectra. The
folding of the attractor brings diverging orbits back together. So any effects of
nonlinearities will most likely serve to move all exponents closer to zero. Hence a

dlight underestimate of the positive exponents was expected.

exponents | embedding | points | iteration | A, A2 Az Ay
dimension | infit | size

3 3 9 1 0.381672 | 0.045924 -0.307301

3 3 9 2 0.354878 | 0.064599 -0.189015

3 3 9 3 0.310627 | 0.068485 -0.141331

3 4 16 1 0.046712 | -0.032937 -0.217158

3 4 16 2 0.095562 | -0.027207 -0.205269

3 4 16 3 0.098218 | -0.02492 -0.174718

3 5 25 1 -0.007088 | -0.04303 -0.183316

3 5 25 2 0.048134 | -0.036329 -0.202159

3 5 25 3 0.056969 | -0.037843 -0.177225

4 4 16 1 0.099903 | 0.012053 -0.04605 -0.310671
4 4 16 2 0.153753 | 0.018143 -0.057847 | -0.252268
4 4 16 3 0.14469 0.018831 -0.057908 | -0.211251
4 5 25 1 0.01649 -0.010436 -0.050132 | -0.28072
4 5 25 2 0.086138 | -0.00244 -0.063969 | -0.259551
4 5 25 3 0.084314 | -0.002873 -0.066443 | -0.21669

Table 7. Estimation of Lyapunov exponentsfor thefirst half of the flow data set, Crouz239. The
bold faced selection represent the best estimates of the exponents, since it has an exponent closest
to zero and the sum of the exponentsis negative.

In Table 7 and Table 8 results of exponent calculations are provided. The
exponents are given in units of 1/time, where the time scale is defined so that the time

between samplesis 1. Many more calculations were performed until a reasonable and

186



stable parameter regime was found for both methods. Note that the zero exponent

snaps into place for appropriate parameter settings.

exponents | embedding | points | iteratio | A; Ao A3 Ay
dimension | infit | nsize

3 3 9 1 0.404882 | 0.04426 -0.32303

3 3 9 2 0.37753 0.068513 -0.192187

3 3 9 3 0.329768 | 0.072848 -0.137364

3 4 16 1 0.051662 | -0.033821 -0.228997

3 4 16 2 0.106886 | -0.02685 -0.208742

3 4 16 3 0.112637 | -0.024475 -0.172856

3 5 25 1 -0.00583 | -0.044957 -0.187635

3 5 25 2 0.059612 | -0.037073 -0.210866

3 5 25 3 0.068587 | -0.036298 -0.183896

4 4 16 1 0.111423 | 0.014208 -0.04756 -0.306655
4 4 16 2 0.162717 | 0.019409 -0.057432 | -0.247336
4 4 16 3 0.155307 | 0.020102 -0.056715 | -0.21321
4 5 25 1 0.021594 | -0.009072 -0.045046 | -0.266796
4 5 25 2 0.088914 | -0.004143 -0.063278 | -0.251144
4 5 25 3 0.089064 | -0.00702 -0.066332 | -0.221641

Table 8. Estimation of Lyapunov exponentsfor the second half of the flow data set, Crouz239.
Thebold faced selection represent the best estimates of the exponents, sinceit has an exponent

closest to zero and the sum of the exponentsis negative.

Several of our criteria are determined immediately upon inspection. The zero
exponent was identified with a high degree of accuracy. The sum of the exponentsis
negative, while the sum of the first two is positive. This indicates that a fracta

dimension between 2 and 3 was a reasonabl e estimate.
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exponents | embedding | points | iteration | A, A> A3 A4
dimension | infit | size

2 2 5 1 2453502 | -0.172849

2 2 5 2 1.624457 | 0.83530

2 2 5 3 1.149623 | 0.673577

2 3 9 1 -0.467303 | -0.915287

2 3 9 2 0.601609 | -0.486722

2 3 9 3 0.671703 | 0.206204

3 3 9 1 1.440059 | 0.210937 -0.593496

3 3 9 2 1.084312 | 0.539116 -0.225776

3 3 9 3 0.850945 | 0.576722 0.149585

3 4 16 1 -0.258083 | -0.46754 -0.890886

3 4 16 2 0.466546 | -0.056553 -0.692082

3 4 16 3 0.456796 | 0.142458 -0.354413

4 4 16 1 0.953211 | 0.240227 -0.132071 | -0.671263

4 4 16 2 0.7604 0.425944 0.043779 -0.498245

4 4 16 3 0.616248 | 0.408489 0.155694 -0.240587

Table 9. Estimation of Lyapunov exponentsfor the sectioned data set, Crouz203section. The bold
faced selection represent the best estimates of the exponents, since the sum of the exponents is
negative and it isproportionally similar to theresults of Table 7 and Table 8.

Sectioning the data introduced additional noise and measurement of exponents
from the section was even more uncertain. Thus it was not possible to get agreement
between exponent estimates from the section and from the flow, nor was it expected.
However, Lyapunov spectrum estimates from the Poincare section datais provided in
Table 9. We note that the estimates here are scaled from the estimates provided in
Table 7 and Table 8, because the sampling rate is different. Although the sample rate
for the sectioned data, Crouz203section is known to be 50.75 Hz, the sampling rate of
the flow data sets is unknown.

4.6. Conclusion

The data from the step motor appears to represent a four dimensional system

with one positive Lyapunov exponents. This system may therefore be considered low

dimensional and chaotic. As such, computation of fractal dimension and of
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Lyapunov exponents is possible and accurate.  Although the data appeared
nonstationary, it is still an excellent system for analysis. This is because the system is
less dependent on temperature and other external factors than the magnetoelastic
ribbon, and less noisy than the combustion engine.

One hindrance in the analysis was a lack of communication between the
experimentalists and the author. Because of this, many issues such as the cause of the
huge jump in Figure 59, and the unknown sampling rate of the flow data sets remain
unresolved. However, the collaboration continues and it is expected that better data

will be available for future analysis.

5. Multibit chaotic sigma delta modul ation

5.1. Introduction

Conventional analog to digital and digital to analog converters are based on
the linear, multibit Pulse Code Modulation (PCM) format. They require high-
precision analog circuits and they are vulnerable to noise and interference. In recent
years, the consumer audio industry has moved towards oversampled nonlinear
converters for many applications. An important oversampling A-D or D-A
conversion strategy now employed is the sigma delta modulator. In sigma delta
converters the signal is sampled at a high sampling frequency and converted to alow
bit binary output. They are cheaper to manufacture than PCM converters, consume
less power, and operate well at the voltage range used in battery-powered audio

equipment. Thus sigma delta modulators are used in the digital to analog converters
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of many compact disc players and in the audio processing of many wireless
communications systems, such as cellular phone technology. In addition, the Sigma-
Delta bitstream format is under consideration for the mastering and archiving of audio
recordings.

Unfortunately, sigma delta modulators are susceptible to limit cycle
oscillations that are not present in the input signal. These idle tones may be audible to
the listener when sigma-delta modulation is used for audio signal processing. One
method of eliminating idle tones is the operation of a sigma delta modulator in the
chaotic regime. But chaotic modulation of a first order sigma delta modulator, as
previously proposed, is a poor system for signa processing. The modulator may
become unstable (input to the quantizer becomes unbounded) and can result in
inaccurate output.

In this section, we investigate chaotic phenomena in single bit and multibit
first order sigma-delta modulators. We look at avariety of different ways to operate a
sigma delta modulator chaotically. Particular attention is placed on the occurrence of
periodic orbits or limit cycles. By investigating the nonlinear dynamics of these
systems, we are able to show that a new form of chaotic sigma delta modulation may
be used. We show that this variation on a traditional first order sigma-delta
modulator, together with a multibit implementation, may produce an effective, stable
chaotic modulator that accurately encodes the input and also helps prevent the

occurrence of idle tones.
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5.2. Background
Sigma-delta modulators operate using a tradeoff between oversampling and
low resolution quantization. That is, a signa is sampled at much higher than the
Nyquist frequency, typically with one bit quantization, so that the signal may be
effectively quantized with a resolution on the order of 14-20 bits.” Recent work has

concentrated on tone suppression’ , multibit modulation’® and chaotic

109, 113-115

modul ation.
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Figure 66. Block diagramsfor thetwo systems. In (a), gain isapplied just to theintegrator
output. In figure (b), gain isapplied to the quantizer error, that is, the difference between the
integrator output and the quantizer output.
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The simplest, first order sigma-delta modulator consists of a 1-bit quantizer
embedded in a negative feedback loop which also contains a discrete-time integrator,
as depicted in Figure 66(a). The input to the modulator is sampled at a frequency
higher than the Nyquist frequency and is converted into a binary output. The system
may be represented by the map ™

U,=au,,+X,,-QU,,) (11)
where X represents the input signal, bounded by —1 and +1, and Q is the quantizer

ifu=0

12
if u<o0 (12)

1
u) =
Q) {_1
In this representation, the output Q(U,,) represents the quantization of input

Xn1. The initial conditions, X, and Uy, are typically set to 0. On average, the
quantized output will be approximately equal to the input. If a=1, then this system
works by quantizing the difference between the input and the accumulated error.
When the error grows sufficiently large, the quantizer will flip in order to reduce the
error. The operation of such afirst order sigma delta modulator is depicted in Figure
67. The input is a 1.5kHz sine wave with amplitude 0.8 sampled at a frequency of
256kHz (these parameters were chosen to accentuate the behavior of the modulator).
Typically, the integrator leaks due to finite operational amplifier gain, which is
represented by a<1. If a>1, then the modulator may behave chaotically for constant
input. This chaotic system has been studied extensively in 115 and 117 and the

references therein.
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If a gain is added to the quantization error (difference between integrator
output and quantized output), as opposed to the integrator output, then the difference
equation describing this modified sigma delta modulator takes the form
U, =X talU,,-QU,.,)) (13)
This system is depicted in Figure 66(b). It is relatively ssmple to implement in a
circuit, and still accomplishes the goals of sigma delta modulation.

An aternative representation of (13) is found by defining V, =U /a and
Y, = X, /a . Hence

V,=aV,_,+Y,,-Q(aV,.,) (19)

This allows the gain to be applied only to the integrator output and to the input

signal. Thus no gain needs to be applied directly to the quantization. In the case of a

single-bit quantizer, (14) hasthe same functional form as (11).
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Figure67. A 1.5kHz sinewave with an amplitude of 0.8 issampled at a frequency of 256kHz.
Theinput sinewave and the quantized output of the sigma delta modulator are depicted.

In this work, we consider chaotic modulators where a gain term multiplies
either the integrator output (11) or the error term (13). In particular, we consider
whether either form of chaotic modulation is an effective means of idle tone
prevention. We demonstrate that for the case of gain applied to integrator output,
although an implementation of a chaotic multibit modulator may lead to idle tone
suppression, it may not be practical. This is because in many cases, the output of a

chaotic modulator does not effectively approximate the input.
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A multibit implementation of either (11) or (13) may offer increased
resolution in the quantization. Rather than quantizing the output into —1 and 1, the
output can instead assume a range of discrete values. For an n bit first order sigma
delta modulator, the quantized output can assume one of m=2" states. The quantizer

would take the form

2(m=-1)/m if u=22(m-2)/m

2(m-3)/m if 2(m-2)/m>u=2(m-4)/m
Q(u) =42(m-5)/m if 2(m-4)/m>u=2(m-6)/m (15)

-2(m-1)/m if —-2(m-2)/m>u

Here, for reasons explained in the section on bifurcations, we assume that quantizer

input isin the range —2 to 2. Thus, the systems that will be studied are

1. The 1% order, single bit sigma delta modulator with gain applied to the integrator:

equations (11) and (12).

2. The 1% order, single bit sigma delta modulator with gain applied to the error:

equations (13) and (12).

3. The 1% order, multi bit sigma delta modulator with gain applied to the integrator:

equations (11) and (15).

4. The 1% order, multi bit sigma delta modulator with gain applied to the error:

equations (13) and (15).
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5.3. Analysis

5.3.1. Bifurcations

System 1 (Equations (11) and (12)), a first order, single bit sigma delta
modulator, is perhaps the most well known and simplest form of sigma delta
modulation. It exhibits chaos if the gain is in the range 1<a <2. The bifurcation

diagram of this system is depicted in Figure 68.
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Figure 68. Bifurcation diagram of a first order, one bit sigma delta modulator with 0 input and
gain applied totheintegrator output (System 1).
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Figure 69. Bifurcation diagram of afirst order, one bit sigma delta modulator with 0 input and
gain applied totheerror (System 2).

System 2 (Equations (13) and (12)), has a dlightly different bifurcation
diagram. It aso exhibits chaos if the gain isin the range 1<a < 2. The bifurcation
diagram of this system is depicted in Figure 69. Notably, the dynamics here are
somewhat different. For instance, the integrator output does not immediately reach
the extremes as a isincreased past 1. The full range of integrator output is between —
2 and 2, and for a =1, the range of output extends from -a to a . Thisis a direct
consequence of the fact that the bifurcation diagram measures possible values of

U, =aV, from Equation (13). It may seem problematic at first, since the expected

input, X, is between —1 and 1. However, as shall be seen later, as long as the average

integrator output sufficiently approximates the input, then thisis not a difficulty. We
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simply require that the input signal be bounded by +1, even though the quantizer can

accept input bounded by 2.

Gain
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Figure 70. The stability regime of a sigma delta modulator for various values of gain and
constant input in therange Oto 1. The solid line and below representsthe bounded stable regime
for a 1 bit modulator with gain applied to the integrator output (System 1). The dashed line
representsthe bounded stableregimefor a 2 bit modulator and the dot-dot-dashed linefor a 3
bit modulator (System 3). For a modulator with gain applied to the error, the dotted line and
below representsthe stableregime for the 1 bit case (System 2), and the dot-dashed line and
below representsthe stableregime for the 2 bit case (System 4).

5.3.2. Stability
One difficulty with operating a sigma delta modulator with greater than unity
gan is that, for nonzero input, the modulator may become unstable. That is,

U, - toasn - oo, This is illustrated in Figure 70, which depicts the size of the

n
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stable regime for input 0< X <1 (the plot is symmetric for —-1< X <0) and gain
O<a < 2. Operating a one bit sigma delta modulator, Equation (12), in the chaotic
regime becomes unworkable for any large input, since the integrator output diverges.
For this and other reasons (notably poor SNR ratio), System 1 is considered a poor
means of tone suppression,118 119, Although this can be improved through the use of

amultibit quantizer, it is still problematic.
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Figure 71. Clockwise from top-left. The average quantized output as a function of the input for a
1 bit, 2 bit, 3 bit, and 4 bit sigma delta modulator with gain applied to integrator output. The
gainisset to 1.1. The 45 degreelinerepresentstheideal average quantization.
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The stable regime is significantly increased if the gain is applied to the
difference between the quantizer output and the integrator output (Equation (13)). For
a 1 bit quantizer, the stable regime is greater than a 2 bit traditional sigma delta
modulator. If we move to a 2 bit quantizer implementation of Equation (13), then the
entirety of the domain has bounded integrator output.

5.3.3. Quantization error

A minimum necessary requirement for sigma delta modulation is that the

quantizer output approximate the input signal. That is,
1 N
lim=>"QU,) = X (16)
Noow N =

for constant input X. This must hold for any allowable input. All the modulators
considered have input in the range —1< X <1. With unity gain (a =1), Equation (16)
holds for the single and multibit, first order sigma delta modulators. However, thisis
typically not true for a #1. Feely and Chua™ showed that integrator leak, a <1, may
cause the average output of the sigma delta modulator to assume discrete values that
misrepresent the input. The resulting structure of average quantized output as a
function of the input is known as a devil’s staircase. As shown in Figure 71, thisis
also the case for a traditional sigma delta modulator witha >1 (Equation (11)). In
fact, for nonunity gain, the average output is approximately a X . Using a multibit

modulator is not sufficient to alleviate this problem. Although it increases the

bounded region of the modulator, and minimizes the discrete steps, it does not
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succeed in making the output more effectively track the input This is a fundamental

problem that is often overlooked in the literature.”
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Figure 72. Clockwise from top-left. The aver age quantized output as a function of the input for a
1 bit, 2 bit, 3 bit, and 4 bit sigma delta modulator with gain applied to quantization error. The
gainisset to 1.1. The 45 degreelinerepresentstheideal average quantization.

However, the modified modulator of (13) behaves quite differently. Figure 72

shows that this modulator, although assuming discrete values, still approximates the

input. That is, the average output as a function of input has aslope of 1. In addition, a

multibit implementation helps to minimize the length of the stairs in the devil’s

staircase structure. In other words, for a modulator operating in the chaotic region, as
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the number of bits used by the quantizer is increased, the average quantized output

approaches the average quantized output of an ideal sigma delta modulator.
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Figure 73. A three-dimensional plot of average output error vs number of bitsvsgain. Input is
varied over therange—1to 1. For each input number of bits, and gain, the absolute value of the
input minusthe average quantized output isfound. Thisisthen averaged over the entireinput
range, to give an average error dependent on the number of bitsin the quantizer and thegain in
the modulator (Equation (13)). 1to 5 bit modulators having gain ranging from 0.8to 1.4 are
compared.
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To further demonstrate this, a 3 dimensional plot of average output error vs
number of bitsvs gain is depicted in Figure 73. Notice that quantizer error is greatly
reduced as the number of bits in the quantizer isincreased. Thus the loss in accuracy
as the gain is increased (and chaos is introduced) may be compensated for by adding
bits to the quantizer.

5.3.4. Symbol sequences

On apractical level the output prior to quantization is not of primary concern.
More importantly, the quantized output must accurately encode the input signa
without producing idle tones. That is, tones which are not present in the input signal
may appear in the quantized output. For instance, a constant input of 0 with a=1 and
initial condition Uy=0 will produce an output sequence of 1,-1,1,-1,1,-1... This gives
the false impression of an oscillating input. Longer period cycles will produce tones
at lower frequencies which may appear audible to the listener.

One proposed method of eliminating these tones is to operate the sigma delta
modulator in the chaotic regime. Although the output will still approximate the input,
limit cycles might be eliminated. As an example, a constant input of 0 with a=1.5
will produce an output 1,-1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1... This is an endless pattern

that never settlesinto alimit cycle.
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Gain

Figure 74. The permissible 7 bit sequencesthat can be generated using afirst order, single bit
sigma delta modulator.

Thus the bifurcation diagrams that were produced earlier are not illuminating
because they say nothing about the range of quantized dynamics. For these reasons it
is important to investigate the symbol sequences that can be generated for various
values of a. Figure 74 depicts the seven bit symbol sequences that can be generated
for a single bit sigma delta modulator with zero input (System 2). Seven bits were
chosen simply for resolution- the qualitative structure of the resultant plot is the same
for various choices of the number of bits. For gain ranging from 0 to 2 in increments
of 0.001, 100,000 successive quantizer outputs were calculated. A sliding window of
seven bits was applied to produce output sequences in the range 0000000 to 1111111
(0 to 127). A cyclic symbol sequence would be counted as multiple sequences, e.g.,

0101010... and 1010101... are counted as separate alowable symbol sequences. This
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figure is exactly the same for both System 1 and System 2. This demonstrates that
limit cycles are more dominant with a0 2since there is a smaller range of allowable
dynamics.

5.3.5. Power Spectra

One of the key reasons to attempt sigma delta modulation in the chaotic
regime is to see if it can effectively eliminate idle tones, while at the same time
preserving the frequencies in the input signal. For this reason, the power spectrum is
an appropriate tool.

In Figure 75, intensity plots are shown that reveal how the power spectrum is
changed for gain from 0 to 2. Figure 75(a) depicts the power spectral intensity over
the full range of gain and frequency for a 2 bit sigma delta modulator (System 4) with
zero input. For a <1, an idle tone exists with a frequency of 0.5. This is due to the
quantizer flipping between %2 and -¥2. This tone is effectively removed in the chaotic
regime. (b), (c) and (d) depict the power spectral intensity at 2x, 4x, and 8x
magnification, respectively. They depict the self-similar, fractal nature of the power

spectrum for a >1. Thisis another indication of chaos in sigma delta modulation.
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Figure75. Intensity plots of power spectraa) is for afirst order sigma delta modulator with
constant zero input and gain ranging from 0 to 2.( b), (c) and (d) are successive magnifications
(2x, 4x, and 8x) that indicate thefractal self-similar nature of the power spectrum.

In Figure 76, power spectra are depicted for an input signal with 32 times

oversampling, X, =0.508$in(277(n/64), applied to (System 4). Figure 76(a) depicts

the power spectrum for the input. As expected, peaks are seen at frequencies of 1/64

and 63/64. However, for a 2 bit sigma delta modulator with unity gain, the output

power spectrum exhibits additional peaks at all multiples of 1/64 (Figure 76(b)). In

Figure 76(c), the modulator is operated at maximum gain (Equation (13)), a =2.

The idle tones are completely removed, and replaced by chaotic fluctuations similar
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to broadband noise. This noise can be filtered, thus leaving only the frequencies that

were apparent in the original signal.
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Figure 76. Power spectrafor theinput signal X, =0.50&8in(2770/64) . (a) isthe power spectrum

for theinput signal, (b) isthe power spectrum for the quantized output signal with gain set to 1,
and (c) isthe power spectrum for the quantized output signal with gain set to 2. The power is
assumed to have a base value of 107 (-140dB).
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5.4. Conclusions

A conventional first order sigma delta modulator, where gain is applied to the
integrator output, does not approximate input for a #1. Thisis true even if multibit
guantizers are used. The errors in quantization due to the Devil’s staircase structure
introduced by chaotic modulation can be compensated for by using a multibit
quantizer. However, this does not correct the fact that the output is offset from the
input for a traditional chaotic sigma delta modulator. If instead the gain is applied to
the error in quantization, then the sigma delta modulator may achieve accurate
guantization over afar greater range of input. If a multibit quantizer is also used, then
the modulator can be made stable over the full range of input. This has the benefit
that idle tones can be removed from the quantization process by operating in the

chaotic regime.
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CHAPTER SIX
CONCLUSION

Almost by definition, chaotic data is difficult to analyze. Its extreme
sensitivity to initial conditions imply difficulty in reproducing data. Only the slightest
changeininitial conditions or the slightest noise may cause the system to enter avery
different trgjectory. The inherent nonlinearities imply that linear analysis techniques
either fail or become meaningless. Also the likelihood of the system exhibiting
broadband power spectra means that most digital signal processing techniques don’t
produce meaningful results.

The techniques that are designed for the analysis of chaotic data also have
inherent difficulties. Reliable fractal dimension estimation requires enormous
amounts of relatively noise-free data. Lyapunov exponent calculations are highly
susceptible to parameter settings of both the algorithm and of the embedding
technique. These routines try to estimate properties that only converge to their actual
valuesin the limit of infinite data sampled with infinite accuracy, something which no
experiment can provide. Estimation of negative exponents becomes extremely
difficult because these quantities give rise to exponentially small effectsin the data.

In the combustion engine, the magnetoelastic ribbon and the electric step
motor, there were additiona difficulties. Primary amongst these was the
nonstationarity. Figure 40, Figure 52, Figure 53, and Figure 59 all demonstrated that

there were long term dynamics affecting these systems which could not be
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sufficiently captured in the data sets provided. These effects came from severa
sources: intrinsic dynamics, errors in the data acquisition system, and fluctuations due
to environmental effects and other factors. This should not be modeled as noise. The
drift had an effect on the dynamics that affected all analysis. Further analyses that
were not presented in this thesis, such as noise reduction, prediction and periodic
orbit identification, were similarly affected.

Yet some results were clear. Each of these systems exhibited complicated
dynamics. They each appeared to have postive Lyapunov exponents, a strong
indicator of chaos. The step motor and the magnetoelastic ribbon also seemed fairly
low dimensional (fractal dimension less than 3), which implied that further analysis
would be possible. The combustion engine was more noisy and the dynamics
appeared complex. Thus the author would recommend a sophisticated approach to
any control or prediction algorithm implemented on this system.

Certain analysis methods appeared quite robust. The mutua information
routine produced reliable results on each system. The false nearest neighbors routine
was also successful, once the criteria had been improved. The author also showed that
Conley Index theory could be applied to experimental systems. This provided a
means of extracting symbolic dynamics and a rigorous verification of chaos in the
magnetoel astic ribbon experiment.

The use of efficient searching and sorting methods allowed the false nearest
neighbors routine and the Lyapunov estimation routines to operate at a resonable

speed. Thus detailed analysis became possible where otherwise time constraints
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would have made it infeasible. Improved searching speed has applications throughout
the field of nonlinear time series analysis. Many prediction, noise reduction,
Lyapunov spectra, dimension estimation, and information theoretic analysis routines
rely on the investigation of near neighbors in a multidimensional space. An optimized
search routine, such as the kd-tree, offers improved efficiency for all of these
methods. In fact, wherever, multidimensional data needs to be searched, the
benchmarking and analysis of the search methods may prove useful. In addition to the
work presented in this thesis, the author has investigated the use of efficient
multidimensional searching routinesin the field of music information retrieval .
Symbolic dynamics also played a strong role in the investigation of multibit
chaotic sigma delta modulation. Figure 74 was the equivalent of a bifurcation
diagram, except that it represented the allowable symbol dynamics in the output of
the modulator as the gain was varied. This provided a clear indication of how to
modify the gain in a chaotic modulator such that idle tones are either removed or drop
below the noise level. Although chaotic sigma delta modulation has been investigated
before, this research into multibit chaotic modulation is new. Previous investigations
concluded that chaotic modulation was impractical because of its instabilities.
However, Figure 70 showed that it was possible to operate a sigma delta modulator in
the chaotic regime such that its output was stable throughout the entire range of
operation. This encouraging result implies that there are potentially huge practical
applications of chaos in the field of D-A and A-D converters. Further discussion of

thiswork will be available in References 107, 123 and 124.
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Continuation of the work on sigma delta modulation is clearly recommended.
But much work should also be done in terms of investigating the dynamics of the
combustion engine and the electric step motor. Both of these systems have practical
uses, and both of them may benefit from a thorough understanding of their chaotic
regimes. Controlled operation in the chaotic regime could yield improved efficiency
in both systems.

The analysis methods also have room for improvement. A measure of
reliability should be available for all dimension and exponent calculations. Although
amethod of determining errors in the false nearest neighbors routine was devised, this
routine could benefit from aless arbitrary method of setting parameters. Furthermore,
the interpretation of the multidimensional mutual information is uncertain. It is clear
that it may be useful in the analysis of chaotic data, but it may also be useful in the
analysis of awide variety of multichannel systems. Its use as a measure of the shared
information in multichannel sound systems has been suggested by the author.™

Finally, we note the benefits of providing all the analysis and visualization
tools in one complete package. The Nonlinear Dynamics Toolbox is now a shareware
software package that is used throughout the nonlinear dynamics community. Its
efficiency and ssimplicity has allowed many researchers to use the techniques of
chaotic time series analysis on their own data. Its continued development is a long

term goal of the author.
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