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ABSTRACT

Modelling analogue distortion replicates the warmth, character, and nonlinear harmonics of classic gear often used
in audio production, to be incorporated into modern, digital workflows. Creating such models can be challenging
as it requires accurately capturing complex nonlinearities and dynamic responses while while ensuring real-time
processing. We evaluate the performance of various transfer learning methods for improved modelling of distortion
effects. These approaches take into account the choice of pretrained model, the choice of dataset for fine-tuning,
and the method in which the knowledge is transferred from source to target task. We compare the impact of using
a source effect closest to the target one for pretraining, determined either via feature extraction or using domain
knowledge, to the use of a "general model". We evaluate how to transfer the knowledge from source to target task
by assessing which weights to freeze and what data to use for the downstream training. Each approach is assessed
on two architectures applied to three example distortion modelling tasks. All models obtained via transfer learning
are compared to a baseline model trained from scratch with random initialisation to gauge the gain in accuracy due
to the transfer. Results show that transfer learning can help improve model performance and reduce training times
when the appropriate transfer approach is used.

1 Introduction digital workflows seamlessly.

One approach to modelling audio distortion effects is

Many iconic audio devices, such as tube amplifiers,
tape machines, and vintage pedals, have unique distor-
tion characteristics that are highly sought after. Mod-
elling these effects allows musicians and producers to
access these sounds without needing expensive or hard-
to-find hardware, and allows for them to be used within

to use neural networks in a black-box training pipeline.
The training data used to create these models consists
of audio signals - such as instrument recordings or
synthetic test signals - sent through the target analogue
devices, the output of which is recorded and used as
ground truth. Reducing the amount of training data



Vanhatalo et al.

Transfer Learning for Distortion Effects Modelling

and time has a number of benefits. These include: a
reduced risk of error in the data generation portion
that can allow for non-specialists to create their own
models; less wear-and-tear of the equipment used to
create the training data; and reduced environmental
impact.

Transfer Learning (TL) is a commonly used method in
machine learning, most often applied to cases where
there is insufficient training data. It transfers the knowl-
edge from one or more source tasks to a target task and
can manifest in a variety of methods. We give a formal
definition of transfer learning, adapted from Pan and
Yang [1]. In our case there is only one source task but
this can easily be extended to the general case.

Given a source domain Dg and task Ty, a target domain
D7 and task T, transfer learning aims to improve
the learning of the target predictive function f(.) in
D7 using the knowledge in Dg and Ts where Dg #
Dy or Ty # Tr. Here a domain is defined as D =
{X,P(X)} where X is a feature space and P(X) is a
marginal probability distribution, and a task is defined
as T={Y,f(.)} where Y is a label space and f(.) is a
predictive function learned from training data. In the
case of Deep Transfer Learning (DTL), this predictive
function takes the form of a neural network [2], [3].

DTL started to arise when Deep Neural Networks
(DNN) were used as feature extractors in TL mod-
els, a process referred to as "incomplete"” transfer in
Yu et al. [3]. Around the same time as the incorpora-
tion of DNNSs into traditional TL, model-based DTL
methods also started to emerge [3]. Model-based ap-
proaches consist of sharing and fine-tuning parameters
of models. In this work, we focus on transfer learning
via fine-tuning of the model weights for audio effects
modelling.

Little work has explored the possibility of applying
TL to neural networks for audio effects modelling.
The neighbouring field of Music Information Retrieval
(MIR) contains a number example works using TL for
various tasks. In Hamel et al. [4], TL applied to genre
classification, automatic tag annotating and music simi-
larity is investigated. Oord et al. [5] exploit an available
large-scale music dataset, the Million Song Dataset
(MSD), for classification tasks on other datasets by
reusing models trained on MSD for feature extraction.
In Liang et al. [6], a multi-layer neural network trained
for semantic tagging prediction is used as a content
model for content-aware music recommendation. In

Choi et al. [7], a tagging CNN trained on MSD is used
to create explicit labels for the downstream task of
playlist generation using RNN. In Choi et al. [8], TL
takes the form of a pretrained feature extraction net-
work for both music classification and regression tasks.
Alfaro-Contreras et al. [9] examine the possible im-
provements owed to TL using either image or audio
data for Optical Music Recognition and Automatic Mu-
sic Transcription.

In this work, we apply model-based DTL to improve
the performance of state-of-the-art static models for
audio effects modelling. Although transfer learning is
often used in contexts where the downstream (i.e. tar-
get) task lacks sufficient labelled data, it can also lead
to faster learning, more accurate predictions and/or re-
quire less training data. This is of interest for virtual
analogue modelling as we could, in theory, train one
model on a large amount of data acquire from a chosen
audio effect, and then use this trained network as a
starting point for all other models of a variety of differ-
ent, even unrelated, black-box audio effects we wish to
create.

In this case the source task is training a model of a
chosen audio effect S and the target task is training a
model of a different audio effect 7. The initial, large
training dataset could even be synthetic, using circuit
simulation techniques to create the data to avoid the
wear-and-tear of electrical components in analogue
devices and to minimise the risk of human error during
the capture process. Thus, utilising transfer learning
could allow for reduced training times in the target tasks
which would incur shorter times to create new models
and reduce the required computational resources, and
thus environmental impact.

These benefits are amplified in the case of parametric
models. When we wish to model the behaviour of the
user controls’ influence on the output audio and have
the simulation adapt to different control settings, the
amount of training data required increases exponen-
tially when sampling combinatorically which is often
the method employed [10]. Reduced amounts of nec-
essary training data are therefore doubly important in
such cases.

We therefore evaluate the impact on overall perfor-
mance of applying transfer learning to this modelling
task. We also determine the most effective methods of
conducting the pretraining and fine-tuning phases of
the knowledge transfer. A case study is carried out on
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three example distortion effects with increasing degrees
of nonlinearity: an overdrive, a distortion and a fuzz
which we aim to model with two example networks, a
simple LSTM recurrent network and the feedforward
WaveNet, from Wright et al. [11].

The organisation of this paper is as follows. In Sec-
tion 2, we present the methodology behind both the
pretraining and fine-tuning experiments. In Section
3, we present the experimental results and compari-
son and discuss the findings. All the data used in this
work is made available at: https://www.math.u-
bordeaux.fr/~plegral00p/NN/TL.

2 Methodology

For the pretraining, illustrated at the top right of Figure
1, we compare which type of starting model produces
the highest accuracy between a model most similar to
the target device and a general-purpose model that can
be used regardless of what the target device is. In or-
der to determine the similarity between devices, we
use a Convolutional Neural Network (CNN) pretrained
for distortion effects classification, dubbed FxNet, to
extract features from a number of devices [12]. The
closest model is chosen as the one whose features min-
imise the Ly-distance with the features of a given target
effect. Similarly, the general-purpose model chosen
is the one whose features have the smallest distance
from an average feature vector computed from all the
effects in the dataset. More detail on this is given in
Subsection 2.1. In order to ascertain how effective this
approach is, we compare results with those obtained us-
ing closest and general-purpose models obtained with
domain knowledge.

For the fine-tuning phase, illustrated at the bottom right
of Figure 1, we evaluate the impact of the type of signal
used for the training, the length of this signal (in order
to determine a minimum amount of data required), and
which weights to freeze for optimal results with both
networks. All results obtained after fine-tuning are
compared to a baseline model trained from scratch
using random initialisation.

2.1 Pretraining
Pretraining-based TL describes the case where a model

initially trained for a particular source task with a given
data distribution, is adapted to a related task with a

FROM TRANSFER
SCRATCH LEARNING
— -
Train Train
model | model |
Audio Effect S —> for Audio Effect S —T for |
source data source
task | ta|sk |
Knowledge
Train
model
Audio Effect T for
data target
task

Fig. 1: Training from scratch vs transfer learning. The
pretraining is circled by the dashed line and the finet-
tuning by the dotted line.

different training data distribution. This method gen-
erally leads to improved model performance and has
the benefit of requiring less data for the target model
fine-tuning.

Here, we evaluate the impact on performance that the
choice of pretrained source model can have. For this,
comparisons are carried out between a source effect
that is closely related to the target effect and a source
effect that is more generally applicable to various target
effects. We call these two choices of pretrained model
closest model and general model.

2.1.1 Choice of Pretrained Model

The transfer of knowledge from source to target task is
expected to improve modelling performance. Regard-
ing the choice of pretrained source model, we compare
fine-tuning a model deemed closest to the target one
with a single model chosen as the starting point for all
target model training. This is done in order to gauge
whether it is preferable to have very closely related
source and target tasks or whether a generally applica-
ble source model is sufficient for the fine-tuning of all
effects.

For both experiments, the choice of what constitutes the
closest model or the most general model is performed
with two methods: one is a choice informed by domain
knowledge and another is chosen via feature extraction.

We first present the approach based on domain knowl-
edge and then present the feature extraction in the fol-
lowing subsection. For the closest model, we chose an
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emulation of the same pedal as the target one but from { 2D Comvolution ]
a different designer: Knowledge is transferred from the
MultiDrive Pedal Pro (MPP) TS808 to the Nembrini { Batch Normalisation ]
Audio (NA) TS808, from the MPP RAT to the NA RAT, x2
and from the Distorque Face Bender to the MPP Fuzz [ ReLU Activation ]
Face. Table 1 describes all plugins used and the devices
they are based on. [ MexPooling J
Table 1: Plugins used for all data generation.
l Designer | Plugin Emulation of [ Fully Connected ]
Audified MultiDrive Ibanez TS808 2
Pedal Pro Ibanez TS9 [ Batch Normalisation ] _________
Boss BD2 ’ -
Boss OD1 [ ReLU Activation J CIZI2I2 -0 Feature Extraction
Boss SD1
Boss DS1 S T
Boss MT2 NI
ProCo RAT [ Fully Gonaacteg Output ]
MXR Distortion + ] .
Arbiter Fuzz Face
E-H Big Muff
Mercuriall | Greed Smasher | M-B Grid Slammer Effects Classification
Metal Area Boss MT2
TSC 808 Core | TS808
Analog Pig Pie E-H Russian Big Muff Fig. 2: The FxNet architecture from [12] adapted for
Obsession | Zupaa Vox Tone Bender feature extraction.
Nembrini | BLACK ProCo RAT
Audio Clon Minotaur | Klon Centaur
808 Overdrive | Ibanez TS808 such methods employed in MIR, examples of which
Distorque | Face Bender Arbiter Fuzz Face were presented in Section 1.
Audio Tone Bender MKII

These starting models are compared to those obtained
via feature extraction: The closest model to the NA
TS808 is the MPP OD1, the closest model to the NA
RAT is the NA Klon Centaur, the closest model to
the MPP Fuzz Face is the MPP MT2. For the general-
purpose pretrained model selected using domain knowl-
edge, we chose the NA Klon Centaur as it is known for
its tonal transparency that does not colour the signal
[13]. The general model obtained via feature extraction
is the MPP MXR distortion emulation.

2.1.2 Feature Extraction

We utilise another form of transfer learning for the
feature extraction method presented here. A pretrained
CNN designed for distortion effects recognition is used
to extract features of the training data for the source
model choice. This approach bears similarities to other

The pretrained CNN used in our experiments is the
FxNet which comprises two convolutional and three
fully connected layers, with batch normalisation at each
level. The FxNet model is trained specifically on a
number of distortion effects for their classification. We
adapt FxNet by removing the output classification layer,
which consists of a fully connected layer used to map
the learnt feature representation to a vector whose size
equals the number of effects in their dataset, as illus-
trated in Figure 2. The details of the adapted FxNet
architecture are presented in Table 2. FxNet takes as
input mel power-spectrograms. We extracted these
spectrograms from various parts of the recorded signals
in our dataset using the Librosa library [14].

We now detail the methods used to determine the clos-
est and general models. We have a full training dataset
S; for each audio effect i € N listed in Table 1, where
N is the total number of audio effects. We denote D
the collection of each of these source datasets S;,i € N.
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Table 2: Feature Extraction CNN (FxNet) adapted
from [12]. #Fmaps is number of feature maps
output from the convolutional layers.

] Layer | Size | #Fmaps | Activation |
2D Convolution | 5x5 6 Linear
Batch Norm. e e ‘e
Activation e RelLU
Max Pooling 2x2
2D Convolution | 5x5 12 Linear
Batch Norm. e
Activation e ReLU
Max Pooling 2x2 e
Fully Connected | 120 Linear
Batch Norm. e e
Activation e ReLU
Fully Connected | 60 Linear
Batch Norm. e e
Activation ReLLU

We apply the modified FxNet model to each source
dataset to extract the features F(S;) of each dataset S;,
as illustrated in Figure 2. We then choose the i" audio
effect to be our target effect, and the S; providing the
smallest distance as the source data for the pretraining
of the closest model:

argmin||F(S;) = F(S;)][2,

F(S)

J#i M

The target dataset 7; corresponding to the i audio
effect is chosen depending on the fine-tuning method.

Similarly, for the general model the same feature ex-
traction process is applied to obtain all the features of
each dataset in ID. We then compute an average feature
vector:

N
P)= 5 LFS) @

For each §; € D, we then compute the Euclidean dis-
tance between each potential source dataset features
and the average feature vector. The closest feature vec-
tor F(S;) to the average F(A) gives us the source data
S used to train the general model.

argmin||F(A) — F(S;)||2 3)
F(S})

Again, the target dataset 7; corresponding to the i
audio effect is chosen depending on the fine-tuning
method, a number of which are also evaluated in this
work.

2.2 Fine-Tuning

In the fine-tuning phase, we adapt the pretrained mod-
els to a new target effect by retraining on the target task
data and optionally freezing certain network parame-
ters.
2.2.1 Choice of Dataset

For this study, we assembled a dataset similar to the
one proposed by Comunita et al. [12]. The input data
comprises samples from the IDMT-SMT-Guitar dataset
[15] and a number of artificial test signals including
Dirac delta functions, step functions, exponential sine
sweeps and sawtooth waveforms of varying amplitude.
The guitar signals were all taken from the IDMT-SMT-
Guitar dataset 4 and vary in genres and tempos. These
signals were then processed using the same plugins as
those used in Comunita et al. [12] and three additional
distortion effect plugins, all of which are summarised
in Table 1. All pretrained models were obtained using
the whole dataset whereas the type and length of the
data used for fine-tuning was varied in order to gauge
its impact on target task performance.

We evaluate the impact of the type of training data
employed for the fine-tuning by comparing the use
of the artificial test signals to the recorded guitar and
by comparing input data seen during pretraining to
unseen data. All the data used for this comparison is
of same length in order to isolate the impact of the
signal content. We also study the impact of signal
length on the fine-tuning accuracy in order to gauge a
minimal amount of data necessary for this phase. Only
the recorded guitar was used for this experiment, with
length varying from five seconds to nine minutes.

2.2.2 Weight Freezing

It is common practice in transfer learning approaches
to freeze certain weights of the pretrained model for
the fine-tuning. We study the impact of weight freezing
for the transfer by varying the layers whose weights
are fixed in our example networks.

The recurrent model is fairly shallow and contains only
two layers that can be frozen. Therefore we compare
the impact of freezing the recurrent layer’s weights, the
fully connected layer’s weights, and complete retrain-
ing. Yosinksi et al. observe experimentally that DNN's
appear to exhibit more general features that are more
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applicable to many datasets and tasks in their initial
layers whereas more specific features tend to appear in
the later layers [16]. Therefore for the example convo-
lutional model we have chosen, we compare freezing
the initial block to freezing all convolutional layers and
to complete retraining.

3 Results

We now present the results of a case study using two
illustrative architectures for audio effects modelling: A
simple single-layer LSTM network with a fully con-
nected output and 32 recurrent units; and the feedfor-
ward WaveNet from Wright et al. [11] with two blocks
of ten convolutional layers with a dilation factor of
two. Each convolutional layer has 16 filters and a ker-
nel size of three. We evaluate various methods of TL
using these two models on three different distortion
effects using a variety of methods in order to encourage
significance of the results presented here.

3.1 Choice of Pretrained Model

All pretraining was carried out using the entire dataset
which comprises around ten minutes of guitar record-
ings and a number of artificial test signals as described
previously. This dataset was split, using 90% for train-
ing and 10% for validation. Both the recurrent and
convolutional models were trained using the same op-
timisation and data hyperparameters for a total of 50
epochs. The models are then fine-tuned using the same
hyperparameters for another 50 epochs. In the case
of the training from scratch, all models are trained
on the fine-tuning data for 100 epochs. Mean Abso-
lute Error (MAE) was used as the loss function for all
training, as well as the Adam optimiser with an ini-
tial learning rate of 0.005 and weight decay of le-4.
A batch size of 50 was used for the recurrent model
and 40 was used for the convolutional one. All errors
reported are also expressed in terms of MAE after train-
ing the models for 100 epochs and are presented in
Table 3. All LSTM models showed an improvement
when using transfer learning however the WaveNet
models did not always present an improvement. In
most cases, the general-purpose pretrained model out-
performs other methods, with the feature extraction-
based general-purpose model showing the lowest error
most consistently.

3.2 Weight Freezing

In Table 4 and Table 5, we report the average test losses
of the different weight freezing approaches again after
100 epochs training.

Freezing the weights of the recurrent layer of the LSTM
model for fine-tuning leads to a significant increase in
error. Freezing the fully connected layer of this model
can lead to an improvement in accuracy. However, for
the distortion emulation this freezing method leads to
an overall decrease in performance. Retraining the
models consistently leads to a decrease in test MAE
for the LSTM model. Transfer learning rarely leads
to decreased error for the convolutional models when
compared to training from random initialisation for
the same number of epochs. This could be due to the
dataset size as increased labelled data or the use of
data augmentation at fine-tuning has been found to
reduce the effects of the knowledge transfer in certain
convolutional architectures [17].

3.3 Subjective Evaluation

To better evaluate the impact of transfer learning on
model performance for equal training length, we imple-
ment subjective listening tests using the Multiple Stim-
uli with Hidden Reference and Anchor (MUSHRA)
methodology with the webMUSHRA framework [18].
In these listening tests, participants are asked to rate,
out of 100, the similarity of audio extracts compared
to a reference. The audio clips evaluated contain both
simulations obtained with and without transfer learning,
a hidden reference and two anchors. The MUSHRA
methodology allows for statistical significance of re-
sults with fewer participants [19]. This is to assess
whether the slight decreases in error observed with the
best performing models in Tables 4 and 5 are audibly
significant. A total of 40 assessors were used for the
subjective evaluation. These assessors are a mix of
audio professionals with experience in critical listening
and guitarists.

The results are presented in Figures 3 and 4. Certain
outliers were omitted from these results if the assessor
assigned a score lower than 90 for the reference or
higher than 50 for either of the anchors. For both the
LSTM and WaveNet models, a relatively high variance
in responses can be observed. This is most likely due to
the fact that the figures show an aggregate of responses,
evaluating all effects types including the fuzz effects
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Table 3: Final model MAE with respect to the choice of pretrained model for each class of distortion effect.
Pretrained model chosen either using Domain Knowledge (DK) or via Feature Extraction (FE).

Overdrive Distortion Fuzz
LSTM | WaveNet | LSTM | WaveNet | LSTM | WaveNet
Closest Model (DK) | 0.0307 | 0.0281 0.0381 0.0193 0.0744 | 0.0557
Closest Model (FE) | 0.0297 | 0.0288 | 0.0260 | 0.0268 | 0.0817 | 0.0518
General Model (DK) | 0.0280 | 0.0307 | 0.0260 | 0.0268 | 0.0719 | 0.0576
General Model (FE) | 0.0290 | 0.0267 | 0.0135 | 0.0162 | 0.0652 | 0.0651
From Scratch 0.0308 | 0.0295 0.0278 | 0.0146 | 0.0902 | 0.0530

Table 4: Average weight freezing MAE (LSTM).

LSTM
Overdrive | Distortion Fuzz
Freeze rec. layer 0.0512 0.2693 0.1765
Freeze dense layer 0.0290 0.0313 0.0724
Retrain 0.0293 0.0259 0.0773
From scratch 0.0308 0.0278 0.0902

which are known to be difficult to model with these
approaches [20].

A Student’s t-test was used over ANOVA to compare
the means of the groups as there are only two present
here. A one-sided test was used because we assume
there will be an improvement in performance using TL
for the alternative hypothesis. Regarding the LSTM
model, the mean score of the TL simulations is 16%
higher than that of the from scratch results with a p-
value of 0.003 computed with Student’s t-test from the
SciPy Python library [21]. The listening tests back up
the objective measures that showed improvements in
simulation accuracy when using TL on LSTM. The
lack of improvement seen in the WaveNet predictions
is also reflected in the listening test results. The mean
score sees a decrease of 2.4% when using TL but the
p-value computed equals 0.57 and therefore this result
was not deemed statistically significant. The listen-
ing tests back up the objective measures that showed

Table 5: Average weight freezing MAE (WaveNet).

‘WaveNet
Overdrive | Distortion Fuzz
Freeze conv. layers 0.0396 0.1734 0.1558
Freeze first block 0.0311 0.0328 0.0887
Retrain 0.0286 0.0223 0.0581
From scratch 0.0295 0.0146 0.0530

anch70 anch3s  TL

ref Fs

Fig. 3: MUSHRA results for the LSTM model. The scores
[from the reference (ref), simulations obtained using
Transfer Learning (TL) and training From Scratch
(FS) as well as from the hidden anchors are shown.

no improvements in accuracy when using TL on the
WaveNet. The interquartile range for both simulations
from TL and trained from scratch remains about the
same, with the median seeing a 10% decrease with TL.

3.4 Fine-Tuning Data

We then evaluate what data to use for the fine-
tuning phase, both in terms of signal content and
dataset length.  All results presented hereafter
were obtained when fine-tuning the general-purpose
model chosen via feature extraction without weight
freezing as this provided the most consistent improve-
ments in the previous experiments. In Table 6, we
compare two subsets containing recorded guitar with
a dataset containing exclusively artificial test signals.
These results were obtained by retraining the models
during fine-tuning as this is the method that performed
best for both example models in the previous exper-
iments. In almost all instances, except the distortion
emulation using the WaveNet model, the guitar datasets
outperformed the use of test signals. Moreover, in all
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Table 6: Fine-tuning dataset type. All datasets are of equal length (37 seconds).

Overdrive Distortion Fuzz
Signal Type LSTM | WaveNet | LSTM | WaveNet | LSTM | WaveNet
Recorded Guitar (seen at pretraining) | 0.0452 | 0.0301 0.0758 | 0.1015 | 0.0886 | 0.0853
Test Signals (seen at pretraining) 0.0656 | 0.0655 | 0.2202 | 0.0480 | 0.1133 | 0.1466
Recorded Guitar (unseen at pretraining) | 0.0305 | 0.0290 | 0.0344 | 0.0583 | 0.0958 | 0.0772

Table 7: Fine-tuning dataset length. The from scratch results were trained on the full guitar dataset, lasting 546
seconds. Training times for LSTM recorded on an Nvidia GeForce GTX 1650 GPU, training times for
WaveNet recorded on an Nvidia GeForce RTX 2060 GPU.

Overdrive Distortion Fuzz Training Time(s)
Signal Length (s) | LSTM | WaveNet | LSTM | WaveNet | LSTM | WaveNet | LSTM | WaveNet
5 0.0577 | 0.0534 | 0.1451 | 0.0762 | 0.1457 | 0.1369 0.51 3.66
30 0.0359 | 0.0299 | 0.0767 | 0.1081 | 0.1378 | 0.1098 2.94 19.97
210 0.0286 | 0.0252 | 0.0355 | 0.0328 | 0.0803 | 0.0788 21.09 190.89
540 0.0301 | 0.0225 | 0.0126 | 0.0264 | 0.0582 | 0.0559 42.83 396.85
From Scratch 0.0308 | 0.0295 | 0.0278 | 0.0146 | 0.0902 | 0.0530 57.80 381.28

100 1

-

80

60

40 1

204+

anc‘h70 anc‘h35 T‘L

Fig. 4: MUSHRA results for the WaveNet model. The scores
[from the reference (ref), simulations obtained using
Transfer Learning (TL) and training From Scratch
(FS) as well as from the hidden anchors are shown.

cases except one, training on unseen data outperformed
training on a subset of the source data.

Our final experiment aims to find a trade off between
training time and model accuracy. All models obtained
via transfer learning were fine-tuned on recorded guitar
signals of various lengths. We compare these to from
scratch training on the full guitar subset in Table 7.

For the simpler emulation task of the overdrive effect,
we obtain comparable error for both the recurrent and
convolutional models when using transfer learning on a
significantly reduced dataset. We go from full training
on nine minutes and six seconds of data to 30 seconds
resulting in a decrease in training time by around 95%

for both the LSTM model and WaveNet for a slight
increase in MAE. For more complex effects, the in-
crease in MAE is more pronounced. It is still possible
to cut training time in half for a maximum increase in
error of 2.6%. Moreover, transfer learning for the fuzz
emulation using LSTM leads to a 1% decrease in error
while reducing training time by over 50%.

4 Conclusion

In this paper we studied the impact of transfer learning
and its implementation for distortion effects modelling.
We evaluated this approach on three example modelling
tasks, using two illustrative networks. Transfer learning
shows a slight decrease in error for the recurrent model
compared to training from scratch for an equal number
of epochs. However, the convolutional network did
not show any significant improvements. This was also
reflected in the subjective results from listening tests.
Using a general-purpose pretrained model obtained via
feature extraction presents the most consistent improve-
ments in performance. It was found that fine-tuning on
guitar recordings unseen during pretraining lead to the
best performance and significant model training speed-
ups can be achieved using for minimal to no increase
in error.

Appropriate weight freezing should be employed in
order to avoid any increase in error. Namely, for consis-
tent improvements, complete retraining is preferred. In
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order to increase the statistical significance of these re-
sults, it would be of interest to rerun these experiments
a number of times while varying the random seed. This
case study could also be extended to other audio effects,
especially those presenting different audio behaviour
as we have constrained ourselves to distortion effects
in this work.

Finally, extending this work to parametric models that
incorporate user-facing controls is of great interest as
the benefits of transfer learning are especially promi-
nent in this case.
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