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(57) Abstract: A computer-implemented method of processing audio data, the method comprising receiving input audio data (x) com-
prising a time-series of amplitude values; transforming the input audio data (x) into an input frequency band decomposition (X1) of
the input audio data (x), transforming the input frequency band decomposition (X1) into a first latent representation (Z); processing
the first latent representation (Z) by a first deep neural network to obtain a second latent representation (Z*, Z1"); transforming the
second latent representation (Z*, Z1") to obtain a discrete approximation (X3”); element-wise multiplying the discrete approximation
(X3") and a residual feature map (R, X5") to obtain a modified feature map, wherein the residual feature map (R, X5") is derived
from the input frequency band decomposition (X1); processing a pre-shaped frequency band decomposition by a waveshaping unit to
obtain a waveshaped frequency band decomposition (X17, X1.2"), wherein the pre-shaped frequency band decomposition is derived
from the input frequency band decomposition (X1), wherein the waveshaping unit comprises a second deep neural network; summing
the waveshaped frequency band decomposition (X1, X1.2*) and a modified frequency band decomposition (X2”, X1.1") to obtain a
summation output (X0"), wherein the modified frequency band decomposition (X2, X1.1%) is derived from the modified feature map;
and transforming the summation output (X0") to obtain target audio data (y").
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TIME-VARYING AND NONLINEAR AUDIO PROCESSING USING DEEP NEURAL NETWORKS

TECHNICAL FIELD

[0001]  The present invention relates to audio processing, in particular audio processing using deep neural networks.

BACKGROUND

[0002] Audio effects are widely used in various media such as music, live performances, television, films or video games. In
the context of music production, audio effects are mainly used for aesthetic reasons and are usually applied to manipulate the
dynamics, spatialisation, timbre or pitch of vocal or instrument recordings. This manipulation is achieved through effect units, or
audio processors, that can be linear or nonlinear, time-invariant or time-varying and with short-term or long- term memory.
[0003] Most of these effects can be implemented directly in the digital domain through the use of digital filters and delay lines.
Nevertheless, modeling specific effect units or analog circuits and their salient perceptual qualities has been heavily researched
and remains an active field. This is because their analog circuitry, often together with mechanical elements, yields a nonlinear
and time-varying system which is difficult to fully emulate digitally.

[0004] Methods for modeling audio effects mainly involve circuit modeling and optimization for specific analog components
such as vacuum-tubes, operational amplifiers or transistors. Such audio processors are not easily modeled, requiring complex,
customized digital signal processing (DSP) algorithms. This often requires models that are too specific for a certain circuit or
making certain assumptions when modeling specific nonlinearities or components. Therefore such models are not easily
transferable to different effects units since expert knowledge of the type of circuit being modeled is always required. Also,
musicians tend to prefer analog counterparts because their digital implementations may lack the broad behavior of the analog
reference devices.

[0005] There is a general need to improve on known techniques for the modeling of audio effects.

SUMMARY

[0006] There is disclosed a computer-implemented method of processing audio data, the method comprising receiving input
audio data (x) comprising a time-series of amplitude values; transforming the input audio data (x) into an input frequency band
decomposition (X1) of the input audio data (x); transforming the input frequency band decomposition (X1) into a first latent
representation (Z); processing the first latent representation (Z) by a first deep neural network to obtain a second latent
representation (Z*, Z1%); transforming the second latent representation (Z*, Z1%) to obtain a discrete approximation (X3%);
element-wise multiplying the discrete approximation (X3*) and a residual feature map (R, X5*) to obtain a modified feature map,
wherein the residual feature map (R, X5%) is derived from the input frequency band decomposition (X1); processing a pre-
shaped frequency band decomposition by a waveshaping unit to obtain a waveshaped frequency band decomposition (X174,
X1.2M), wherein the pre-shaped frequency band decomposition is derived from the input frequency band decomposition (X1),
wherein the waveshaping unit comprises a second deep neural network; summing the waveshaped frequency band
decomposition (X1%, X1.2%) and a modified frequency band decomposition (X2*, X1.1%) to obtain a summation output (X0%),
wherein the modified frequency band decomposition (X2*, X1.1%) is derived from the modified feature map; and transforming the
summation output (X0*) to obtain target audio data (y*).

[0007]  Optionally, transforming the input audio data (x) into the input frequency band decomposition (X1) comprises
convolving the input audio data (x) with kernel matrix (W1).

[0008] Optionally, transforming the summation output (X0*) to obtain the target audio data (y*) comprises convolving the

summation output (X0*) with the transpose of the kernel matrix (W1T).
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[0009] Transforming the input frequency band decomposition (X1) into the first latent representation (Z) optionally comprises
locally-connected convolving the absolute value (|X1]) of the input frequency band decomposition (X1) with a weight matrix (W2)
to obtain a feature map (X2); and optionally max-pooling the feature map (X2) to obtain the first latent representation (Z).

[0010]  Optionally, the waveshaping unit further comprises a locally connected smooth adaptive activation function layer
following the second deep neural network.

[0011]  Optionally, the waveshaping unit further comprises a first squeeze-and-excitation layer following the locally connected
smooth adaptive activation function layer.

[0012]  Atleast one of the waveshaped frequency band decomposition (X1*, X1.2*) and the modified frequency band
decomposition (X2, X1.1%) is optionally scaled by a gain factor (se, se1, se2) before summing to produce the summation output
(X0N).

[0013]  Optionally, each of kernel matrix (W1) and the weight matrix (W2) comprises fewer than 128 filters, optionally fewer
than 32 filters, optionally fewer than 8 filters.

[0014]  Optionally, the second deep neural network comprises first to fourth dense layers optionally respectively comprising
32, 16, 16 and 32 hidden units, optionally wherein each of the first to third dense layers of the second deep neural network is
followed by a tanh function.

[0015]  Optionally, in the waveshaping unit, the first squeeze-and-excitation layer comprises an absolute value layer preceding
a global average pooling operation.

[0016]  The method may further comprise passing on the input frequency band decomposition (X1) as the residual feature
map (R). The method may further comprise passing on the modified feature map as the pre-shaped frequency band
decomposition. The method may further comprise passing on the modified feature map as the modified frequency band
decomposition (X2, X1.17).

[0017]  Optionally, the first deep neural network comprises a plurality of bidirectional long short-term memory layers, optionally
followed by a smooth adaptive activation function layer.

[0018]  Optionally, the plurality of bidirectional long short-term memory layers comprises first, second and third bidirectional
long short-term memory layers, optionally comprising 64, 32 and 16 units respectively.

[0019]  Optionally, the plurality of bidirectional long short-term memory layers is followed by a plurality of smooth adaptive
activation function layers, each optionally being composed of 25 intervals between -1 to +1.

[0020]  Optionally, the first deep neural network comprises a feedforward WaveNet comprising a plurality of layers, optionally
wherein the final layer of the WaveNet is a fully-connected layer.

[0021]  Optionally, the first deep neural network comprises a plurality of shared bidirectional long short-term memory layers,
followed by, in parallel, first and second independent bidirectional long short-term memory layers. Optionally, the second latent
representation (Z1%) is derived from the output of the first independent bidirectional long short-term memory layer. Optionally, in
the waveshaping unit, the first squeeze-and-excitation layer further comprises a long short-term memory layer. Optionally, the
method further comprises passing on the input frequency band decomposition (X1) as the pre-shaped frequency band
decomposition. The method may further comprise processing the first latent representation (Z) using the second independent
bidirectional long short-term memory layer to obtain a third latent representation (Z2*). The method may further comprise
processing the third latent representation (Z2*) using a sparse finite impulse response layer to obtain a fourth latent
representation (Z3"). The method may further comprise convolving the frequency band representation (X1) with the fourth latent
representation (Z3") to obtain said residual feature map (X5"). The method may further comprise processing the modified
feature map by a second squeeze-and-excitation layer comprising a long short-term memory layer to obtain said modified

frequency band decomposition (X2%, X1.14).
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[0022]  Optionally, the plurality of shared bidirectional long short-term memory layers comprises first and second shared
bidirectional long short-term memory layers optionally comprising 64 and 32 units respectively, optionally wherein each of the
first and second shared bidirectional long short-term memory layers has a tanh activation function.

[0023] Optionally, each of the first and second independent bidirectional long short-term memory layers comprises 16 units,
optionally wherein each of the first and second independent bidirectional long short-term memory layers comprises a locally
connected smooth adaptive activation function.

[0024] Optionally, the sparse finite impulse response layer comprises first and second independent dense layers taking the
third latent representation (Z2*) as input. The sparse finite impulse response layer may further comprise a sparse tensor taking
the respective output of the first and second independent dense layers as inputs, the output of the sparse tensor being the fourth
latent representation (Z3*). Optionally, the first and second independent dense layers comprise respectively a tanh function and
a sigmoid function.

[0025]  Optionally, all the convolutions are along the time dimension and have a stride of unit value.

[0026] Optionally, at least one of the deep neural networks is trained in dependence on data representing one or more audio
effect selected from a group comprising: tube amplifier, distortion, speaker-amplifier, ladder filter, power amplifier, equalisation,
equalisation-and-distortion, compressor, ring modulator, phaser, modulation based on operational fransconductance amplifier,
flanger with bucket brigade delay, modulation based with bucket brigade delay, Leslie speaker horn, Leslie speaker horn-and-
woofer, flanger-and-chorus, modulation based, modulation based-and-compressor, plate-and-spring reverberation, echo,
feedback delay, slapback delay, tape-based delay, noise-driven stochastic effects, dynamic equalisation based on input signal
level, audio morphing, timbre transformations, phase vocoder, time stretching, pitch shifting, time shuffling, granulation, 3D
loudspeaker setup modelling, and room acoustics.

[0027] There is disclosed a computer program comprising instructions which, when the program is executed by a computer,
cause the computer to carry out the method disclosed hereinabove.

[0028] There is disclosed a computer-readable storage medium comprising the computer program above.

[0029] There is also disclosed an audio data processing device comprising a processor configured to perform the method

disclosed hereinabove.

FIGURES

[0030] Figure 1.1: Block diagram of CAFx; adaptive front-end, synthesis back-end and latent-space DNN.

[0031]  Figure 1.2: Block diagram of the feedforward WaveNet; stack of dilated convolutional layers and the post-processing
block.

[0032] Figure 2.0: Block diagram of an audio processing architecture built on CAFx and WaveNet, capable of modelling time-
varying and non-linear audio effects.

[0033]  Figure 2.1: Block diagram of CRAFx; adaptive front-end. Latent-space Bi-LSTM and synthesis back-end.

[0034]  Figure 2.2: Block diagram of DNN-SAAF-SE.

[0035]  Figure 2.3: Block diagram of CWAFx; adaptive front-end, latent-space Wavenet and synthesis back end.

[0036] Figure 2.4: Results with selected samples from the test dataset for the Leslie speaker task (right channel). Figs. 2.9a
and 2.9b show waveforms and their respective modulation spectrum. Vertical axes represent amplitude and Gammatone center
frequency (Hz) respectively.

[0037]  Figure 3.1: Box plot showing the rating results of the listening tests. Fig 3.2a preamp, Fig. 3.2b limiter, Fig 3.2¢ Leslie
speaker horn-tremolo, Fig. 3.2d Leslie speaker woofer-tremolo, Fig 3.2e Leslie speaker horn chorale and Fig. 3.2 Leslie

speaker woofer-chorale.
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[0038]  Figure 4.1: Block diagram of CSAFx; adaptive front-end, latent-space and synthesis back-end.
[0039] Figure 4.2: Block diagram of the latent-space of CSAFx.
[0040]  Figure 4.3: Block diagram of the synthesis back-end of CSAFx.

[0041]  Figure 4.4: Box plot showing the rating results for the listening tests. From top to bottom: plate and spring reverb tasks.

DETAILED DESCRIPTION

[0042] Embodiments provide improved techniques for modelling audio effects.

[0043] Inrecent years, deep neural networks (DNN) for music have experienced a significant growth. Most music applications
are in the fields of music information retrieval, music recommendation, and music generation. End-to-end deep leaming
architectures, where raw audio is both the input and the output of the system, follow black-box modeling approaches where an
entire problem can be taken as a single indivisible task which must be learned from input to output. Thus, the desired output is
obtained by learning and processing directly the incoming raw audio, which reduces the amount of required prior knowledge and
minimizes the engineering effort.

[0044]  Prior to the present invention, deep learning architectures using this principle, i.e. processing directly raw audio, had
not been explored for audio processing tasks such as audio effects modeling.

[0045]  Nevertheless, DNNs for audio effects modeling have recently become an emerging field and have been investigated
as end-to-end methods or as parameter estimators of audio processors. Most of the end-to-end research has focused on
modeling nonlinear audio processors with short-term memory, such as distortion effects. Moreover, the methods based on
parameter estimation are based on fixed audio processing architectures. As a result, generalization among different types of
audio effect units is usually difficult. This lack of generalization is accentuated when we take into account the broad characteristic
of the different types of audio effects, some of which are based on highly complex nonlinear and time-varying systems whose
modeling methods remain an active field.

[0046] There is disclosed a general-purpose deep learning architecture for audio processing in the context of audio effects
modeling. Thus, our motivation is to demonstrate the feasibility of DNNs as audio processing blocks for generic blackbox
modeling of all types of audio effects. In this way, given an arbitrary audio processor, a neural network may learn and apply the
intrinsic characteristics of this transformation. The architecture is capable of recreating the sound, behaviour and main
perceptual features of various types of audio effects. Based on the modeling capabilities of DNNs together with domain
knowledge from digital audio effects, we propose different deep learning architectures. These models can process and output
audio that matches the sonic and perceptual qualities of a reference audio effect. Throughout this disclosure, we measure the
performance of the models via objective perceptual-based metrics and subjective listening tests.

[0047] Publication I: "End-to-end equalization with convolutional neural networks." Martinez Ramirez, M.A.; Reiss, J.D. In
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, 4-8 September 2018.

R Adak2018, weh ua pifpapers/DARERIE naper 27.0d Publication |, which is incorporated herein by reference, contains a

derivation of Convolutional EQ modeling network (CEQ), which is a DNN for end-to-end black-box modeling of linear audio
effects.

[0048]  Publication II: "Modeling nonlinear audio effects with end-to-end deep neural networks." Martinez Ramirez, M.A.;
Reiss, J.D. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),

Brighton, UK, 12-17 May 2019. hiipsifisegupioreiess orgidocumentiiRE83524 Publication I, which is incorporated herein by

reference, contains a derivation of Convolutional Audio Effects modeling network (CAFx), which is for black-box modeling of
nonlinear and linear audio effects.

[0049] Embodiments are described in detail in the following chapters of the present document.
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1 - MODELING NONLINEAR AUDIO EFFECTS

[0050] Inthis chapter we build on the CEQ modeling network from Publication | in order to emulate much more complex
transformations, such as distortion effects. Therefore we infroduce CAFx: a novel deep learning architecture for modeling
nonlinear and linear audio effects with short-term memory. In addition, we also provide a nonlinear modeling network based on a
feedforward variant of the wavenet architecture.

[0051] Distortion effects are mainly used for aesthetic reasons and are usually applied to electric musical instruments. Most
existing methods for nonlinear modeling are often either simplified or optimized to a very specific circuit. Thus, in this chapter we
investigate general-purpose end-to-end DNNs for black-box modeling of nonlinear audio effects.

[0052]  For an arbitrary combination of linear and nonlinear audio effects with short- term memory, the models learn how to
process the audio directly in order to match the target audio. Given a nonlinearity, consider x and y the raw and distorted audio
signals respectively. In order to obtain a y" that matches the target y, we train a DNN to modify x based on the nonlinear task.
[0053] We provide nonlinear emulation as a content-based transformation without explicitly obtaining the solution of the
nonlinear system. We report that CAFx, a model based on convolutional and dense layers can incorporate adaptive activation
functions, such as SAAF. This in order to explicitly train SAAFs to act as waveshapers in audio processing tasks such as
nonlinear modeling. Thus, since distortion effects are characterized by their waveshaping nonlinearity, we rely on the smooth
attributes of SAAFs, which can approximate any continuous function, to act as trainable waveshapers within a DNN modeling
framework.

[0054] In this manner, we provide the capabilities of DNNs as audio processing blocks in the context of modeling nonlinear
audio effects. Through the use of specific domain knowledge, such as waveshaping nonlinearities, we increase the function
approximation capabilities of DNNs when performing nonlinear audio processing tasks with short-term memory.

[0055]  Through the same nonlinear modeling tasks we analyse WaveNet, a model solely based on temporal dilated
convolutions. We measure the performance of the models via a perceptually-based objective metric and we report that both
models perform similarly when modeling distortion, overdrive, amplifier emulation and combinations of linear and nonlinear digital
audio effects.

[0056] In the following sections we present the architecture of the different modeling networks. All the models are based
entirely in the time-domain and end-to-end; with raw audio as the input and processed audio as the output. Code is available
online (https://github.com/mehijmma/DL-AFx/tree/master/src).

[0057] 1.1- CONVOLUTIONAL AUDIO EFFECTS MODELING NETWORK — CAFX

[0058] The model is divided into three parts: adaptive front-end, synthesis back-end and latent-space DNN. The architecture
is designed to model nonlinear audio effects with short-term memory and is based on a parallel combination of cascade input
filters, trainable waveshaping nonlinearities, and output filters.

[0059]  All convolutions are along the time dimension and all strides are of unit value. This means, during convolution, we
move the filters one sample at a time. In addition, padding is done on each side of the input feature maps so that the output
maintains the resolution of the input. Dilation is not introduced.

[0060] The model is depicted in Fig. 1.1 and its structure is described in detail in Table 1.1. We use an input frame of size
1024 and sampled with a hop size of 256 samples.

[0061]  The adaptive front-end and latent-space DNN are exactly the same as in CEQ (see

[0062] Publication ). The main difference is the incorporation of dense layers and SAAFs into the back-end. This in order to

allow the model to learn the waveshaping nonlinearities that characterize distortion effects.
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Table 1.0 Detailed architecture of TAEY with an inpuot frame size of 1024 samples.

Laver Quiput shape Weights  Ouipat
Tt {1024, 1} : X
Lot {1023, 128) 12854} Xy
Hesicheal {rong, 128 . R
Abs {1024, 128}

ConvilFLocal  (io2g, 128} 1280i=8) Xz

MaxPooling {fgq, 128}
Dense-Local {12¥, 63} 634128)
Dense {128, Hq) &g z
Unpeoting {1024, 128} . Xz
R« Xz {rong, 1258 . Xy
Prore {102y, 128} 128
Dense {1024, H4} A3
Dense {1024, Hg} i
Ponse {1024, 128} 128
SAAF {1og, 128 12B{as) Xa
deConviD) {1024, 1} . G

[0063]
[0064] Adaptive front-end

[0065] The adaptive front-end comprises a convolutional encoder. It contains two convolutional layers, one pooling layer and

one residual connection. The front-end is considered adaptive since its convolutional layers learn a filter bank for each modeling
task and directly from the audio.

[0066] The first convolutional layer is followed by the absolute value as nonlinear activation function and the second
convolutional layer is locally connected (LC). This means we follow a filter bank architecture since each filter is only applied to its
corresponding row in the input feature map. The later layer is followed by the soffplus nonlinearity. The max-pooling layer is a
moving window of size 16, where the maximum value within each window corresponds to the output and the positions of the

maximum values are stored and used by the back-end. The operation performed by the first layer can be described as follows.

Xy o= xa Wy {1.3)

R s Xy (1.3}
[0067]

[0068] Where W1 is the kernel matrix from the first layer, and X1 is the feature map after the input audio x is convolved with
W1. The weights W1 comprise 128 one-dimensional filters of size 64. The residual connection R is equal to X1, which
corresponds to the frequency band decomposition of the input x. This is due the output of each filter of Conv1D can be seen as a
frequency band.

[0069] The operation performed by the second layer is described by the following equation.
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[0070]
[0071]  Where X2 and W24 are the ith row of the feature map X2 and kernel matrix W2, respectively. Thus, X2 is obtained

after the LC convolution with W2, the weight matrix of Conv1D-local, which has 128 filters of size 128. f2() is the sofiplus
function.

[0072]  The adaptive front-end performs time-domain convolutions with the raw audio and is designed to learn a latent
representation for each audio effect modeling task. It also generates a residual connection which is used by the back-end to
facilitate the synthesis of the waveform based on the specific audio effect transformation.

[0073] This differs from traditional encoding practices, where the complete input data is encoded into a latent-space, which
causes each layer in the decoder to solely generate the complete desired output (He et al., 2016). Furthermore, a full encoding
approach such as Engel et al. (2017); Oord et al. (2016) will require very deep models, large data sets and difficult training
procedures.

[0074] By using the absolute value as activation function of the first layer and by having larger filters W2, we expect the front-
end to learn smoother representations of the incoming audio, such as envelopes Venkataramani et al. (2017).

[0075] Latent-space DNN

[0076] The latent-space DNN contains two dense layers. Following the filter bank architecture, the first layer is based on LC
dense layers and the second layer comprises a FC layer. The DNN modifies the latent representation Z into a new latent
representation Z" which is fed into the synthesis back-end. The first layer applies a different dense layer to each row of the matrix
Z and the second layer is applied to each row of the output matrix from the first layer. In both layers, all dense layers have 64
hidden units, are followed by the softplus function () and are applied to the complete latent representation rather than to the
channel dimension.

[0077]  The operation performed by the latent-space DNN is as follows.

Tt SRV Y e . Ci e an L
W e 3 b SN PR AN -~
23“ S P ALE Y pokovie UL ed {1.5}

2 ‘f'};{iz‘,-, -¥Vai 1.6}
[0078]
[0079]  Where Zh™0 is the ith row of the output feature map Zh" of the LC layers. Likewise, V10 is the ith dense layer

corresponding to the weight matrix V1 of the LC layer. V2 corresponds to the weights of the FC layer.

[0080] The output of the max pooling operation Z corresponds to an optimal latent representation of the input audio given the
EQ task, such as envelopes. The DNN is trained to modify these envelopes, thus, a new latent representation or set of
envelopes Z” is fed into the synthesis back-end in order to reconstruct an audio signal that matches the target task.

[0081]  Synthesis back-end

[0082] The synthesis back-end accomplishes the nonlinear task by the following steps. First, X2, the discrete approximation
of X2, is obtained via unpooling the modified envelopes Z™. Then the feature map X1 is the result of the element-wise
multiplication of the residual connection R and X2". This can be seen as an input filtering operation, since a different envelope
gain is applied to each of the frequency band decompositions obtained in the front-end.

[0083] The second step is to apply various waveshapping nonlinearities to X1°. This is achieved with a processing block
containing dense layers and smooth adaptive activation functions (DNN-SAAF). The DNN-SAAF comprises 4 FC dense layers.
All dense layers are followed by the soffplus function with the exception of the last layer. Locally connected SAAFs are used as

the nonlinearity for the last layer. Overall, each function is locally connected and composed of 25 intervals between -1 to +1.
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[0084] We tested different standard and adaptive activation functions, such as the parametric and non parametric ReLU,
hyperbolic tangent, sigmoid and fifth order polynomials. Nevertheless, we found stability problems and non optimal results when
modeling nonlinear effects. Since each SAAF explicitly acts as a waveshaper, the DNN-SAAF is constrained to behave as a set
of trainable waveshaping nonlin- earities, which follow the filter bank architecture and are applied to the channel dimension of the
modified frequency decomposition X1".
[0085]  Finally, the last layer corresponds to the deconvolution operation, which can be implemented by transposing the first
layer transform. As in CEQ, this layer is not trainable since its kernels are transposed versions of W1. In this way, the back-end
reconstructs the audio waveform in the same manner that the front-end decomposed it. The complete waveform is synthesized
using a hann window and constant overlap-add gain.

g Xy e W (1.8)
[0086]

[0087] 1.2 Feedforward wavenet audio effects modeling network - WaveNet

[0088] The WaveNet architecture corresponds to a feedforward variation of the original autoregressive model. For a
regression task, such as nonlinear modeling, the predicted samples are not fed back into the model, but through a sliding input
window, where the model predicts a set of samples in a single forward propagation. The feedforward wavenet implementation is
based on the architecture proposed in Damskagg et al. (2019) and Rethage et al. (2018). The model is divided into two parts:
stack of dilated convolutions and a post-processing block. The model is depicted in Fig. 1.2 and its structure is described in

Table 1.2.

Table 1.z Dletailed architecture of WaneNet with input and output frame sizes of rap7 and

g samples respectively.

Layer - Output shape - Woelahis Cratput
Input {1276, 1} X
Convill {1zv6, 10} - 1603 Rin

Diitated conv {2xp6, 16) - 16ly) | Dilated conw {1295, 16} - 16{3)
Tanh {1276, 16} Stgnwdsd {1275, 16}

Multiply (1276, 26} z

Copwry DD {1076, 186 - 1h{3)} Cowves D) {12mb, 16} - tA{1} Rt S

Add {1024, 16}
Rellf (1024, 36}

Conv s} {0z, 2048} - 2048038
Rel XY {rong, 16}

ComvaD {102y, 2563 - 25%({3}

[and

Convil¥ {iozy, 1§~ {1}

[0089]
[0090] We use 2 stacks of 6 dilated convolutional layers with a dilation factor of 1,2,...,32 and 16 filters of size of 3. From

Figure 1.1, prior to the stack of dilated convolutions, the input x is projected into 16 channels via a 3x1 convolution. This in order
to match the number of channels within the feature maps of the dilated convolutions. The stack of dilated convolutions processes
the input feature map Rin with 3x1 gated convolutions and exponentially increasing dilation factors. This operation can be
described by:

z = tanh{We s Ryl < oWy s Ry {1.1}

[0091]
[0092] Where Wfand Wg are the filter and gated convolutional kernels, tanh and o the hyperbolic tangent and sigmoid
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functions and = and x the operators for convolution and element-wise multiplication. The residual output connection Rout and the
skip connection S are obtained via a 1x1 convolution applied to z. Therefore S is sent to the post-processing block and Rout is

added to the current input matrix Rin, thus, resulting in the residual input feature map of the next dilated convolutional layer.

[0093] The post-processing block consists in summing all the skip connections S followed by a ReL U. Two final 3x1
convolutions are applied to the resulting feature map, which contain 2048 and 256 filters and are separated by a ReLU. As a last
step, a 1x1 convolution is introduced in order to obtain the single-channel output audio y".

[0094] The receptive field rf of a wavenet architecture can be computed with the following equation (Oord et al., 2016).

D
rf e T n{f, — 1) E dy {1.2}

jea}

[0095]
[0096] Where nis the number of stacks, f« is the size of the filters, D is the number of dilated layers and di corresponds to

each dilation factor. For this architecture, the receptive field of the model is of 253 samples and the target field tfis 1024
samples. Therefore the input frame if presented to the model comprises sliding windows of 1276 samples and is calculated as
follows (Rethage et al., 2018).

";* s If'{-"ff— i? {i’?,)
[0097] T ’ o

[0098] In the following chapter, we build on these architectures and we provide RNNs and latent-space temporal dilated
convolutions to model transformations involving long term memory such as dynamic range compression or different modulation

effects.

2 - MODELING TIME-VARYING AUDIO EFFECTS

[0099] Audio effects whose parameters are modified periodically over time are often referred as time-varying or modulation
based audio effects. Furthermore, a broad family of time-invariant audio effects is based on long-term dependencies, such as
compressors. By assuming linear behaviour or by omitting certain nonlinear circuit components, most of these effects can be
implemented directly in the digital domain through the use of digital filters and delay lines.

[0100]  Nevertheless, modeling of this type of effects remain an active field, since musicians tend to prefer analog counterparts
and current methods are often optimized to a very specific circuit. Therefore such models are not easily transferable to different
effects units since expert knowledge of the type of circuit being modeled is always required and cannot be efficiently generalized
to other time-varying or time-invariant audio effects with long-term memory.

[0101]  Since the architectures from previous chapters do not generalize to transformations with long temporal dependencies,
in this chapter we provide the capabilities of end-to-end DNNs to learn the long-term memory which characterizes these effect
units. We build on the CAFx and WaveNet architectures and we propose two novel general-purpose modeling networks: CRAFx
and CWAFx. Based on the adaptive front-end and back-end structures from previous models, a latent-space based on
Bidirectional Long Short-Term Memory (Bi-LSTM) layers or temporal dilated convolutions is able to learn time-varying
transformations. Code is available online: hitps://github.com/mchijmma/DL-AFx/tree/master/src and the number of parameters
and computational complexity are shown in Appendix A.

[0102] Therefore we introduce deep learning architectures for generic black-box modeling of audio processors with long-term
memory. We show the models matching digital implementations of modulation based audio effects such as chorus, flanger,
phaser, tfremolo, vibrato, LFO-based auto-wah, ring modulator and Leslie speaker. Furthermore, we extend the applications of

the model by including nonlinear time-invariant audio effects with long temporal dependencies such as auto-wah with envelope
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follower, compressor and multiband compressor. We also introduce nonlinearities such as overdrive into linear time-varying
effect units, in order to test the capabilities of the networks when modeling nonlinear time-varying audio trans- formations.
[0103]  We provide linear and nonlinear time-varying emulation as a content-based transformation without explicitly obtaining
the solution of the time-varying system. In order to measure the performance of the model, we propose an objective metric
based on the psychoacoustics of modulation frequency perception. We also analyze what the model is actually learning and how
the given task is accomplished.

[0104]  With reference to Fig. 2.0, the overall structure is based on three parts: adaptive front-end, latent-space DNN and
synthesis back-end.

[0105]  First, the input audio x is transformed into a feature map X2 which is subsampled into the latent representation Z. This
may be done via two successive convolutions, for example via the filter bank architecture of convolution kernels W1 and W2.
[0106] Also, through the first convolution, a frequency band decomposition X1 is obtained, from which a residual feature map
R may be derived. The residual feature map R may be additionally derived from further input.

[0107]  The latent representation Z is modified into new latent representations Z*, Z*1... This may be done via a DNN.
[0108] The new latent representation is upsampled into the feature map X34, such as via unpooling or upsampling operations.
[0109]  X3” may be used to modify the residual feature map R (or a pre-modified version X54), such as by element-wise
multiplying X3* with R, thus obtaining the feature map X2#, X*1.1 which corresponds to an audio stream with time-varying
effects.

[0110] R, X5% is further modified via a waveshaping DNN, thus obtaining the feature map X14, X1.2#, which corresponds to
an audio stream with short-term memory transformations, i.e. waveshapers.

[0111]  X2A,X*.1 and X14, X1.2# are summed into the frequency band decomposition X02, from which the target audio y*
is reconstructed. The reconstruction may be done via deconvolution. Optionally, the deconvolution can be implemented with the
transposed kernel of W1 (W1T).

[0112]  This summation allows an audio stream with time-varying effects (i.e. modulation-based or envelope-based with long-
term memory) to be mixed with an audio stream without time-varying effects (i.e. the input audio stream with or without
waveshaping transformations).

[0113] 2.1 Convolutional recurrent audio effects modeling network - CRAFx

[0114]  The CRAFx model builds on the CAFX architecture and is also divided into three parts: adaptive front-end, latent-
space and synthesis back-end. A block diagram can be seen in Fig. 2.1 and its structure is described in detail in Table 2.1. The
main difference is the incorporation of Bi-LSTMs into the latent-space and the modification of the synthesis back-end structure.
This in order to allow the model to learn nonlinear transformations with long temporal dependencies. Also, instead of 128
channels, due to the training time of the recurrent layers, this model uses a filter bank structure of 32 channels or filters.

[0115]  Inorder to allow the model to learn long-term memory dependencies, the input comprises the audio frame x at the
current time step t, concatenated with the k previous and k subsequent frames. These frames are of size N and sampled with a

hop size 1. The concatenated input x is described as follows.

ekt T e ok k (2.1}
[0116]

[0117]  The adaptive front-end is exactly the same as the one from CAFx, but its layers are time distributed, i.e. the same
convolution or pooling operation is applied to each of the 2k+1 input frames. The max-pooling operation is a moving window of
size N/64. In this model, R is the corresponding row in X1 for the frequency band decomposition of the current input frame x©.

Thus, the back-end does not directly receive information from the past and subsequent context frames.
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Table 2.1: Detatled architecture of CRAFy with tnput frame size of g00t samples and £4

context frames.

Layer Output shape  Weights  Oulput
Iapust {a, 4008, 13 . X
ConviD (o, go9h, 321 320hy) Xy
Ruagidual {4008, 32} . R
Abs {Q. 4008, 32}
CoowsBPrineal (g 9096, 33y 3a{:2X) X2
MaxPooling {9, 63, 32} . ra
Bi-LSTM {64, 125} ztagl
Bi-L5TM {6, 643 a{33)
BRLSTM {64, 32} 2{16} .
SAAF {63, 32} 32§25} z
Unpuonling {4, 333 X3
Multiply {areats, 32} X
Bense {4008, 32} 32
Pranse {4006, 15} 16
Dense {3006, 16} 16
Panse {40085, 32} 32
SAAF {30090, 323 Ja{25) Xy
Abs {4080, 32}
Globsad Average {t. 52}
Plenze {1,512} 51z
Bense {1, 32} 32 s€
Koy xose {4068, 32} . X:
X +X; {rogh, 323 . Xo
deConviD {3006, 1} . 4

[0118]
[0119] Latent-space Bi-LSTM

[0120]  The latent-space comprises three Bi-LSTM layers of 64, 32, and 16 units respectively. The Bi-LSTMs process the
latent-space representation Z, which is learned by the front-end and contains information regarding the 2k+1 input frames. These
recurrent layers are trained to reduce the dimension of Z, while also learning a set of nonlinear modulators Z” . This new latent
representation or modulators is fed into the synthesis back-end in order to reconstruct an audio signal that matches the time-
varying modeling task. Each Bi-LSTM has dropout and recurrent dropout rates of 0.1 and the first two layers have tanh as
activation function. Also, the nonlinearities of the last recurrent layer are locally connected SAAFs.

[0121]  As shown in Section 1.1, locally connected SAAFs are used as the nonlinearity for the last layer. This in order to make
use of the smooth characteristics of SAAFs, which can approximate any continuous function such as the modulators of the
respective time-varying effect units. Each SAAF is composed of 25 intervals between -1 to +1.

[0122]  Synthesis back-end

[0123]  The synthesis back-end accomplishes the reconstruction of the target audio by processing the frequency band
decomposition R and the nonlinear modulators Z™. Similarly to CAFx, The back-end comprises an unpooling layer, a DNN-SAAF
block and a final convolutional layer. The DNN-SAAF block comprises four dense layers of 32, 16, 16 and 32 hidden units
respectively. Each dense layer is followed by the tanh function except for the last one, which is followed by a SAAF layer. The
new structure of the back-end of CRAFx incorporates a Squeeze-and-Excitation (SE) (Hu et al., 2018) layer after the DNN-SAAF
block (DNN-SAAF-SE).

11
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[0124]  The SE block explicitly models interdependencies between channels by adaptively scaling the channel-wise
information of feature maps (Hu et al., 2018). Thus, we propose a SE block which applies a dynamic gain to each of the feature
map channels of X17, the output of DNN-SAAF. Based on the structure from Kim et al. (2018), SE comprises a global average
pooling operation followed by two FC layers. The FC layers are followed by RelLU and sigmoid activation functions accordingly.
[0125]  Since the feature maps within the back-end are based on time-domain waveforms, we incorporate an absolute value
layer before the global average pooling operation. Fig. 2.2 depicts the block diagram of DNN-SAAF-SE, which input and output
are the feature maps X2" and X17, respectively.

[0126] Following the filter bank architecture, the back-end matches the time-varying task by the following steps. First, an
upsampling operation is applied to the learned modulators Z” which is followed by an element-wise multiplication with the
residual connection R. This can be seen as a frequency dependent amplitude modulation to each of the channels or frequency
bands of R.

Xz =Xz =R {2.2)

o >

[0127]
[0128]  This is followed by the nonlinear waveshaping and channel-wise scaled filters from the DNN-SAAF-SE block. Thus, the

modulated frequency band decomposition X2" is processed by the leamed waveshapers from the DNN-SAAF layers, resulting in
the feature map X1™. This is further scaled by se, the frequency dependent gains from the SE layer. The resulting feature map

X1 can be seen as modeling the nonlinear short-term memory transformations within the audio effects modeling tasks.

-~

X1« X'y 7 se {23
[0129]
[0130] Then, X1"is added back to X2", acting as a nonlinear feedforward delay line.
Xo =Xy + X {2.4}

[0131]
[0132]  Therefore the structure of the back-end is informed by the general architecture in which the modulation based effects

are implemented in the digital domain, through the use of LFOs, digital filters and delay lines.

[0133]  Finally, the complete waveform is synthesized in the same way as in CAFx, where the last layer corresponds to the
transposed and non-trainable deconvolution operation. As mentioned in Section 2.1, we use strides of unit value, no dilation is
incorporated and we follow the same padding as in CAFx.

[0134] 2.2 Convolutional and Wavenet audio effects modeling network - CWAFx

[0135]  We propose a new model based on the combination of the convolutional and dense architectures from CRAFx with the
dilated convolutions from WaveNet. Since the Bi-LSTM layers in the former were in charge of learning long temporal
dependencies from the input and context audio frames, we replace these recurrent layers with a feedforward Wavenet. As it has
been shown that dilated convolutions outperform recurrent approaches when learning sequential problems (Bai et al., 2018),
such as in MatthewDavies and Bdck (2019), where Bi-LSTMs are successfully replaced with this type of temporal convolutions.
[0136] Thus, itis found that a latent-space based on stacked dilated convolutions can learn frequency-dependent amplitude
modulation signals. The model is depicted in Fig. 2.3. The adaptive front-end and synthesis back-end are the same as the ones
presented in CRAFx.

[0137] Latent-space Wavenet

[0138]  The structure of the latent-space Wavenet is described in detail in Table 2.2.

[0139]  With CWAFx with input frame size of 4096 samples and +4 context frames, the latent representation Z from the front-
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end corresponds to 9 rows of 64 samples and 32 channels, which can be unrolled into a feature map of 576 samples and 32
channels. Thus, we approximate these input dimensions with a latent-space Wavenet with receptive and target fields of 510 and
64 samples respectively. Thus, based on Eq. (1.2), we use 2 stacks of 7 dilated convolutional layers with a dilation factor of
1,2,...64 and 32 filters of size 3. Also, we achieved better fitting by keeping the dimensions of the skip connections 8 and by
replacing the final 1x1 convolution with a FC layer. The latter has 64 hidden units followed by the tanh activation function and is
applied along the latent dimension.

Table 2.2 Detailed architecture of the latent-space Wavenet. This for a CWARy with input

frame stze of Joub samples and £4 context framwes,

Layer - Dutput shape - Weights Outpat

Z {576, 32}

Corra D) {576, 323 - 32{3) Rin

Dilated conv {376, 32) - 32{3) | Dilated conv {576, 32) - 3205}
Tank {376, 32} Sigmoid {876, 32}
Mubtiply {578, 32}
Convild {576, 32) - 3201} ‘ ConveD {576, 323 - 3201} Ran S

Add (576, 323
RellU (578, 12}
CaonviD {576, 321 - 3203}

RelLL} {578, 32

ConvaD {576, 32} - 22(3)

Dense {32, 64} - 63 Z

[0140]
[0141] 2. 3 Experiments

[0142]  2.3.1 Training

[0143] Likewise, the training of CRAFx and CWAFx includes the same initialization step as CEQ and CAFx. Once the
convolutional layers of the front-end and back-end are pretrained, the DNN-SAAF-SE block and the latent-space Bi-LSTMs and
Wavenet layers are incorporated into the respective models, and all the weights are trained following an end-to-end supervised
learning task.

[0144]  The loss function to be minimized is the mean absolute error between the target and output waveforms. We provide
input size frames from 1024 to 8192 samples and we always use a rectangular window with a hop size of 50%. The batch size
consisted of the total number of frames per audio sample.

[0145]  Adam (Kingma and Ba, 2015) is used as optimizer and we perform the pre-training for 200 epochs and the supervised
training for 500 epochs. In order to speed convergence, during the second training step we start with a leamning rate of 5-10-5
and we reduce it by 50% every 150 epochs. We select the model with the lowest error for the validation subset.

[0146] 2.3.2 Dataset

[0147]  Modulation based audio effects such as chorus, flanger, phaser, tremolo and vibrato were obtained from the IDMT-
SMT-Audio-Effects dataset (Stein et al., 2010). The recordings correspond to individual 2-second notes which include electric
guitar and bass guitar raw notes and their respective effected versions. These effects correspond to digital implementations of
effect units, such as VST audio plug-ins. For our experiments, for each of the above effects, we only use the setting #2 from
where we obtained the unprocessed and processed audio for bass guitar. In addition, processing the bass guitar raw audio, we
implemented an LFO-based auto-wah with a peak filter whose center frequency ranges from 500 Hz to 3 kHz and modulated by

a 5 Hz sinusoidal.
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[0148]  Since the previous audio effects are linear time-varying, we further test the capabilities of the model by adding a
nonlinearity to each of these effects. Thus, using the bass guitar wet audio, we use SoX to apply an overdrive (gain=+10 dB)
after each modulation based effect.

[0149]  We also use virtual analog implementations of a ring modulator and a Leslie speaker to process the electric guitar raw
audio. The ring modulator implementation is based on Parker (2011b) and we use a modulator signal of 5 Hz. The Leslie
speaker implementation is based on Smith et al. (2002) and we model each of the stereo channels.

[0150] Finally, we also provide the capabilities of the model with nonlinear time-invariant audio effects with long temporal
dependencies, such as compressors and auto-wah based on an envelope follower. We use the compressor and multiband
compressor from SoX to process the electric guitar raw audio.

[0151]  Similarly, we use an auto-wah implementation with an envelope follower and a peak filter which center frequency
modulates between 500 Hz to 3 kHz.

[0152]  For each time-varying task we use 624 raw and effected notes and both the test and validation samples correspond to
5% of this subset each. The recordings were downsampled to 16 kHz and amplitude normalization was applied with exception to

the time-invariant audio effects. Table 4.3 shows the details of the settings for each audio effect.
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Table 2.3 Seftings for each audio effect modeling task.

Fx settings

chorus Heavy Chorus: Delay Time - 12 me’, "Rate - o.501 He', ‘Spread - Off, Tepth

~ oo, ‘Mix - 117, ‘Level -0 dF

flanger Standard Flange: "Thme - 368 ms’, ‘Rate - 1.2 Hz', Sync - O, Depth -

so%”, Bpread - O, Teedback - 7o% " Mix - 1127 Tevel - o dF

phaser Metallic Space: "Stages - &', "Upper - 1933 He', ‘Rate - 0.4 He', "Syne -~ O,
Depth - 100%’, Spread - O, "Feedback - 0%, Mix - 17, Level - o dF

frimndo Slow Pulsing: Frequency - 2 He', ‘Oscillator - Sine’, "Thadpat - 1000, "Level
-~ 100%
vibrato Slow Expressive Vibratm Delay Time - 6 ma’, Dy Mix - 0%, ‘Wet Mix -

w0, Feedback - 0%, "Modulation Rate - 2 Hy' | ‘Modulation Depth - 1.3

ms’

ankewah Peak filters "Oxcillntor - Sne’, Modulation Bate - 5 H' |, ‘Filter - HE 2nd

order”, Q- 17, Peak Height - 0.8 "Upper - wooc He' |, "Lower - oo He'

antbo-wah Peak filter: "Moving Average Width - 2000”, Filter ~ IR and order”, 'Q -1,
envalope ‘Peak Height - 0.8 | Upper - 000 Hz' |, Tower - sao Ha'

follower

ring Diode-based: 'Diode Constants ~ 0.z, 0.4", 'Gain Modulator - 057, "Oscillator
modulator - Sine’, "Maodulation Rate -5 Hz'

leshe speaker Doppler Simulation and the Leslie: "Speed Source Listener - 333 ms',
Gain Catput- ¢.357  Reverk Amount - aas’ , Homn Angualar Velocity - 107,
Batfle Angalar Velocity - 107, "Homn Angle - 00", "Baffle Angle -0’ , 'Horn
Radius -~ 18", ‘Bafle Radius - auagoge’, ‘Cabinet Length - oy, 'Cabinet

Width - o.52"

CEARPTRSSOT SaX: ‘Attack Time - 1o ms” |, ‘Release Time -~ 100 mg”, Kawe - 1 3B, ‘Ratio-

¢, "Threshold - ~q0

mrultibanad SaX: Freguency bands - 27, ‘Crossover Frequency - soo Hy' |, ‘Attack Time 3
COMPIESSOr - 5ms , Release Time 1 - ooms’, Kaee 1- o dB' | ‘Rate 1- 3017, "Threshold

1 - -3 B, Attack Time 2 - 625 us’, ‘Relesse Thre 2 - 12.5 ", ‘Knen 2- 6
g8, ‘Katio 2~ &1, “Threshold z - ~6¢ dB

[0153]
[0154]  2.3.3 Evaluation

[0155]  Three mefrics are used when testing the models with the various modeling tasks. As shown in Chapter 1, we use the
energy-normalized mean absolute error (mae). As an objective evaluation for the time-varying tasks, we propose an objective
metric which mimics human perception of amplitude and frequency modulation. The modulation spectrum uses time-frequency
theory integrated with the psychoacoustics of modulation frequency perception, thus, providing long-term knowledge of temporal
fluctuation patterns (Sukittanon et al., 2004). The modulation spectrum mean squared error (ms_mse) is based on the audio
features from Mc-Dermott and Simoncelli (2011) and McKinney and Breebaart (2003) and is defined as follows:

[0156] A Gammatone filter bank is applied to the target and output entire waveforms. In total we use 12 filters, with center
frequencies spaced logarithmically from 26 Hz to 6950 Hz.

[0157]  The envelope of each filter output is calculated via the magnitude of the Hilbert transform (Hahn, 1996) and
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downsampled to 400 Hz.
[0158] A Modulation filter bank is applied to each envelope. In total we use 12 filters, with center frequencies spaced
logarithmically from 0.5 Hz to 100 Hz.
[0159]  The FFT is calculated for each modulation filter output of each Gammatone filter. The energy is summed across the
Gammatone and Modulation filter banks and the ms_mse metric is the mean squared error of the logarithmic values of the FFT
frequency bins.
[0160]  The evaluation for the nonlinear time-invariant tasks (compressor and multiband compressor) corresponds to
mfcc_cosine: the mean cosine distance of the MFCCs (see Section 1.3.3).
[0161] 2.4 Results & Analysis
[0162]  The capabilities of Bi-LSTMSs to learn long-term temporal dependencies are explained below. For CRAFx, we use an
input size of 4096 samples and k =4 for the number of past and subsequent frames.
[0163]  The training procedures were performed for each type of time- varying and time-invariant audio effect. Then, the
models were tested with samples from the test dataset. Audio examples for CRAFx are available online:
https://mchijmma.github.io/modeling-time-varying/. To provide a reference, the mean mae and ms_mse and values between
input and target waveforms are 0.13, 0.83 respectively. For the compressor and multiband compressor, the mean mfcc_cosine
value is 0.15.
[0164]  Fig. 2.4 shows the input, target, and output waveforms together with their respective modulation spectrum for
modelling the Leslie speaker. In the time-domain, it is evident that the models are matching the target waveform in a like manner.
From the modulation spectrum it is noticeable that the models equally infroduce different modulation energies into the output
which were not present in the input and which closely match those of the respective targets.
[0165]  As found by the inventors, other complicated time-varying tasks, such as the ring modufator virtual analog
implementations were also successfully modeled. This represents a significant result, since these implementations include
emulation of the modulation introduced by nonlinear circuitry; as in the case of the ring modulator, or varying delay lines together
with artificial reverberation and Doppler effect simulation; as in the Leslie speaker implementation.
[0166] The models are also able to perform linear and nonlinear time-invariant modeling. The long temporal dependencies of
an envelope driven auto-wah, compressor and multiband compressor are succesfully modeled.
[0167]  Overall, the models performed better when modeling effect units based on amplitude modulation, such as fremolo or
ring modulator, and time-varying filters, such as phaser. Delay-line effects based on frequency modulation are satisfactorily
modeled as in the case of flanger or the Leslie speaker stereo channels. Nevertheless, vibrato and vibrato-overdrive represent
the modeling tasks with highest errors. This might be because vibrato is an effect based solely on frequency modulation whose
rate is around 2 Hz. Since this represents a modulation rate higher than the rotation horn of the Leslie speaker, this indicates that
the performance of the models decreases when matching effects based on low-frequency modulation such as the slow rotating
setting of the Leslie speaker (see Chapter 3). This could be improved by increasing the frequency resolution by infroducing more
filters or channels, e.g. a filter bank architecture of 128 filters, or by increasing the size of the latent-space through smaller max
pooling.
[0168] 2.5 Conclusion
[0169] In this chapter, we introduced CRAFx and CWAFx, two general-purpose deep leaming architectures for modeling
audio effects with long temporal dependencies. Through these two architectures, we provided the capabilities of end-to-end
DNNs with Bi-LSTM layers and temporal dilated convolutions to learn long temporal dependencies such as low-frequency
modulations and to process the audio accordingly. We can conclude that both models achieved similar performance and were

able to successfully match digital implementations of linear and nonlinear time-varying audio effects, time-varying and time-
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invariant audio effects with long-term memory.
[0170] Based on mae, CRAFx accomplished a closer match of the target waveforms. Nevertheless, both models performed
equally well when tested with perceptual- based metrics such as mfcc_cosine and ms_mse. It is worth to mention that the
computational processing times on GPU are significant lower for CWAFx (see Appendix A). This is due to GPU-accelerated
libraries such as cuDNN (Chetlur et al., 2014), which are highly optimized for convolutional layers.
[0171]  In both architectures, we incorporated SE layers in order to learn and apply a dynamic gain to each of the feature map
channels or frequency band decompositions. This allowed the models to apply the respective modulator signals to each channel
and then further scale them through the SE layers. The introduction of this dynamic gain provided a better fitting when modeling
the various time-varying tasks.
[0172]  Other white-box or gray-box modeling methods suitable for these time-varying tasks would require expert knowledge
such as specific circuit analysis and discretization techniques. Moreover, these methods cannot easily be extended to other time-
varying tasks, and assumptions are often made regarding the non- linear behaviour of certain components. To the best of our
knowledge, this work represents the first architectures for black-box modeling of linear and nonlinear, time-varying and time-
invariant audio effects. It makes less assumptions about the audio processor target and represents an improvement of the state-
of-the-art in audio effects modeling.
[0173]  Using a small amount of training examples we showed the model matching chorus, flanger, phaser, tremolo, vibrato,
LFO-based and envelope follower-based auto-wah, ring modulator, Leslie speaker and compressors. We proposed ms_mse, an
objective perceptual metric to measure the performance of the model. The mefric is based on the modulation spectrum of a
Gammatone filter bank, thus measuring the human perception of amplitude and frequency modulation.
[0174] We demonstrated that the models process the input audio by applying different modulations which closely match with
those of the time-varying target. Perceptually, most output waveforms are indistinguishable from their target counterparts,
although there are minor discrepancies at the highest frequencies and noise level. This could be improved by using more
convolution filters, as in CAFx, which means a higher resolution in the filter bank structures. Moreover, as shown in Publication [,
a loss function based on time and frequency can be used to improve this frequency related issue, though listening tests may be
required (see Chapter 3).
[0175]  The generalization can also be studied more thoroughly, since the models leamn to apply the specific transformation to
the audio of a specific musical instrument, such as the electric guitar or the bass guitar. In addition, since the models strive to
learn long temporal dependencies with shorter input size frames, and also needs past and subsequent frames, these
architectures can be adapted to real-time implementations.
[0176] Real-time applications would benefit significantly from the implementation of RNN or temporal dilated convolutions to
model transformations that involve long-term memory without resorting to large input frame sizes and the need for past and
future context frames. Although the models were able to match the artificial reverberation of the Leslie speaker implementation, a
thorough implementation of reverberation modeling is needed, such as plate, spring or convolution reverberation (see Chapter
4). In addition, since the models are learning a static representation of the audio effect, ways of devising a parametric model
could also be provided. Finally, applications beyond virtual analog can be investigated, for example, in the field of automatic

mixing the model could be frained to learn a generalization from mixing practices.

3 VIRTUAL ANALOG EXPERIMENTS
[0177]  The previous chapters have focused on modeling several linear and nonlinear time- varying and time-invariant digital
implementations of effect units. Furthermore, hitherto we have only evaluated the models with objective metrics. Thus, in this

and the following chapters, we extend the evaluation of previous architectures by including perceptual listening tests and by
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modeling various analog audio effects. Taking into account that virtual analog modeling of audio effects comprises emulating the
sound of an analog audio processor reference device. We show virtual analog models of nonlinear effects, such as the Universal
Audio vacuum-tube preamplifier 610-B; nonlinear effects with long-term memory, such as the Universal Audio fransistor-based
limiter amplifier 1176LN; and electromechanical nonlinear time-varying processors, such as the rotating horn and rotating woofer
of a 145 Leslie speaker cabinet.

[0178]  Through objective perceptual-based metrics and subjective listening tests we demonstrate the performance of each of
the architectures from Chapters 1 and 2: CAFx, WaveNet, CRAFx and CWAFx, when modeling these analog processors. We
perform a systematic comparison between these architectures and we report that CAFx and WaveNet perform similarly when
modeling nonlinear audio effects without memory and with long temporal dependencies, but fail to model time-varying tasks such
as the Leslie speaker. On the other hand, and across all tasks, the models that incorporate latent-space RNNs or latent-space
temporal dilated convolutions to explicitly learn long temporal dependencies, such as CRAFx and CWAFx, tend to outperform
objectively and subjectively the rest of the models.

[0179] 3.1 Experiments

[0180]  3.1.1 Models

[0181]  For the experiments of this chapter we use the CAFx, WaveNet, CRAFx and CWAFx architectures. In order to provide
a fairer comparison, CAFx and WaveNet are adapted to process input frames of size 4096 and sampled with a hop size of 2048
samples. CRAFx and CWAFx are used exactly as described in Sections 2.1 and 2.2, respectively.

[0182]  The main modification to CAFx is in the adaptive front-end where we increase the max-pooling layer to a moving
window of size 64. The rest of the model is as depicted in Section 1.1. With regards WaveNet, we extend the model to 2 stacks
of 8 dilated convolutional layers with a dilation factor of 1,2,...,128. Based on Eq. (1.2), the receptive field of this architecture is of
1021 samples. The target field is 4096 samples, thus the input frame presented to the model comprises sliding windows of 5116
samples (see Eq. (1.3)). The rest of the architecture is as presented in Section 1.2.

[0183]  Code is available online: https:/github.com/mchijmma/DL-AFx/tree/master/src. Also, Appendix A shows the number of
parameters and processing times across all models.

[0184]  3.1.2 Training

[0185]  As mentioned in previous chapters, the training of the CAFX, CRAFx and CWAFx architectures includes an
initialization step. Once the front-end and back-end are pretrained, the rest of the convolutional, recurrent, dense and activation
layers are incorporated into the respective models, and all the weights are trained following an end-to-end supervised learning
task. The WaveNet model is trained directly following this second step.

[0186] The loss function to be minimized is the mean absolute error and Adam (Kingma and Ba, 2015) is used as optimizer.
For these experiments and for each model, we carried out the same supervised learing training procedure.

[0187]  We use an early stopping patience of 25 epochs, i.e. training stops if there is no improvement in the validation loss.
The model is fine-tuned further with the learning rate reduced by a factor of 4 and also a patience of 25 epochs. The initial
learning rate is 1e—4 and the batch size comprises the total number of frames per audio sample. On average, the total number of
epochs is approximately 750. We select the model with the lowest error for the validation subset (see Section 3.1.3). For the
Leslie speaker modeling tasks, the early stopping and model selection procedures were based on the training loss. This is
explained in more detail in Section 3.3.

[0188]  3.1.3 Dataset

[0189] Raw recordings of individual 2-second notes of various 6-string electric guitars and 4-string bass guitars are obtained
from the IDMT-SMT-Audio-Effects dataset (Stein et al., 2010). We use the 1250 unprocessed recordings of electric guitar and

bass to obtain the wet samples of the respective audio effects modeling tasks. The raw recordings are amplitude normalized and
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for each task the test and validation samples correspond to 5% of this dataset each. After the analog audio processors were
sampled with the raw notes, all the recordings were downsampled to 16 kHz. The dataset is available online:
https://zenodo.org/record/3562442.
[0190]  Universal Audio vacuum-tube preamplifier 610-B
[0191]  This microphone tube preamplifier (preamp) is sampled from a 6176 Vintage Channel Strip unit. In order to obtain an
output signal with high harmonic distortion, the preamp is overdriven with the settings from Table 3.1.
[0192]  Universal Audio transistor-based limiter amplifier 1176LN
[0193]  Similarly, the wildly used field-effect transistor limiter 1176LN is sampled from the same 6176 Vintage Channel Strip
unit. The limiter samples are recorded with the settings from Table 3.1. We use the slowest attack and release settings in order
to further test the long-term memory of the models. The compression ratio value of ALL corresponds to all the ratio buttons of an
original 1176 being pushed simultaneously. Thus, this setting also introduces distortion due to the variation of attack and release
times.
[0194] 145 Leslie speaker cabinet
[0195]  The output samples from the rotating horn and woofer of a 145 Leslie speaker cabinet are recorded with a AKG-C451-
B microphone. Each recording is done in mono by placing the condenser microphone perpendicularly to the horn or woofer and
1 meter away. Two speeds are recorded for each rotating speaker; tremolo for a fast rotation and chorale for a slow rotation. The
rotation frequency of the horn is approximately 7 Hz and 0.8 Hz for the tremolo and chorale settings respectively, while the
woofer has slower speed rotations (Herrera et al. (2009)).
[0196] Since the horn and woofer speakers are preceded by a 800 Hz crossover filter, we apply a highpass FIR filter with the
same cutoff frequency to the raw notes of the electric guitar and use only these samples as input for the hom speaker. Likewise,
for the woofer speaker we use a lowpass FIR filter to preprocess the raw bass notes. The audio output of both speakers is
filtered with the respective FIR filters. This in order to reduce mechanical and electrical noise and also to focus the modeling

tasks on the amplitude and frequency modulations. Also, the recordings are amplitude normalized.

Table 1.3 Settings for each analog awdio effect modeling task.

By seftings

preanys "Gain - +10 4B, "Level - &7, "hnpedance - Line', "High Boost/Cul - o B, "Low

Boost/Cat - o dB

fndter "Attack Time - Soo ps’, Release Time - 1300 ms’, Input Level -, "Outpast

Level - 7, "Hatin - ALL

Laslie speaker || Tremolo: Rotation Speed - Fast’ - Chevale: "Rotation Speed - Slow’

[0197]
[0198]  3.1.4 Objective Metrics

[0199]  Three metrics are used when testing the models with the various modeling tasks; mae, the energy-normalized mean
absolute error; mfcc_cosine, the mean cosine distance of the MFCCs (see Section 1.3.3); and ms_mse, the modulation
spectrum mean squared error (see Section 2.3.3).

[0200]  3.1.5 Listening Test

[0201]  Thirty participants between the ages of 23 and 46 took part in the experiment which was conducted at a professional
listening room at Queen Mary University of London. The Queen Mary Ethics of Research Committee approved the listening test
with reference number QMREC2165. The Web Audio Evaluation Tool (Jillings et al., 2015) was used to set up the test and
participants used Beyerdynamic DT-770 PRO studio headphones.
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[0202] The subjects were among musicians, sound engineers or experienced in critical listening. The listening samples were
obtained from the test subsets and each page of the test contained a reference sound, i.e. a recording from the original analog
device. The aim of the test was to identify which sound is closer to the reference, and participants rated 6 different samples
according to the similarity of these in relation to the reference sound.

[0203]  Therefore, participants were informed what modeling task they were listening to, and were asked to rate the samples
from ‘least similar’ to ‘'most similar’. This in a scale of 0 to 100, which was then mapped into a scale of 0 to 1. The samples
consisted of a dry sample as anchor, outputs from the 4 different models and a hidden copy of the reference. The test is based
on MUSHRA (Union, 2003).

[0204] 3.2 Results

[0205]  The training procedures were performed for each architecture and each modeling task: preamp corresponds to the
vacuum-tube preamplifier, limiter to the transistor-based limiter amplifier, horn tremolo and horn chorale to the Leslie speaker
rotating horn at fast and slow speeds respectively, and woofer fremolo and woofer chorale to the rotating woofer at the
corresponding speeds. Then, the models were tested with samples from the test subset and the audio results are available
online: https://mchijmma.github.io/DL-AFX/

[0206] The results of the listening test for all modeling tasks can be seen in Fig. 3.1 as notched box plots. The end of the
notches represents a 95% confidence interval and the end of the boxes represent the first and third quartiles. Also, the green
lines illustrate the median rating and the purple circles represent outliers. In general, both anchors and hidden references have
the lowest and highest median respectively. The perceptual findings match closely the objective metrics from Fig. 3.1, since the
architectures that explicitly learn long-temporal dependencies, such as CRAFx and CWAFx outperform the rest of the models.
Furthermore, for the woofer chorale task, the unsuccessful performance of the latter is also evidenced in perceptual ratings. This
indicates that the latent-space Wavenet fails to learn low-frequency modulations such as the woofer chorale rotating rate.

[0207]  For selected test samples of the preamp and limiter tasks and for all the different models, Figs. 3.3 and 3.4 shows the
input, reference, and output waveforms together with their respective spectrogram. Both in the time-domain and in the
frequency-domain, it is observable that the waveforms and spectrograms are in line with the objective and subjective findings. To
more closely display the performance of these nonlinear tasks, Fig. 3.5 shows a segment of the respective wave- forms. It can
be seen how the different models match the waveshaping from the overdriven preamp as well as the attack waveshaping of the
limiter when processing the onset of the test sample.

[0208] Regarding the Leslie speaker modeling task, Figs. 3.6 to 3.9 show the different waveforms together with their
respective modulation spectrum and spectrogram: Fig. 3.6 horn-tremolo, Fig. 3.7 woofer-tremolo, Fig. 3.8 hom-chorale and Fig.
3.9 woofer- chorale. From the spectra, it is noticeable that CRAFx and CWAFx introduce and match the amplitude and frequency
modulations of the reference, whereas CAFX and WaveNet fail to accomplish the time-varying tasks.

[0209] 3.3 Discussion

[0210]  Nonlinear task with short-term memory - preamp

[0211]  The architectures that were designed to model nonlinear effects with short-term memory, such as CAFx and WaveNet,
were outperformed by the models that incorporate temporal dependencies. With CRAFx and CWAFx being the highest scoring
model both objectively and perceptually. Although this task does not require a long-term memory, the context input frames and
latent-space recurrent and Wavenet layers from CRAFx and CWAFx respectively, benefited the modeling of the preamp. This
performance improvement could be on account of the temporal behaviour present on the vaccum-tube amplifier, such as
hysteresis or attack and release timings, although additional tests on the preamp might be required.

[0212]  Given the successful results reported in Chapter 1 and Damsk&gg et al. (2019), which represent the state-of-the-art for

nonlinear audio effects modeling, it is remarkable that the performance of these architectures (CAFx and WaveNet) is exceeded
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by CRAFx and CWAFx. It is worth noting that CAFx and WaveNet from Chapter 1 are trained with input frame sizes of 1024
samples, which could indicate a decrease in modeling capabilities when handling larger input frame sizes, such as 4096
samples. Similarly, the model from Damsk&gg et al. (2019) included 1 stack of dilated convolutions whereas the WaveNet
architecture used 2.
[0213]  Nevertheless, from Fig. 3.2a, we can conclude that all models successfully accomplished the modeling of the preamp.
Most of the output audio is only slightly discernible from their target counterparts, with CRAFx and CWAFXx being virtually
indistinguishable from the real analog device.
[0214]  Time-dependent nonlinear task - limiter
[0215]  Since the limiter task includes long temporal dependencies such as a 1100 ms release gate, as expected, the
architectures that include memory achieved a higher performance both objectively and subjectively. From Fig. 3.4b it can be
seen that CAFx and WaveNet introduce high frequency information that is not present in the reference spectrogram. This could
be an indication that the models compensate for their limitations when modeling information beyond one input frame, such as the
distortion tone characteristic due to the long release time together with the variable ratio of the flimiter. Furthermore, from Fig.
3.5b it is noticeable how each architecture models the attack behaviour of the limiter.
[0216] We can conclude that although all networks closely matched the reference target, itis CRAFx and CWAFx which
achieved the exact saturation waveshaping characteristic of the audio processor. The latter is accentuated with the perceptual
results from Fig. 3.2b, where CRAFx and CWAFx are again virtually indistinguishable from the reference target. While CAFx and
WaveNet are ranked behind due to the lack of long-term memory capabilities, it is noteworthy that these models closely
accomplished the desired waveform.
[0217]  Time-varying task - Leslie speaker
[0218]  With respect to the horn tremolo and woofer tremolo modeling tasks, it can be seen that for both rotating speakers,
CRAFx and CWAFx are rated highly whereas CAFx and WaveNet fail to accomplish these tasks. Thus, the perceptual findings
from Figs. 3.2¢ and 3.2d confirm the results obtained with the ms_mse metric and overall, the woofer task has a better matching
that the horn task. Nevertheless, for CRAFx and CWAFx, the objective and subjective ratings for the horn tremolo task do not
represent a significant decrease of performance and it can be concluded that both time-varying tasks were successfully modeled
by these architectures.
[0219]  CRAFxis perceptually ranked slightly higher than CWAFx. This indicates a closer matching of the reference amplitude
and frequency modulations, which can be seen in the respective modulation spectra and spectrograms from Fig. 3.6 and Fig.
3.7
[0220]  For the horn chorale and woofer chorale modeling tasks, CRAFx and CWAFx successfully modeled the former while
only CRAFx accomplished the woofer chorale task. Since the woofer chorale task corresponds to modulations lower than 0.8 Hz,
we can conclude that Bi-LSTMs are more adequate than a latent-space WaveNet when modeling such low-frequency
modulations. Furthermore, this is closely associated with the objective metrics reported in Section 2.4, where CWAFx obtained
the highest mae values when modeling effects based on low-frequency modulation, such as vibrato.
[0221]  Ingeneral, from Fig. 3.6 to Fig. 3.9, itis observable that the output waveforms do not match the waveforms of the
references. This shows that the models are not overfitting to the waveforms of the training data and that the successful models
are learning to introduce the respective amplitude and frequency modulations.
[0222] The models cannot replicate the exact reference waveform since the phase of the rotating speakers varies across the
whole dataset. For this reason, the early stopping and model selection procedures of these tasks were based on the training loss
rather than the validation loss. This is also the reason of the high mae scores across the Leslie speaker modeling tasks, due to

these models applying the modulations yet without exactly matching their phase in the target data. Further implementation of a
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phase-invariant cost function could improve the performance of the different architectures.
[0223] CAFx and WaveNet were not able to accomplish these time-varying tasks. It is worth noting that both architectures try
to compensate for long-term memory limitations with different strategies. It is suggested that CAFx wrongly introduces several
amplitude modulations, whereas WaveNet tries to average the waveform envelope of the reference. This results in output audio
significantly different from the reference, with WaveNet being perceptually rated as the lowest for the horn tremolo and horn
chorale tasks. This also explains the ms_mse results from Fig. 3.1 for the woofer chorale task, where WaveNet achieves the best
score since averaging the target waveform could be introducing the low-frequency amplitude modulations present in the
reference audio.
[0224] 3.4 Conclusion
[0225]  Inthis chapter, we provide the different deep learning architectures from Chapters 1 and 2. We tested the models
when modeling nonlinear effects with short- term and long-term memory such as a tube preamp and a transistor-based limiter,
and nonlinear time-varying processors such as the rotating horn and woofer of a Leslie speaker cabinet.
[0226] Through objective perceptual-based metrics and subjective listening tests we found that across all modeling tasks, the
architectures that incorporate Bi-LSTMSs or, to a lesser extent, latent-space dilated convolutions to explicitly learn long temporal
dependencies, outperform the rest of the models. With these architectures we obtain results that are virtually indistinguishable
from the analog reference processors. Also, state-of-the-art DNN architectures for modeling nonlinear effects with short-term
memory perform similarly when matching the preamp task and considerably approximate the limiter task, but fail when modeling
the time-varying Leslie speaker tasks.
[0227]  The nonlinear amplifier, rotating speakers and wooden cabinet from the Leslie speaker were successfully modeled.
Nevertheless, the crossover filter was bypassed in the modeling tasks and the dry and wet audio were filtered accordingly. This
was due to the limited frequency bandwidth of the bass and guitar samples, thus, this modeling task could be further provided
with a more appropriate dataset such as Hammond organ recordings.
[0228] A cost function based on both time and frequency can be used to further improve the modeling capabilities of the
models. In addition, since the highest ranked architectures use past and subsequent context input frames, it is possible to adapt
these architectures to overcome this latency. Thus, real-time applications would benefit significantly from end-to-end DNNs that
include long-term memory without resorting to large input frame sizes and the need for past and future context frames. Also, an
end-to-end Wavenet architecture with a receptive field as large as the context input frames from CRAFx and CWAFx could also
be provided for the time-varying modeling tasks.
[0229]  Moreover, as shown in Damskagg et al. (2019), the introduction of controls as a conditioning input to the networks can
be investigated, since the models are currently learning a static representation of the audio effect. Finally, applications beyond
virtual analog can be implemented, for example, in the field of automatic mixing the models could be trained to learn a

generalization from mixing practices.

4 MODELING ARTIFICIAL REVERBERATION

[0230] Inthis chapter we present a deep learning architecture to model artificial reverberators such as plate and spring. Plate
and spring reverberators are electromechanical audio processors mainly used for aesthetic reasons and characterized for their
particular sonic qualities. The modeling of these reverberators remains an active research field due to their nonlinear and time-
varying spatial response.

[0231]  We provide the capabilities of DNNs to learn such highly nonlinear electromechanical responses. Therefore based on
digital reverberators that use sparse FIR (SFIR) filters, we use domain knowledge from signal-processing systems and we

propose the Convolutional recurrent and Sparse filtering audio effects modeling network (CSAFx).
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[0232] Thus, we extend previous architectures by incorporating trainable FIR filters with sparsely placed coefficients in order
to model noise-like and dispersive responses, such as those present in plate and spring devices. We also modify the Squeeze-
and-Excitation (SE) blocks from CRAFX (see Section 2.1) in order to act as time-varying mixing gains between the direct sound
and the reflections. Hence CSAFx represents a DSP-informed DNN for modeling artificial reverberators.

[0233] Based on the results of the virtual analog experiments from Chapter 3, we use CRAFx as baseline model and we also
test its capabilities when modeling artificial reverberation. In order to measure the performance, we conduct a perceptual
listening test and we also analyze how the given task is accomplished and what the model is actually leamning.

[0234]  Prior to this work, end-to-end DNNs have not yet been implemented to model artificial reverberators, i.e. leaming from
input-output data and applying the reverberant effect directly to the dry input audio. Although deep leaming for dereverberation
has become a heavily researched field (Feng et al., 2014; Han et al., 2015), applying artificial reverberation or modeling plate
and spring reverb with DNNs has not been explored yet.

[0235]  We report that CSAFx outperforms CRAFx, both perceptual and objective evaluations indicate that the proposed model
successfully simulates the electromechanical devices and performs better than other DNNs for modeling audio effects.

[0236] 4.1 Convolutional recurrent and Sparse filtering network — CSAFx

[0237]  The model builds on CRAFx and as well is completely based on time-domain input and works with raw and processed
audio as input and output respectively. Itis divided into three parts: adaptive front-end, latent-space and synthesis back-end. A
block diagram is depicted in Fig. 4.1 and code is available online: https://github.com/mehijmma/modeling-plate-spring-
reverb/tree/master/src and Table A.1 displays the number of parameters and computational processing times.

[0238] The adaptive front-end is exactly the same as the one from CRAFx (see Table 2.1). It follows the same time distributed
convolutional and pooling layers, yielding a filter bank architecture of 32 channels which learns the latent representation Z.
Likewise, the model learns long-term memory dependencies by having an input x which comprises the current audio frame x
concatenated with the +4 previous and subsequent frames. The input is described by Eq. (2.1). These frames are of size 4096
(256 ms) and sampled with a hop size of 50%.

[0239] Latent-space

[0240] A block diagram of the latent-space can be seen in Fig. 4.2 and its structure is described in detail in Table 4.1. The
latent-space has as its main objective to process Z into two latent representations, Z1" and Z2". The former corresponds fo a set
of envelope signals and the latter is used to create the set of sparse FIR filters Z3".

[0241]  The latent representation Z from the front-end corresponds to 9 rows of 64 samples and 32 channels, which can be
unrolled into a feature map of 64 samples and 288 channels. The latent-space comprises two shared Bi-LSTM layers of 64 and
32 units with tanh as activation function. The output feature map from these Bi-LSTM layers is fed to two independent Bi-LSTM
layers of 16 units. Each of these layers is followed by locally connected SAAFs as the nonlinearity, obtaining in this way Z1" and
Z2". As shown in previous chapters, SAAFs can be used as nonlinearities or waveshapers in audio processing tasks.

[0242]  We propose a SFIR layer where we follow the constraints of sparse pseudo-random reverberation algorithms (Valimaki
et al.,, 2012). Reverberant reflections are modeled via FIR filters with sparsely placed coefficients. These coefficients are usually
obtained through a pseudo-random number sequence (e.g. velvet noise), which is based on discrete coefficient values such as -
1 and +1, where each one of the coefficients follows an interval of Ts samples while all the other samples are zero.

[0243]  Nevertheless, in SFIR, instead of using discrete coefficient values, each coefficient can take any continuous value
within -1 to +1. Accordingly, each one of the coefficients is placed at a specific index position within each interval of Ts samples
while the rest the samples are zero.

[0244]  Thus, the SFIR layer processes Z2" by two independent dense layers of 1024 units each. The dense layers are

followed by a tanh and sigmoid function, whose outputs are the coefficient values (coeff ) and their index position (idx)
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respectively. To obtain the specific idx value, the output of the sigmoid function is multiplied by Ts and a rounding down to the
nearest integer is applied. This operation is not differentiable so we use an identity gradient as a backward pass approximation
(Athalye et al., 2018). In order to have a high-quality reverberation, we use 2000 coefficients per second, thus, Ts = 8 samples
for a sampling rate of 16 kHz.

Table 4.1 Detatled architecture of the latend-space of TSAFx, This with an inpat frame size

of gouh samples and £4 context frames.
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[0246]
[0247]  Synthesis back-end

[0248]  The synthesis back-end can be seen in more detail in Fig. 4.3 and Table 4.2. The back-end uses the SFIR output Z3",
the envelopes Z1” and the residual connection R to synthesize the waveform and accomplish the reverberation task. It

10 comprises an unpooling layer, a convolution and multiplication operation, a DNN with SAAFs (DNN-SAAF), two modified
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Squeeze-and-Excitation blocks (Hu et al., 2018) that incorporate LSTM layers (SE-LSTM) and a final convolutional layer.
[0249]  Following the filter bank architecture: X3" is obtained by upsampling Z1™ and the feature map X5" is accomplished by
the locally connected convolution between R and Z3". As in CRAFx, R is obtained from X1 and corresponds to the frequency
band decomposition of the current input frame x©. X5" is obtained with the following equation.

R

{33 LA I N .
X« RYSZ vie, 3

G

{41
[0250]
[0251]  Where i denotes the ith row the feature maps, which follow a filter bank architecture of 32 channels. The result of this

convolution can be seen as explicitly modeling a frequency dependent reverberation response with the incoming audio.
Furthermore, due to the temporal dependencies leamt by the Bi-LSTMs, X5 is able to represent from the onset response the
late reflections of the reverberation task.

[0252] Then the feature map X2" is the result of the element-wise multiplication of the reverberant response X5 and the learnt

envelopes X3". The envelopes are applied in order to avoid audible artifacts between input frames (Jarveldinen and Karjalainen,

EY

2007). s 4=

[0253]  Secondly, the feature map X4" is obtained when the waveshaping nonlinearites from the DNN-SAAF block are applied
to R. The result of this operation comprises a learnt nonlinear transformation or waveshaping of the direct sound (see Section
1.1). As used in CRAFx, the DNN-SAAF block comprises 4 dense layers of 32, 16, 16 and 32 hidden units respectively. Each
dense layer uses tanh as nonlinearity except for the last one, which uses a SAAF layer.

[0254] We propose an SE-LSTM block to act as a time-varying gain for X4" and X2". Since SE blocks explicitly and adaptively
scale the channel-wise information of feature maps (Hu et al., 2018), we incorporate an LSTM layer in the SE architecture in
order to include long-term context from the input. Each SE-LSTM builds on the SE blocks from Section 2.1 which are based on
the architecture from (Kim et al., 2018).

[0255]  The SE-LSTMs blocks comprise an absolute value operation and global average pooling operation followed by one
LSTM and two dense layers of 32, 512 and 32 hidden units respectively. The LSTM and first dense layer are followed by a Relu,
while the last dense layer uses a sigmoid activation function. As depicted in Fig. 4.3, each SE-LSTM block process each feature
map X4" and X2", thus, applying a frequency dependent time-varying mixing gain se1 and se2. The resulting feature maps X1.1°

and X1.2" are added together in order to obtain X0".

Rig = sel Xy {4.3)
):3 s ged x X, {4.4}
Xp = Xy + Xz {1.5}

[0256]
[0257]  Asin the previous deep leaming architectures, the last layer corresponds to the deconvolution operation which is not

trainable since its filters are the fransposed weights of the first convolutional layer. The complete waveform is synthesized using
a hann window and constant overlap-add gain. As shown in the previous CEQ, CAFx, CRAFx and CWAFx architectures, all
convolutions are along the time dimension and all strides are of unit value. For each convolutional layer we use the same

padding and dilation is not incorporated.
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[0258]  Overall, each SAAF is locally connected and each function comprises 25 intervals between -1 to +1 and each Bi-
LSTM and LSTM have dropout and recurrent dropout rates of 0.1.

[0259] 4.2 Experiments

[0260] 4.2.1 Training

[0261] We follow the same pretraining initialization step as in CRAFx. Once the convolutional layers of the front-end and back-
end are initialized, the latent-space Bi-LSTMs, SFIR, DNN-SAAF and SE-LSTM blocks are incorporated into the model, and all
the weights are trained jointly based on the reverberation task.

[0262]  The loss function to be minimized is based in time and frequency and described by:

toss = o MAELy, § + axMSE(Y, ¥ (4.6}
[0263]

[0264] Where MAE is the mean absolute error and MSE is the mean squared error. Y and Y are the logarithmic power
magnitude spectra of the target and output respectively, and y and y” their respective waveforms. Prior to calculating the MAE,

the following pre-emphasis filter is applied to y and y".

-

Hizi s 10,9571 (4.7}
[0265]
[0266] As shown in Damskagg et al. (2019), H(z) is a highpass filter that we apply in order to add more weight to the high

frequencies. We use a 4096-point FFT to obtain Y and Y". In order to scale the time and frequency losses, we use 1.0 and 1e—4
as the loss weights a1 and a2 respectively. Explicit minimization in the frequency and time domains resulted crucial when
modeling such complex reverberant responses. The attention to the high frequencies is further emphasized by incorporating the
pre-emphasis filter and the logarithmic power spectrum in the time and frequency domain, respectively.

[0267]  For both training steps, Adam (Kingma and Ba, 2015) is used as optimizer and we use the same early stopping
procedure from Section 4.2.1. We use a patience value of 25 epochs if there is no improvement in the validation loss. Similarly,
afterwards the model is fine-tuned further with the learning rate reduced by 25% and also a patience value of 25 epochs. The
initial learning rate is 1e - 4 and the batch size comprises the total number of frames per audio sample. We select the model with
the lowest error for the validation subset.

[0268] 4.2.2 Dataset

[0269]  Plate reverberation is obtained from the IDMT-SMT-Audio-Effects dataset Stein et al. (2010), which corresponds to
individual 2-second notes and covers the common pitch range of various electric guitars and bass guitars. We use raw and plate
reverb notes from the bass guitar recordings. Spring reverberation samples are obtained by processing the electric guitar raw
audio samples with the spring reverb tank Accutronics 4EB2C1B. It is worth noting that the plate reverb samples correspond to a
VST audio plug-in, while the spring reverb samples are recorded using an analog reverb tank which is based on 2 springs placed
in parallel.

[0270]  For each reverb task we use 624 raw and effected notes and both the test and validation samples correspond to 5% of
this subset each. The recordings are downsampled to 16 kHz and amplitude normalization is applied. Also, since the plate
reverb samples have a fade-out applied in the last 0.5 seconds of the recordings, we process the spring reverb samples

accordingly. The dataset is available online: https://zenodo.orglrecord/3746119
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Table 4.3 Setiings for each artificial reverberation modeling task

Fx seitings

plate Smaertelectronix ambience: "Gating Amount - o, "Gating Atisck” - 10 ms’,
‘Gating Release - 10 ms', Decay Time - 2325 me’, Decay Dilfesion - 50,
Drecay Hold - off’, Shape Size - 16%", "Shape Predelay - o ms’, ‘Shape Width -
100%”, ‘Shape Quality - roa%’, "Shape Variation - o, "E(} Bass Frequency ~ 43
Hz', "E(Y Bass Gain - —7.8 dB, "EQ Treble Frequeney - soq44 He', "EQ Treble
Gain - —3.7 dB', "Damping Bass Frequency - 1538 Hz', 'Damping Bass Amount
- B7%, ‘Damping Treble Frequency - 8127 He', "Damping Treble Amount -
3%, Thy - —Ind", 'Wet - odb’

spring Acentronics EBzCyB: "Dy Mix - 0%, "Wet Mix - 1007

[0271]
[0272]  4.2.3 Evaluation

[0273]  Two objective metrics are used when testing the models with the various modeling tasks; mae, the energy-normalized
mean absolute error; and mfcc_cosine, the mean cosine distance of the MFCCs (see Section 1.3.3).

[0274]  As described in Section 3.1.5, we also conducted a perceptual listening test to measure the performance of the
models. Thirty participants complete the test which took place at a professional listening room at Queen Mary University of
London. The subjects were among musicians, sound engineers or experienced in critical listening. The audio was played via
Beyerdynamic DT-770 PRO studio head- phones and the Web Audio Evaluation Tool (Jillings et al., 2015) was used to set up
the test.

[0275]  The participants were presented with samples from the test subset. Each page contained a reference sound, i.e. from
the original plate or spring reverb. Participants were asked to rate 4 different samples according to the similarity of these in
relation to the reference sound. The aim of the test was to identify which sound is closer to the reference. Thus, the test is based
on the MUSHRA method (Union, 2003). The samples consisted of outputs from CSAFx, CRAFXx, a hidden copy of the reference
and a dry sample as hidden anchor.

[0276] 4.3 Results & Analysis

[0277]  Inorder to compare the reverberation modeling capabiliies of CSAFx, we use CRAFx as baseline, which has proven
capable of modeling complex electromechanical devices with long-term memory and low-frequency modulations such as the
Leslie speaker (see Chapter 3). The latter presents an architecture similar to CSAFx, although its latent-space and back-end
have been designed to explicitly learn and apply amplitude and frequency modulations in order to match time-varying audio
effects. Both models are trained under the same procedure, tested with samples from the test dataset and the audio results are
available online: https://mchijmma.github.io/modeling-plate-spring-reverb/

[0278] Table 4.4 shows the corresponding loss values from Eq. (4.6). The proposed model outperforms CRAFx in both tasks.
It is worth mention that for plate reverb, the mean mae and mfcc_cosine values between input and target waveforms are 0.16
and 0.15, respectively. It was found that both models perform similarly well in terms of mae, with CSAFx achieving better results.
Nevertheless, in terms of mfcc_cosine, the values obtained by CRAFx indicate that, perceptually, the dry notes are closer to the
target than the outputs from this model.

[0279]  For the spring reverb task, the mean mae and mfcc_cosine values between input and target waveforms are 0.22 and
0.34, respectively. In the same way, we can see a similar matching to the waveform, this based on the improvement of the mae
values. Furthermore, based on the results of mfcc_cosine, it can be seen that only CSAFx is capable of improving the values of

the dry recordings. For both plate and spring reverb tasks, the latter is further confirmed since the mean MSE values between
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input and target waveforms are 9.64 and 41.29, respectively.
[0280]  The results of the listening test can be seen in Fig. 4.5 as a notched box plot. The end of the boxes represents the first
and third quartiles, the end of the notches represents a 95% confidence interval, the green line depicts the median rating and the
circles represent outliers. As expected, both anchor and reference have the lowest and highest median respectively. It is evident
that for both plate and spring reverb tasks, CSAFx is rated highly whereas CRAFx fails to accomplish the reverberation tasks.
[0281]  Thus, the perceptual findings confirm the results obtained with the loss, mae and mfcc_cosine metrics and likewise,
plate models have a better matching that spring reverberators. These results are due to the fact that plate reverb samples
correspond to a digital emulation of a plate reverberator, whereas spring reverb samples correspond to an analog reverb tank.
Therefore, as expected, spring reverb samples represent a much more difficult task to model. Furthermore, the perceptual
ratings and objective metric values for spring do not represent a significant decrease of performance, nevertheless, the modeling
of spring late reflections could be further provided via a larger number of filters, different loss weights or input frame sizes.
[0282]  Overall, the initial onset responses are being modeled more accurately, whereas the late reflections differ more
prominently in the case of the spring, which as mentioned, in all the models it presents a higher loss. The models are introducing
specific reflections that are not present in the input waveforms which closely match those of the respective targets. Also, CRAFx
fails to match the high frequencies of the target, which goes along with the reported objective and perceptual scores. For CSAFx,
the differences in the time and frequency domains in relation to the target, also correspond to the obtained /oss values.
[0283] 4.4 Conclusion
[0284] Inthis chapter, we introduced CSAFx: a signal processing-informed deep learing architecture for modeling artificial
reverberators.
[0285]  For this architecture we proposed the SFIR layer, therefore exploring the capabilities of DNNs to learn the coefficients
of sparse FIR filters. Likewise, we introduced the SE-LSTM block in order to allow a DNN to learn time-varying mixing gains,
which are used by CSAFx to dynamically mix the direct sound and the respective reflections. Thus introducing a more
explainable network which also outperforms the previous RNN-based model.
[0286] A deep learning architecture may be able to emulate plate and spring reverberators and we measure the performance
of the model through a listening test. We show CSAFx successfully matching the characteristic noise-like and dispersive
responses of these nonlinear and time-varying audio processors.
[0287] Listening test results and perceptual-based metrics show that the model emulates closely the electromechanical
reverberators and also achieves higher ratings than CRAFx. The latter corresponds to an audio effects modeling network which,
in the previous chapter, has been proven to outperform several DNNs for black-box modeling of audio effects. Therefore, the
results obtained by CSAFx are remarkable and we can conclude that the proposed architecture represents the state-of-the-art of
deep learning for black-box modeling of artificial reverberators. From Table A.1, the computational processing times on both
GPU and CPU are significant higher for CSAFx. Since these times were computed using the non real-time optimized python
implementation, this higher computational cost could be due to the fact that CSAFx contains custom layers, such as SFIR, which
have not been optimized within differentiable programming libraries such as tensorflow.
[0288] There is also provided additional systematic comparison between the proposed DNN and current analytical methods
for modeling plate and spring reverb, such as numerical simulation or modal techniques. Also, modeling an actual
electromechanical plate reverb may improve the CSAFx performance when modeling plate and spring reverberators.
[0289]  The modeling of longer decay times and late reflections can also be implemented since the plate and spring reverb
samples have a fade-out applied in the last 0.5 seconds of the recordings. Parametric models can be provided by including the
respective controls as new input training data.

[0290] Likewise, the architecture can be further tested by modeling vintage digital reverberators or via convolution-based
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reverb applications. The latter brings applications within the fields of sound spatialization and room acoustics modeling.
[0291]  Parametric models in accordance with each of the models and architecture herein disclosed could also be achieved
since the models are learning a static representation of each audio effect modeling task. Therefore the behaviour of the
parameters of the effect units can be modeled by including the respective controls as new input training data. Also this can be
extended to ‘presets’ or set of controls.
[0292] The proposed models can operate via an offline or real-time implementation. Real-time models could be obtain, for
example, via C++ optimization since processing times are already close to real-time temporal constraints. Causal models, i.e.
without subsequent context frames, can also be implemented. This is due to the proposed architectures using both past and
subsequent context input frames. Implementing causal models that use shorter input frame sizes could open the way to low-
latency and real-time implementations.
[0293]  The weights learnt by the latent-space DNN could be optimized with an analysis of the filters learnt by the
convolutional layers of the front-end.
[0294]  The weights learnt by the latent-space DNNs by the convolutional layers of the front-end could be modified during
inference to alter the way the input audio is transformed. Therefore new transformations could be achieved which would not be
possible by using common analog or digital audio processors. This can be used as a set of new controls for the deep leaming-
based effect.
[0295]  The proposed architectures could be employed to model other types of audio processors. For example; audio effects
with long temporal dependencies that are based on echo, such as feedback delay, slapback delay or tape-based delay. The
proposed architectures are designed to model time-varying audio effects driven by low-frequency modulator signals or
envelopes, however modeling stochastic effects, i.e. audio processors driven by noise, can also be obtained. For instance, a
noise generator can be included in the synthesis back-end of these networks which can be scaled via SE or SE-LSTM layers.
Also, dynamic equalisers which apply different EQ curves based on input signal level can be modeled with CRAFx or CWAFx
architectures.
[0296] Completely different families of effects can also be provided. This includes audio-morphing, timbre transformations,
time-frequency processors such as phase vocoder effects; time-segment processors such as time stretching, pitch shifting, time
shuffling and granulation; spatial audio effects such as modeling of 3D loudspeaker setups or room acoustics; non-causal effects
such as audio processors that include “lookahead” settings.
[0297] Adaptive digital audio effects, where low-level and perceptual features are extracted and mapped for the
implementation of inter-channel cross-adaptive systems can also be implemented. Given an adaptive audio effects task, this
mapping of sound features to control the parameters of other processors can be provided by jointly training various of the
proposed architectures. The architectures can be used for style-learning tasks, where based on a target sound effected with a
chain of audio effects, the models learn to replicate the same transformation to a different input audio.
[0298] Possible applications of these architectures are within the field of automatic mixing and mastering. Automatic linear
and nonlinear processing can be implemented for an automatic mixing task, such as automatic EQ, compression, or
reverberation. Furthermore, style-learning of a specific sound engineer could be implemented, where a network is trained with
several tracks mixed by a sound engineer and finds a generalization from the engineer's mixing practices. Also, automatic post-
production for a specific instrument across one or several genres could be leamt and implemented by the models.
[0299] Embodiments include a number of modifications and variations of the techniques as described above.
[0300] Applications beyond audio effects modeling and intelligent music production can also be implemented, for instance
signal restoration methods such as undistortion, denoising and dereverberation.

[0301] The flow charts and descriptions thereof herein should not be understood to prescribe a fixed order of performing the
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method steps described therein. Rather, the method steps may be performed in any order that is practicable. Although the
present invention has been described in connection with specific exemplary embodiments, it should be understood that various
changes, substitutions, and alterations apparent to those skilled in the art can be made to the disclosed embodiments without
departing from the spirit and scope of the invention as set forth in the appended claims.

[0302] Methods and processes described herein can be embodied as code (e.g., software code) and/or data. Such code and
data can be stored on one or more computer-readable media, which may include any device or medium that can store code
and/or data for use by a computer system. When a computer system reads and executes the code and/or data stored on a
computer-readable medium, the computer system performs the methods and processes embodied as data structures and code
stored within the computer-readable storage medium. In certain embodiments, one or more of the steps of the methods and
processes described herein can be performed by a processor (e.g., a processor of a computer system or data storage system).
It should be appreciated by those skilled in the art that computer-readable media include removable and non-removable
structures/devices that can be used for storage of information, such as computer-readable instructions, data structures, program
modules, and other data used by a computing system/environment. A computer-readable medium includes, but is not limited to,
volatile memory such as random access memories (RAM, DRAM, SRAM); and non-volatile memory such as flash memory,
various read-only-memories (ROM, PROM, EPROM, EEPROM), magnetic and ferromagnetic/ferroelectric memories (MRAM,
FeRAM), phase-change memory and magnetic and optical storage devices (hard drives, magnetic tape, CDs, DVDs); network
devices; or other media now known or later developed that is capable of storing computer-readable information/data. Computer-

readable media should not be construed or interpreted to include any propagating signals.
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ACRONYMS

Al Artificial Intelligence

BBD Bucket Brigade Delay

Bi-LSTM Bidirectional Long Short-Term Memory

CNN Convolutional Neural Network

CAFx Convolutional audio effects modeling network

CEQ Convolutional EQ modeling network

CRAFx Convolutional Recurrent audio effects modeling network

CWAFx Convolutional and WaveNet audio effects modeling network

CSAFx Convolutional recurrent Sparse filtering audio effects modeling network
CPU Central Processing Unit

dBFS Decibels Relative to Full Scale DCT Discrete Cosine Transform DNN Deep Neural Network
DRC Dynamic Range Compression

DSP Digital Signal Processing

EQ Equalization

ERB Equivalent Rectangular Bandwidth

FIR Finite Impulse Response

FC Fully Connected

FFT Fast Fourier Transform
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GPU Graphics Processing Unit
[IR Infinite Impulse Response
JFET Junction Field Effect Transistor
KL Kullback-Leibler divergence
LC Locally Connected
Tl Linear Time Invariant
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MFCC Mel-Frequency Cepstral Coefficients
MSE Mean Squared Error
OTA Operational Transconductance Amplifier
Rel U Rectifier Linear Unit
RNN Recurrent Neural Network
SAAF Smooth Adaptive Activation Function
SFIR Sparse FIR
SGD Stochastic Gradient Descent
STFT Short-Time Fourier Transform
VST Virtual Studio Technology

WaveNet Feedforward Wavenet audio effects modeling network

WDF Wave Digital Filter

Appendix A - COMPUTATIONAL COMPLEXITY

PCT/GB2020/051150

The computational processing times were calculated with a Titan XP GPU and an Intel Xeon E5-2620 CPU. We use input frames

of size 4096 and sampled with a hop size of 2048 samples and it corresponds to the time a model takes to process one batch, i.e.

the total number of frames within a 2-second audio sample. GPU and CPU times are reported using the non real-time optimized

python implementation. Table A.1 shows the number of trainable parameters and processing times across all the models

Table A, 1 Number of prrameters and processing {imes across vartous models.

model  number of parameters

GFU time {8}

CPL dme {s)

CEC 561,473
(CAFy 604,545
WaveNgt 1,707,585
CRAFy 27507y
WAy 208,057
£5AFY 977

0.04335
o084
00508
0, 406H
0.40724

O.7Re
752

04811
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CLAIMS

1. A computer-implemented method of processing audio data, the method comprising:

receiving input audio data (x) comprising a time-series of amplitude values;

transforming the input audio data (x) into an input frequency band decomposition (X1) of the input audio data (x);

transforming the input frequency band decomposition (X1) into a first latent representation (2);

processing the first latent representation (Z) by a first deep neural network to obtain a second latent representation (Z*,
Z1%);

transforming the second latent representation (Z%, Z1%) to obtain a discrete approximation (X3%);

element-wise multiplying the discrete approximation (X3*) and a residual feature map (R, X5*) to obtain a modified
feature map, wherein the residual feature map (R, X5*) is derived from the input frequency band decomposition (X1);

processing a pre-shaped frequency band decomposition by a waveshaping unit to obtain a waveshaped frequency
band decomposition (X14, X1.2%), wherein the pre-shaped frequency band decomposition is derived from the input frequency
band decomposition (X1), wherein the waveshaping unit comprises a second deep neural network;

summing the waveshaped frequency band decomposition (X1, X1.2%) and a modified frequency band decomposition
(X2*, X1.1% to obtain a summation output (X0%), wherein the modified frequency band decomposition (X2, X1.1%) is derived
from the modified feature map; and

transforming the summation output (X0*) to obtain target audio data (y*).

2. The method of claim 1, wherein transforming the input audio data (x) into the input frequency band decomposition (X1)

comprises convolving the input audio data (x) with kernel matrix (W1).

3. The method of claim 2, wherein transforming the summation output (X0%) to obtain the target audio data (y*) comprises

convolving the summation output (X0*) with the transpose of the kernel matrix (W1T).

4. The method of any one of claims 1 to 3, wherein transforming the input frequency band decomposition (X1) into the
first latent representation (Z) comprises locally-connected convolving the absolute value (JX1]) of the input frequency band
decomposition (X1) with a weight matrix (W2) to obtain a feature map (X2); and max-pooling the feature map (X2) to obtain the

first latent representation (Z).

5. The method of any one of claims 1 to 4, wherein the waveshaping unit further comprises a locally connected smooth

adaptive activation function layer following the second deep neural network.

6. The method of claim 5, wherein the waveshaping unit further comprises a first squeeze-and-excitation layer following

the locally connected smooth adaptive activation function layer.

7. The method of any one of claims 1 to 6, wherein at least one of the waveshaped frequency band decomposition (X1,
X1.2M and the modified frequency band decomposition (X2, X1.1%) is scaled by a gain factor (se, se1, se2) before summing to

produce the summation output (X0%).

8. The method of any one of claims 2 to 7, wherein each of kernel matrix (W1) and the weight matrix (W2) comprises
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fewer than 128 filters, optionally fewer than 32 filters, optionally fewer than 8 filters.

9. The method of any one of claims 1 to 8, wherein the second deep neural network comprises first to fourth dense layers

optionally respectively comprising 32, 16, 16 and 32 hidden units, optionally wherein each of the first to third dense layers of the

second deep neural network is followed by a tanh function.

10. The method of any one of claims 6 to 9, wherein, in the waveshaping unit, the first squeeze-and-excitation layer

comprises an absolute value layer preceding a global average pooling operation.

11. The method of any one of claims 1 to 10, further comprising:
passing on the input frequency band decomposition (X1) as the residual feature map (R);
passing on the modified feature map as the pre-shaped frequency band decomposition; and

passing on the modified feature map as the modified frequency band decomposition (X2, X1.1%).

12. The method of claim 11, wherein the first deep neural network comprises a plurality of bidirectional long short-term

memory layers, optionally followed by a smooth adaptive activation function layer.

13. The method of claim 12, wherein the plurality of bidirectional long short-term memory layers comprises first, second

and third bidirectional long short-term memory layers, optionally comprising 64, 32 and 16 units respectively.

14. The method of claims 12 or 13, wherein the plurality of bidirectional long short-term memory layers is followed by a

plurality of smooth adaptive activation function layers, each optionally being composed of 25 intervals between -1 10 +1.

15. The method of claim 12, wherein the first deep neural network comprises a feedforward WaveNet comprising a

plurality of layers, optionally wherein the final layer of the WaveNet is a fully-connected layer.

16. The method of any one of claims 1 to 10,

wherein the first deep neural network comprises a plurality of shared bidirectional long short-term memory layers,
followed by, in parallel, first and second independent bidirectional long short-term memory layers;

wherein the second latent representation (Z1%) is derived from the output of the first independent bidirectional long
short-term memory layer,

wherein, in the waveshaping unit, the first squeeze-and-excitation layer further comprises a long short-term memory
layer;

wherein the method further comprises:

passing on the input frequency band decomposition (X1) as the pre-shaped frequency band decomposition;

processing the first latent representation (Z) using the second independent bidirectional long short-term memory layer
to obtain a third latent representation (Z2%);

processing the third latent representation (Z2*) using a sparse finite impulse response layer to obtain a fourth latent
representation (Z3");

convolving the frequency band representation (X1) with the fourth latent representation (Z3%) to obtain said residual

feature map (X5*); and
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processing the modified feature map by a second squeeze-and-excitation layer comprising a long short-term memory

layer to obtain said modified frequency band decomposition (X2*, X1.14).

17. The method of claim 16, wherein the plurality of shared bidirectional long short-term memory layers comprises first and
second shared bidirectional long short-term memory layers optionally comprising 64 and 32 units respectively, optionally wherein

each of the first and second shared bidirectional long short-term memory layers has a tanh activation function.

18. The method of claims 16 or 17, wherein each of the first and second independent bidirectional long short-term memory
layers comprises 16 units, optionally wherein each of the first and second independent bidirectional long short-term memory

layers comprises a locally connected smooth adaptive activation function.

19. The method of any one of claims 16 to 18, wherein the sparse finite impulse response layer comprises:

first and second independent dense layers taking the third latent representation (Z2%) as input; and

a sparse tensor taking the respective output of the first and second independent dense layers as inputs, the output of
the sparse tensor being the fourth latent representation (Z3%);

optionally wherein the first and second independent dense layers comprise respectively a tanh function and a sigmoid

function.

20. The method of any one of claims 1 to 14 and 16 to 19, wherein all the convolutions are along the time dimension and

have a stride of unit value.

21. The method of any one of claims 1 to 14 and 16 to 20, wherein at least one of the deep neural networks is trained in
dependence on data representing one or more audio effect selected from a group comprising: tube amplifier, distortion, speaker-
amplifier, ladder filter, power amplifier, equalisation, equalisation-and-distortion, compressor, ring modulator, phaser, modulation
based on operational transconductance amplifier, flanger with bucket brigade delay, modulation based with bucket brigade
delay, Leslie speaker horn, Leslie speaker horn-and-woofer, flanger-and-chorus, modulation based, modulation based-and-
compressor, plate-and-spring reverberation, echo, feedback delay, slapback delay, tape-based delay, noise-driven stochastic
effects, dynamic equalisation based on input signal level, audio morphing, timbre transformations, phase vocoder, time

stretching, pitch shifting, time shuffling, granulation, 3D loudspeaker setup modelling, and room acoustics.

22. A computer program comprising instructions which, when the program is executed by a computer, cause the computer

to carry out the method of claims 1 to 21.

23. A computer-readable storage medium comprising the computer program of claim 22.

24, An audio data processing device comprising a processor configured to perform the method of claims 1 to 21.
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