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Abstract. Articulatory synthesis generates speech by modeling vocal 
tract configurations, but estimating articulatory parameters from audio-
the acoustic-to-articulatory inversion (AAI) problem-remains challenging 
due to data scarcity, ambiguity, and the limitations of optimization-based 
methods. We propose PinkVocalTransformer, a Transformer framework 
that reformulates AAI as a sequence-to-sequence classification task over 
44-dimensional vocal tract diameter sequences derived from the Pink 
Trombone physical synthesizer. By modeling complete tract shapes 
rather than higher-level articulatory trajectories, our approach yields 
a more interpretable and spatially consistent representation. To enable 
supervised learning, we generated over four million synthetic audio– 
parameter pairs under controlled static configurations. HuBERT embed-
dings improve feature extraction and robustness to real audio inputs. 
Reformulating regression as classification helps mitigate convergence 
issues arising from multimodal parameter distributions, leading to more 
stable predictions. Since ground-truth articulatory data are unavailable 
for real recordings, we regenerate audio from predicted parameters to 
indirectly evaluate reconstruction quality. Experiments show PinkVocal-
Transformer outperforms VAE-based and optimization baselines in vowel
reconstruction. Objective ViSQOL metrics and ABX listening tests con-
firm higher perceptual similarity and listener preference for the regener-
ated audio compared to baselines. While the model performs strongly on
static and simple dynamic segments, future work will focus on extending
coverage to more diverse articulatory transitions and adapting the frame-
work to more complex vocal tract models. Overall, this approach provides
an efficient, data-driven framework for recovering interpretable articula-
tory parameters from audio, demonstrating both improved reconstruc-
tion quality and perceptual similarity compared to existing baselines.

Keywords: Acoustic-to-articulatory inversion · Transformer · 
Articulatory synthesis · Pink trombone

1 Introduction 

Articulatory synthesis [1] generates speech by simulating vocal tract dynamics.
Unlike statistical [2, 3] or concatenative methods [4, 5], it explicitly mo dels artic-
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ulatory motion, offering better interpretability and control. These advantages 
benefit linguistic research and have potential to help diagnose speech disorders
and vocal tract conditions.

Several foundational models have supported articulatory synthesis, includ-
ing the Liljencrants-Fant (LF) model [6] and the source-filter theory [7], which 
offer key insights into speech mechanics. Building on these, physical vocal tract 
simulators such as Pink Trombone (PT) [8] and VocalTractLab [9] have been 
developed to study articulatory coordination.

Despite these advances, realistic synthesis remains difficult. Black-box meth-
ods rely on optimization but face local minima and high cost. White-box 
approaches infer parameters analytically but are also costly and inefficient at
scale.

To address these challenges, we developed a black-box deep learning method 
to inversely model the shape of the vocal tract. As shown in Fig. 1, our approach 
takes acoustic signals as input and outputs the articulatory parameters that 
best reconstruct the original sound. To establish this mapping, we use PT as 
the s ynthesizer and generate a dataset of more than four million static audio
parameter pairs. Unlike previous studies [10, 11], which often rely on traditional 
articulatory features, we focus on the diameters of the vocal tract as articulatory
parameters, representing them as a 44-dimensional sequence [12]. Consequently, 
the problem can be framed as mapping acoustic representations o nto a spatial
sequence of articulatory diameters.

Fig. 1. Work process of the Pink VocalTransformer.

A major challenge in this approach is the instability caused by the multi-peak 
distribution of articulatory parameters, which complicates training. To address 
this, we reformulate the regression task as classification to stabilize learning. 
Since training only on PT data limits generalization to real-world audio, we inte-
grate the pretrained HuBERT model [13] into the embedding layer t o enhance
feature extraction.

The objectives of this paper a re the following.

– Propose a method that formulates acoustic-to-articulatory inversion (AAI) 
as a sequence-to-sequence problem and

– Evaluate the model’s accuracy and robustness through systematic testing on
both synthetic and real audio.
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The remainder of this paper is organized as follows. Section 2 reviews related 
work. Section 3 introduces the PT-based dataset and the proposed T ransformer-
based method. Section 4 presents experimental results, and Sect. 5 discusses and 
concludes t he findings.

2 Related Work 

Articulatory synthesis models the vocal tract and controls its motion to simulate 
articulatory behavior and generate audio. Early efforts include Kempelen’s 18th-
century mechanical synthesizer [14] and the computational vocal tract model 
introduced by Kelly and Lochbaum in 1962 [15], which laid the foundation for 
digital articulatory simulation. With advances in medical imaging technologies, 
such as magnetic resonance imaging (MRI) and computed tomography (CT), 
and in modeling methods, researchers have integrated structures s uch as lips and
tongue into simulations, greatly improving precision and expanding applications
beyond audio generation.

As modeling techniques [6, 7, 16] evolved, early work focused on building 
paired datasets of audio and articulatory parameters, often u sing codebook-
based inversion methods [17, 18]. Later, analysis-by-synthesis approaches [1– 3] 
matched model-generated audio to targets using iterative optimization, but these 
methods were time-consuming and vulnerable to local minima [19], limiting accu-
racy and s calability.

Deep learning offers a more efficient alternative by directly learning the map-
ping between acoustic and articulatory features. Prior work typically used vocal
tract parameters as targets [10, 19, 21], with acoustic features such as Mel spec-
trograms, MFCCs, and related variants. Models including convolutional neural 
networks (CNNs), long short-term memory networks (LSTMs), and variational
autoencoders (VAEs) have all been applied to this task.

Study [ 11], for example, introduced a two-head VAE architecture where one 
decoder reconstructs the mel-spectrogram while the other predicts six Pink 
Trombone control parameters. The authors also explored pretrained encoders 
such as EnCodec and wav2vec2.0 combined with lightweight projector networks 
for parameter estimation. While effective, these methods rely on low-dimensional 
control v ectors and predict all target values in a single step, implicitly assum-
ing conditional independence, which may limit the model’s ability to capture
structured dependencies among articulatory positions.

In contrast, our method uses a full 44-dimensional sequence of vocal tract 
diameters as articulatory features, providing a more intuitive geometric repre-
sentation. This formulation supports an autoregressiv e decoder that captures
spatial dependencies across articulatory positions and produces more coherent
reconstructions.

3 Datasets and Methods 

This section describes our method for static acoustic-to-articulatory inversion 
(AAI), which maps short audio segments to vocal tract diameter sequences using
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a Transformer-based architecture. We first introduce the Pink Trombone (PT) 
synthesizer and its articulatory parameterization, followed by the dataset con-
struction process and modeling of glottal excitation. Finally, we explain the use
of HuBERT-based feature extraction and the reformulation of regression into
classification to improve training stability.

3.1 Pink Trombone 

PT is a two-dimensional physical model of the human vocal tract that simu-
lates audio production using a compact set of parameters, including constric-
tion location, tongue location, and glottal excitation. While generating audio 
from these parameters is straightforward, the inverse problem remains compu-
tationally challenging. Prior PT-based studies [10] derived parameters from user 
interactions, with ranges listed in Table 1, but assumed tongue and constric-
tion movements occur simultaneously, whereas they can occur independently. 
W e address this by using 44-dimensional diameter sequences.

Table 1. Ranges of User In teraction Parameters

Parameters Lower Bound Upper B ound

pitch (Hz) 75 330 
voiceness 0 1 
tongue index 14 27 
tongue diameter (cm) 1.55 3 
lips diameter (cm) 0.6 1.2 
constriction index 12 42 
constriction diameter (cm) 0.6 1.2 
throat diameter (cm) 0.5 1.0 

3.2 Data 

To construct the experimental dataset, we generated two types of audio based 
on the user interaction parameters in Table 1: one with constriction interactions 
and one without. Each sample was paired with its corresponding vocal tract
diameter sequence, forming articulatory–acoustic mappings.

To ensure adequate parameter coverage, we used Latin Hypercube Sampling
(LHS) [26], which divides each parameter’s range into intervals and randomly 
samples one value per interval. The resulting combinations were i nput into Pink
Trombone to generate the corresponding audio signals.

The resulting dataset contains 4,374,000 pairs, including 4,252,500 with con-
strictions. To improve robustness under noise, we applied augmentation by 
adding white noise at signal-to-noise ratios (SNRs) of 10 and 5. This not only
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enhances generalization in noisy conditions but also expands the dataset. The 
final version is denoted as pt_data_exlarge.

3.3 Glottal Flow Derivative 

PT uses the LF model to generate glottal flow derivative (GFD) waveforms, 
represented by the parameter Rd, which correlates with perceived vocal effort
[22] and can be estimated from the GFD spectrum [23]. PT does not directly use 
Rd as a control parameter, but instead adopts a related parameter, Tenseness 
(T ), defined as T =  1− Rd/3. The prediction of (T ) follows the approach in [24], 
while the fundamental frequency is predicted using the CREPE model [25]. 

3.4 Pretrained Models 

Without pretrained models, deep models trained solely on pt_data_exlarge 
perform well on PT reproduction but generalize poorly to real audio, consis-
tent with prior findings [10, 20]. This limitation arises because the training data, 
which are entirely generated by PT, lack speaker variability. Consequently, the 
model cannot distinguish speaker-dependent characteristics from the underly-
ing articulatory c ontent when applied to real audio, regardless of whether Mel
spectrograms or MFCCs are used.

To address this, we incorporate a pretrained model for feature extraction. 
Given the static nature and short duration (0.125 s) of the audio, we opted
against wav2vec2.0 [30], which relies on contrastive learning over long sequences 
and is better suited for dynamic audio tasks. In contrast, HuBERT uses unsu-
pervised clustering-based self-supervised learning, making it more effective for 
capturing phonetic representations in short signals. Its ability to produce con-
textualized embeddings from limited temporal context enables better feature 
extraction for static AAI. While HuBERT embeddings improve robustness com-
pared to conventional acoustic features, they still retain some speaker-dependent
characteristics, which can introduce variability when applied to recordings with
unseen speakers.

3.5 Regression to Classification 

We initially implemented a Transformer-based regression model using condi-
tional sequence modeling to predict 44 vocal tract diameters from acoustic fea-
tures. Despite experimenting with both MSE and Huber l oss, the model con-
verged slowly and yielded suboptimal performance. Prior studies [27]  have  shown  
that Transformers often struggle with regression tasks due to error accumula-
tion and high data demands. Additionally, standard loss functions t hat ignore
dependencies among the 44 dimensions may further limit model effectiveness.

To address this, we reformulated the task as classification to better leverage 
Transformer architectures. W e analyzed the parameter distributions with the
Freedman–Diaconis rule [28], and used the resulting histogram bins as class
intervals.
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Although discretization introduces quantization error, it significantly 
improved performance. The multimodal nature of most diameter distributions 
further supports this approach, as classification can be viewed as a tokeniza-
tion process that helps Transformers better model multimodal targets [29]. Ulti-
mately, the 44 continuous diameter values were transformed into a classification
task with 6,123 discrete categories.

3.6 PinkVocalTransformer 

Fig. 2. Structure of PinkVocalT ransformer.

Figure 2 illustrates the model architecture. Since our dataset is generated with 
Pink Trombone, its limited presence in real-world speech may hinder generaliza-
tion. To address t his, we adopt HuBERT as the core for audio feature extraction
to enhance robustness.

HuBERT outputs feature vectors of shape (time_dimension, 1024). Because 
our dataset mainly consists of static short audio segments, the temporal variation 
within these sequences is limited. To reformulate the problem as a sequence-
to-sequence mapping over articulatory spatial positions, we designed a VGG-
inspired module that not only compresses the time dimension to 1 but also
extracts higher-level acoustic representations across the HuBERT feature space.
The resulting (128, 128) representation summarizes the spectral content of the
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input and produces a fixed-length feature sequence along the embedding dimen-
sion. This feature sequence aligns with the spatial dependencies of the 44 articu-
latory diameter values and enables the model to learn their structured relation-
ships effectively. The detailed data flow is shown in Fig. 3. 

Fig. 3. Detailed data flow of PinkVo calTransformer.

During decoding, the model predicts the articulatory diameter sequence 
autoregressively. At each prediction step, the decoder is initialized only with a 
start-of-sequence token and the encoded acoustic features, without access to any 
ground-truth articulatory values. This prevents any information leakage between 
the target outputs and ensures that predictions rely solely on the learned depen-
dencies across spatial positions. Causal masking is applied within the decoder
so that each predicted position depends only on preceding predictions and not
on future targets.

We find that intermediate-layer features outperform the final output for AAI
tasks [31– 33], offering a better balance between detail and abstraction. These 
features preserve acoustic and temporal cues essential for modeling articulatory
motion.

4 Results 

This section presents the experimental results for PinkVocalTransformer on both 
PT and non-PT tasks. For PT evaluation, we summarize training and valida-
tion performance. Because the training data consisted solely of static audio
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segments, the evaluation of non-PT audio focuses on the model’s ability to 
reconstruct vowel-to-vowel (VV) transitions. T o assess perceptual quality, we
employed ViSQOL [34] and conducted a subjective listening test. For these 
evaluations, each dynamic utterance in the real recordings was segmented into 
short frames treated as independent static inputs. The predicted articulatory 
sequences were then concatenated and smoothed to approximate continuous
motion without requiring fully dynamic ground-truth labels.

4.1 Model Training Results 

The PinkVocalTransformer was trained using the pt_data_exlarge dataset, 
which includes additive noise to improve robustness. The dataset was split into 
80% training and 20% validation sets. We used the AdamW optimizer (initial 
learning rate of 1 × 10−4, weight decay of 1 × 10−2) together with a cosine 
annealing warm restarts scheduler (T0 =  10  epochs, Tmult =  1) and early stop-
ping (patience of 10 epochs, monitoring validation loss) to mitigate overfitting. 
T raining was performed with a batch size of 128 and data shuffling at each epoch.
The classification task was optimized using cross-entropy loss and evaluated in
terms of accuracy, precision, and recall.

To recover regression targets, classification outputs were mapped to contin-
uous diameter values and evaluated using MSE. The loss converged smoothly, 
indicating high training stability and effective recovery of articulatory param-
eters. The best mod el achieved an accuracy of 0.963, precision of 0.947, and
recall of 0.944 on the validation set, indicating strong performance in the PT
classification task.

4.2 ViSQOL Evaluation 

Because our training used only synthetic audio from Pink Trombone, we needed 
to evaluate the generalization to real recordings. Since no ground- truth articu-
latory parameters exist for real speech, we adopted an indirect strategy: if the 
model produces reasonable parameters, the audio regenerated via Pink Trom-
bone should approximate the original content. We therefore used VisQOL in 
speech mode, whic h focuses on intelligibility and clarity, to compare our model
and baselines under realistic conditions. VisQOL outputs a score between 1 and
5, where higher values indicate greater perceptual similarity to the reference.

We evaluated our model using 24 real human audio s amples from a prior AAI
study [11], including 11 single-vowel, 7 slow vowel-to-vowel, and 6 complex vowel-
dominant samples. The dataset includes 18 male and 6 female samples. All audio 
was regenerated using multiple baseline methods for comparison. S pecifically,
we used the outputs of the two-heads decoding VAE proposed in study [11], 
as well as variants employing Encodec and wav2vec2.0 embeddings as latent 
representations. Each baseline was tested under f  ast  and slow configurations 
reflecting different levels of a rticulatory dynamics in the training data. We also
evaluated optimization-based AAI methods from study [10], but their ViSQOL 
scores clustered near 2.0, so for clarity we excluded them from the figure.
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Fig. 4. Mean ViSQOL scores with standard deviations for PinkVocalT ransformer and
baseline models.

As  shown  in  Fig. 4, PinkVocalTransformer outperformed all baselines in 
VisQOL scores. Our model achieved the highest average score, with smaller 
variability across samples compared to most baselines. Although the absolute 
scores may appear modest, this is expected since our approach targets acoustic-
to-articulatory inversion rather than direct waveform synthesis. The regenerated 
audio is produced solely for evaluation by feeding predicted articulatory param-
eters into Pink Trombone, which inevitably introduces timbral and speaker-
dependent differences relative to the o riginal recordings. These differences can
reduce ViSQOL scores even when the articulatory reconstruction is accurate.
While other methods showed lower means and larger error bars, our results
remained consistently higher and more stable. Selected audio examples are acces-
sible via our GitHub repository [35]. 

4.3 Listening Test 

To further validate the ViSQOL results, we conducted a single ABX discrimina-
tion test comparing our model with the strongest baseline vae_f  ast  identified in 
the objective evaluation. In this test, participants were presented with a reference 
recording alongside two synthesized candidates and were asked to indicate which 
synthesized candidate more closely resembled the reference recording in terms of 
perceived similarity. This procedure captures perceptual similarity rather than 
overall audio quality. Ten representative samples were selected from the same 
set of 24 real audio recordings used in the ViSQOL evaluation, ensuring both 
phonetic diversity and manageable listener effort. In each trial, participants lis-
tened to a reference and two synthesized versions, and indicated which one more
closely resembled the original. A “neither” option was included to avoid forcing
decisions when no clear match was perceived. A total of 21 listeners participated
in the test.
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Figure 5 presents the results for each listener (L1–L21), showing the number 
of samples in which they selected the proposed model, the baseline, or neither. 
Most listeners preferred the audio generated by PinkVocalTransformer, with rel-
atively few neutral responses. For quantitative analysis, we computed ABX accu-
racy as the proportion of valid trials in which the proposed model was judged 
closer to the reference. T rials where listeners selected “neither” were excluded
from this calculation, as they do not reflect a clear perceptual preference. Based
on this criterion, the accuracy reached 81.09%, reinforcing the perceptual advan-
tage of PinkVocalTransformer over the baseline.

Fig. 5. Listener-level preference distribution in the ABX test.

While the model performed well on most samples, one case showed reduced 
accuracy. It involved a male-spoken /i/ vowel with dominant low-frequency and 
stable high-frequency energy. The model emphasized low-frequency cues, causing 
high-frequency details to be underrepresented and resulting in a dull perceptual
quality. In contrast, all other test samples, including those containing /i/ under
less extreme conditions, were reconstructed with high perceptual accuracy.

5 Discussion and Conclusion 

PinkVocalTransformer shows strong performance in vowel reconstruction and 
offers a more interpretable formulation of the AAI task. Unlike optimization-
based methods that estimate control parameters iteratively, our model is trained 
once and reused efficiently. In contrast to prior neural approaches that use PT’s 
user-defined interaction parameters, we directly model vocal tract shape using 
44 diameters, which we treat as a continuous spatial sequence rather than inde-
pendent variables. This formulation enables the decoder to autoregressively pre-
dict articulatory configurations, providing a physically grounded and spatially
explicit articulation model.
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However, the model inherits limitations from its training setup. Trained solely 
on static, short-duration audio, it performs well on vowels and simple consonants 
but struggles to reconstruct plosives. To address this, incorporating dynamic yet 
brief audio and modifying the architecture to model temporal variation may help
capture articulatory transitions without increasing overall complexity.

Additionally, the reliance on HuBERT embeddings introduces potential vari-
ability when applied to real recordings. Although HuBERT improves robustness 
compared to conventional acoustic features, it does not explicitly disentangle 
speaker identity from phonetic content. As a result, predictions may be par-
tially influenced by speaker-dependent cues. Exploring more speaker-invariant
representations, such as ContentVec, could help mitigate this effect and improve
consistency across diverse speakers.

Another constraint arises from the synthesizer itself. Pink Trombone, being 
a two-dimensional articulatory model, lacks the natural acoustic richness of real 
vocal tracts. While this framework offers precise articulatory control, it limits
the realism of generated audio.

Future work should address these challenges by exploring alternative artic-
ulatory parameterizations and more advanced synthesis techniques. Improving 
generalization across models and signal domains will be key to developing scal-
able, black-box AAI systems that remain robust and interpretable across diverse 
audio conditions. 
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