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Abstract—Sound effects model design commonly uses digi-
tal signal processing techniques with full control ability, but
it is difficult to achieve realism within a limited number of
parameters. Recently, neural sound effects synthesis methods
have emerged as a promising approach for generating high-
quality and realistic sounds, but the process of synthesizing the
desired sound poses difficulties in terms of control. This paper
presents a real-time neural synthesis model guided by a physically
inspired model, enabling the generation of high-quality sounds
while inheriting the control interface of the physically inspired
model. We showcase the superior performance of our model in
terms of sound quality and control.

Index Terms—Sound effects generation, Controllable sound
synthesis, Physically inspired models

I. INTRODUCTION

Sound effects play a crucial role in the field of sound design
and production. Conventionally, the predominant approaches
for their utilization are based on editing recorded audio. How-
ever, as there is an increasing demand for richer sound effects,
the limitations of this time-consuming and constrained method
have become increasingly apparent. Alternatively, modelling
the physical phenomena of sound effects could provide a large
number of variations based on the control parameters. Due to
the complexity of modelling an entire physical environment,
physically inspired models are often preferred in practical im-
plementations of procedural audio [1]. This approach utilizes
fundamental digital signal processing (DSP) components to
perform simplified and approximate calculations of the phys-
ical system, incorporating both perceptually and physically
meaningful controls that enable real-time generation. Given
the trade-off between sound realism and computational com-
plexity, they often incorporate numerous free parameters that
pose challenges for optimization. A common way to improve
the model performance is by exposing more parameters but at
the expense of reduced ease of control [2].

In recent years, data-driven neural sound synthesis has
been the mainstream direction of academic research in sound
synthesis, including Generative Adversarial Networks (GANs)
[3], autoregressive models [4], autoencoders [5], diffusion
models [6], and show high potentials for generating realistic
sounds. However, due to the limited interpretability of neural
network models, controllable neural sound effects synthesis
and its control mode remain an open question. One approach

involves manipulating the output randomness [7] or latent
space [8] of the model to obtain variations in target sounds;
however, complete control over the generation direction is still
elusive. Another common strategy is leveraging category labels
associated with data, such as shoe type and ground surface
for footstep sounds [9] or emotions for knocking sounds [10].
This method is constrained by the availability of labelled data
and often relies on discrete labels only. Furthermore, directly
controlling high-level audio features extracted from data could
provide an intuitive control mode, such as loudness [11], [12],
pitch [11] or other timbre features [13], [14]. However, this
approach may not be optimal for explicit control since it
does not directly reflect the physical process underlying sound
generation.

The integration of control capabilities from physically in-
spired models with the generative potential of neural synthesis
holds promise as a sound synthesis method. Physics priors
could provide reliable and structured information to neural
sound synthesis, e.g., ground reaction force curve of footstep
sound [15], or object interaction and resonance parameters of
impact sound [16], where the control parameters are generally
extracted from well-defined physical equations. On the other
hand, neural synthesis with the capacity to capture intricate
sound details could serve as an auxiliary component within
the system, enhancing the sound quality of physically inspired
models without directly optimizing their complex inner struc-
ture.

In this paper, we propose a neural sound effects synthesis
system with an explicit control interface based on an example
of a physically inspired explosion model. We first use synthe-
sized sounds for training, and a latent discriminator is intro-
duced to disentangle synthesized audio representations and the
control behavior. Then, we compare two methods to perform
the transfer to real sounds: supervised transfer using pseudo-
label and an unsupervised transfer using CycleGAN [17]. We
conduct evaluations on both audio quality and control ability
to demonstrate the effectiveness of our proposed method.

II. PROPOSED METHOD

A. Explosion Model

We use a physically inspired explosion model (PM) as an
example in our experiment. The design concept is derivedIC
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Fig. 1. Flow diagram of proposed methods. Grey boxes represent frozen networks. (a). Representation learning stage for synthesized sounds xg by the
PM, achieving disentangled control facilitated by the latent discriminator. (b). Supervised transfer from xg to real-world sounds xr using pseudo-parameters
obtained by a pre-trained parameter estimation model. (c). Unsupervised transfer from xg to xr by CycleGAN. (d). Utilization of the proposed model. Control
parameters and their corresponding xg as inputs of the model to obtain xr .

from the implementation by Andy Farnell [18], and the
model can satisfy real-time queries1. The explosion sound is
dominated by three main parts: rumble amount, air amount and
dust amount, with eight continuous value control parameters:
“Rumble”, “Rumble Decay”, “Air”, “Air Decay”, “Dust”,
“Dust Decay”, “Time Separation”, and “Grit Amount”. Further
details of this PM can be found in [2], [18].

B. Overall Architecture

Considering the quality of synthesis and its applicability
in real-time scenarios, we adopt a similar variational au-
toencoder (VAE) architecture to that of RAVE [5]. It uses
Pseudo Quadrature Mirror filters (PQMF) [19] to decompose
the sound into multiple downsampled sub-signals, enabling
real-time synthesis speed. The encoder is a convolutional
downsampling network, and the decoder first uses convolu-
tional upsampling layers and residual blocks, then waveform,
loudness, and noise synthesizer networks are employed to
process the signal.

Our purpose is to synthesize real sounds xr based on a set of
continuous control parameters of the PM θxg . To accomplish
this, it is essential to acquire information about the controls
of the PM and transfer them to real-world data. Therefore, we
propose a two-stage training process: the first stage involves
learning the latent representation and continuous control of
PM for reconstruction, while the second stage focuses on
translating generated sounds into real sounds.

1https://nemisindo.com/models/explosion

1) Learning Representation and Disentangled Control: In
the first stage, we train the VAE to reconstruct the generated
sound by the PM along with its control parameters. For
reconstruction, we aim to optimize a multi-resolution spectral
loss [11] Ls(xg, x̂g),

Ls(xg, x̂g) =
∑
i∈N

(∥S(xg)i − S(x̂g)i∥1

+ ∥ logS(xg)− logS(x̂g)i∥1) (1)

where S(·) is the magnitude spectrogram, and N is a set
of Fast Fourier Transform sizes. The corresponding training
objective Lvae is derived from the Evidence Lower Bound
(ELBO) [20] as in RAVE [5].

To achieve disentangled control, the parameters should
serve as additional inputs to the decoder. Instead of directly
concatenating them with the latent vector z, we utilize feature-
wise linear modulation (FiLM) [21] layers to inject the control
information into the latent vector and decoder residual blocks.

However, the encoder may have already acquired sufficient
information for reconstruction just from the data, leading to
the decoder disregarding the control information. To address
this issue, we employ a latent discriminator [22] that compels
the encoder E to learn a representation without any control
information. This discriminator D takes z as input and aims
to output accurate control parameters θxg , while the encoder
aims to remove relevant information accordingly.

The original latent discriminator [22] was designed for
handling binary values; and in [14], [23], a multivariate dis-
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criminator was introduced to handle real values by partitioning
the control parameter range into multiple equal segments and
predicting the correct segment. In our case, our discrimina-
tor directly outputs the probability distributions for all the
segments, so the loss of discriminator loss L(D;E) and its
corresponding generator loss for the encoder L(E;D) are

L(D;E) = −E[log(p(θxg
|z))] (2)

L(E;D) = −E[log(1− p(θxg
|z))] (3)

The total loss for our model at this stage is

L = Lvae + L(E;D) (4)

This stage is depicted in Figure 1(a). We train the model
until the convergence of this loss, and subsequently freeze
the encoder. Previous studies [5], [14] have incorporated
an additional adversarial fine-tuning stage to enhance sound
quality. However, in our case, we observed that satisfactory
performance was achieved after stage 1, rendering adversarial
training unnecessary.

2) Transfer to Real Sound: After completing stage 1 train-
ing, our model can be considered as a neural proxy of the
PM model with disentangled controls. In the second stage,
we further enhance sound realism by training our decoder
on real sound data. The primary challenge in this transfer
lies in the absence of ground-truth control parameters for real
sounds due to misalignment between control parameters and
any data labels. This discrepancy arises from our utilization of
simulation-based control parameters rather than relying solely
on strict physics. To address this issue, we experiment with
both supervised and unsupervised learning modes: supervised
learning using pseudo-label and unsupervised learning using
CycleGAN [17].
Supervised learning using Pseudo-Label: This stage is shown
in Figure 1(b). To train our model in a supervised manner,
paired data of xr and xg is required. We utilize a set of pseudo-
parameters for xr obtained through a sound matching task,
i.e., estimating the PM control parameters of the best-matched
generated sound for the real one. Following the approach in
[2], we train an end-to-end parameter estimation network. It
should be noted that this method necessitates a differentiable
implementation of the PM; therefore, applying it to non-
differentiable models may require alternative derivative-free
optimization methods, such as genetic algorithms. The pseudo-
parameters θxr

and their corresponding xg are used as input
to our model, with the reconstruction loss Ls(xr, x̂r) defined
in equation (1).

Given our limited training dataset size, we introduce a small
random perturbation δ to θxr

during input processing to obtain
x̃r, aiming to minimize the loss function Ls(xr, x̃r). Our
assumption is that close parameters would generate similar
sounds. Additionally, adversarial training is incorporated into
this stage using MelGAN’s discriminator [24], where both
its training objective Ladv and the discriminator feature map
loss LFM are employed. The total loss for this stage can be
expressed as

L = Ls(xr, x̂r) + Ls(xr, x̃r) + Ladv + LFM (5)

Unsupervised learning using CycleGAN: CycleGAN [17] of-
fers an unsupervised approach for image-to-image translation
without the need for paired data, and has been successfully
applied to sound-to-sound tasks [25]–[27]. Following the
method of CycleGAN, as illustrated in Figure 1(c), we train
our model G using GAN framework to map input xg onto
xr, simultaneously training another original RAVE model F
to map input xr onto xg . The translation cycle should ensure
the cycle-consistency: mapping back from output space brings
back to the original input space, i.e. F (G(xg, θxg

)) = xg , and
similarly for the reverse cycle: G(F (xr), θx̂g

) = xr, where θx̂g

is obtained by a parameter estimation network [2] exclusively
trained on xg . The cycle-consistency loss serves as the training
objective:

Lcycle = ∥F (G(xg, θxg
))− xg∥1 + ∥G(F (xr), θx̂g

)− xr∥1
(6)

We employ the identical GAN training objective as in the
above supervised learning approach, thereby the total loss is

L = Lcycle + Ladv(G) + Ladv(F ) (7)

III. EXPERIMENTS

A. Data

For stage 1 training, we generated a dataset of 20,000
samples by randomly varying the parameter settings within
the predefined range of the PM. All sounds are 3 seconds at
the sample rate of 24 kHz.

For the subsequent real data transfer stage, we curated 76
high-quality real explosion sound samples from Pro Sound
Effects2 and BBC Sound Effects3. Our PM model is designed
to generate a single explosion without including any environ-
mental reflections or interactive effects such as glass shattering
or secondary impacts caused by the explosion. Therefore, our
data collection process adheres to the standard of avoiding
obvious echoes and other interactive effects. Additionally, all
collected samples were trimmed or zero-padded to maintain a
consistent duration of 3 seconds at the sample rate of 24 kHz.

B. Baselines

To evaluate audio quality, we compared our supervised
learning method (Supervised), CycleGAN method (Unsuper-
vised), the original PM, and an enhanced version of the PM
(PM-24params) [2], wherein 24 parameters within PM were
directly exposed.

C. Evaluation Metrics

We evaluated our model’s generated sound quality and con-
trol ability. For sound quality evaluation, we adopted Fréchet
Audio Distance (FAD) [28], Maximum Mean Discrepancy
(MMD) [29], and mel-cepstral distortion (MCD) [30].

To assess the control capability, we employed Spearman’s
rank correlation coefficient to evaluate the relationship be-
tween high-level audio features in the original PM outputs

2https://www.prosoundeffects.com/hybrid-library/
3https://sound-effects.bbcrewind.co.uk/
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and our model outputs with identical control parameters.
Specifically, we selected Boominess, Brightness, Roughness,
and Depth from the Audio Commons project4 as our target
audio features of interest.

IV. RESULTS

A. Audio Quality

We compared the sound matching results of PM (i.e. inputs
of Supervised), PM-24params, and reconstruction quality of
Supervised. Also, we are interested in the overall audio quality
with random parameters, since it could represent our model’s
reliability in generating realistic sounds. We compared quality
with random parameters of PM, Supervised and Unsuper-
vised across FAD and MMD as introduced in Section III-C.
Moreover, due to the limited size of our dataset, the pseudo-
parameters derived from real data fail to encompass the entire
parameter range. Consequently, we also evaluated the audio
quality with random interpolated parameters within the pseudo
parameter range of Supervised (Supervised (interpolation)).
The results are shown in Table I, and we encourage readers
to access our demo website5 for subjective evaluation.

The Supervised method shows a major improvement com-
pared with PM and PM-24params, indicating the neural net-
work’s efficiency in improving the design of a physically in-
spired model. For random control parameters, we observe that
the Supervised (interpolation) has a pretty good performance,
but this performance cannot extrapolate to the full parameter
range, and the audio quality is even worse than PM. The
Unsupervised method shows a stable performance in the entire
parameter range but is slightly worse than the Supervised
(interpolation). This is consistent with the expected since it
can explore the parameter space more freely during training.

B. Controls

We compared the correlation between PM and Supervised,
Supervised (interpolation), and Unsupervised, using randomly
selected values for all control parameters with 100 samples.
The results are shown in Table II. Additionally, we investi-
gated the correlation when changing a single parameter while
keeping all other parameters fixed. In this scenario, we present
the results for Supervised (interpolation) in Table III and
Unsupervised in Table IV.

The Supervised (interpolation) method shows the highest
correlation with PM, yet it still lacks the ability to extrapolate
across the entire parameter range. It demonstrates a signifi-
cant positive correlation in terms of Roughness and Depth,
while encountering challenges in capturing the characteristics
of Boominess and Brightness. Similar trends are observed
for the Unsupervised method, although there is an overall
decrease compared to the Supervised (interpolation) approach.
For single-parameter control, Supervised (interpolation) shows
comparable performance to the overall correlations across
all parameters. However, it is challenging for Unsupervised

4https://audiocommons.github.io/
5https://zys711.github.io/NeuralPM/

TABLE I
AUDIO QUALITY RESULTS

FAD MMD MCD

PM 29.29 119.54 1.20
PM-24params 17.26 65.97 1.05

Supervised 5.21 22.77 0.60
PM (random) 30.95 163.49 -

Supervised (interpolation) 8.87 58.35 -
Supervised (random) 37.76 190.09 -

Unsupervised (random) 12.71 95.54 -

methods to replicate the same level of single-parameter control
ability as PM. Without explicit labels, unsupervised learning
has difficulty capturing the detailed relationships between indi-
vidual parameters and specific sound characteristics, resulting
in less effective control compared to the supervised approach.

TABLE II
ALL PARAMETERS CONTROL CORRELATIONS

Boominess Brightness Roughness Depth

Supervised (interpolation) 0.70 0.66 0.86 0.95
Supervised (random) 0.03 0.18 0.52 0.40

Unsupervised (random) 0.16 0.33 0.64 0.91

TABLE III
(SUPERVISED(INTERPOLATION)) SINGLE-PARAMETER CONTROL

CORRELATIONS

Boominess Brightness Roughness Depth

Rumble 0.96 0.80 0.71 0.88
Rumble Decay 0.75 0.44 0.71 0.73

Air 0.71 0.47 0.85 0.94
Air Decay 0.46 0.38 0.70 0.95

Dust 0.42 0.35 0.70 0.95
Dust Decay 0.44 0.34 0.70 0.90

Time Separation 0.38 0.52 0.59 0.88
Grit Amount 0.34 0.67 0.60 0.87

TABLE IV
(UNSUPERVISED) SINGLE-PARAMETER CONTROL CORRELATIONS

Boominess Brightness Roughness Depth

Rumble -0.08 -0.04 0.78 0.93
Rumble Decay -0.23 -0.15 0.88 0.27

Air 0.44 0.85 -0.81 -0.51
Air Decay 0.91 0.94 -0.80 0.80

Dust 0.54 0.60 -0.55 -0.76
Dust Decay -0.37 -0.31 0.81 0.90

Time Separation -0.38 0.21 0.82 0.91
Grit Amount 0.44 0.28 0.35 0.86

V. CONCLUSION

We presented a real-time neural sound effects synthesis
system that combines intuitive control from physically inspired
models with the high-quality output of neural networks. The
supervised method excels in terms of both quality and control
within interpolated parameters, while the unsupervised method
consistently delivers high audio quality performance across
the entire parameter space at the expense of sacrificing fine-
grained control. This integration of physically inspired models
and neural networks offers a promising solution for achieving
both control and realism in sound model design.
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[9] M. Comunità, H. Phan, and J. D. Reiss, “Neural synthesis of footsteps
sound effects with generative adversarial networks,” in Audio Engineer-
ing Society Convention 152, 2022.

[10] A. Barahona-Rios and S. Pauletto, “Synthesising knocking sound effects
using conditional wavegan,” in SMC Sound and Music Computing
Conference, 2020.

[11] J. Engel, L. Hantrakul, C. Gu, and A. Roberts, “Ddsp: Differentiable
digital signal processing,” in International Conference on Learning
Representations, 2019.

[12] A. Barahona-Rı́os and T. Collins, “Noisebandnet: controllable time-
varying neural synthesis of sound effects using filterbanks,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 32, pp.
1573–1585, 2024.

[13] J. Nistal, S. Lattner, and G. Richard, “Drumgan: Synthesis of drum
sounds with timbral feature conditioning using generative adversarial
networks,” in International Society for Music Information Retrieval
Conference, 2020.
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