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ABSTRACT

Music mixing involves transforming clean, individual tracks into a cohesive final mix using audio effects and expert
knowledge. While rule-based and machine learning methods have shown promise, scaling them to real-world
situations remains challenging. We propose a two-stage mixing architecture that combines domain knowledge with
deep learning, enabling the system to handle over 100 input tracks with high perceptual quality.

The first stage uses a rule-based level balancing system to mix grouped tracks into stems. The second stage employs
a differentiable mixing style transfer model guided by a reference mix. To enhance intra-group (within subgroup)
robustness, we refine loudness estimation by incorporating spectral centroid and fundamental frequency features,
addressing limitations of Loudness Units relative to Full Scale (LUFS) on narrowband signals.

Subjective listening tests demonstrate that our enhanced intra-group mixing approach consistently outperforms
LUFS-based baselines across multiple musical genres. Furthermore, our proposed two-step system enables
deep learning to successfully handle projects with over 100 tracks for the first time, achieving mixing results
that significantly surpass those of traditional rule-based systems. Code and audio examples are available at
https://doi.org/10.5281/zenodo.17171082.

1 Introduction

Over the past two decades, the accessibility of music
production tools has dramatically increased, enabling a
growing number of musicians and creators to engage
in professional-grade audio production [1]. However,
achieving high-quality multitrack mixing remains a
complex, skill-intensive process, often requiring years
of experience [2]. To address this challenge, automatic
mixing has emerged as a field of research focused on
developing systems capable of autonomously balancing
levels, applying effects, and shaping the overall mix.

1.1 Challenges in Automatic Mixing

Automatic mixing research has evolved through mul-
tiple phases, from early knowledge-engineering ap-
proaches to more recent machine learning models. De-
spite significant progress, the field still faces funda-
mental challenges that limit real-world applicability.
In recent years, comprehensive systems have emerged
in both knowledge engineering and machine learning
[3, 4, 5] within this domain. It is an opportune time
to revisit past advancements, identify their limitations,
and explore future directions for the field.
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In the context of automatic mixing, knowledge engi-
neering refers to the explicit encoding of expert audio
engineering practices into computational rules and sys-
tems. Instead of learning from data, these approaches
rely on formalized representations of mixing knowl-
edge — such as psychoacoustic principles, production
guidelines, and rule-based decision trees — to auto-
mate tasks like track grouping, loudness balancing,
equalization, and dynamic processing.

Knowledge-based systems, while effective in specific
cases, often lack flexibility across different musical
styles and production contexts [6]. Data-driven mod-
els, such as end-to-end deep learning approaches [2, 7],
show improved generalization but frequently struggle
with scalability. Many systems are trained on fixed
configurations with limited track counts, making them
less adaptable to the variable structure of real-world
sessions, which often include 30 to 60 tracks. More-
over, these models can produce artifacts and lack inter-
pretability due to limited grounding in traditional audio
processing. Optimization-based approaches, such as
those using genetic algorithms for gain control [8], face
similar scalability and generalization issues.

A major obstacle in advancing automatic mixing is the
lack of large-scale multitrack datasets containing both
dry (unprocessed) and wet (processed) versions of indi-
vidual tracks. Most public datasets, such as MedleyDB
[9], MUSDB18 [10], and the Cambridge-MT dataset,
provide isolated stems or unmixed multitracks but lack
corresponding post-production multitracks. While ef-
forts like the Open Multitrack Testbed [11] and the
Mix Evaluation Dataset [12] include dry/wet pairs, they
are limited in scale and no longer actively maintained.
As a result, no comprehensive public dataset currently
exists for supervised learning of realistic mixing sce-
narios, severely limiting the development of robust,
data-driven mixing systems.

Scalability remains a major limitation for most deep
learning–based mixing systems. For example, prior
works [13, 14, 15] support only a limited number of
input tracks and struggle to generalize to real-world
scenarios with diverse structures and instrumentation.
Martinez et al. [13] attempted to address this by testing
on out-of-domain material, but performance dropped
significantly.

Steinmetz et al. [4] proposed a scalable architecture
using differentiable digital signal processing, weight

sharing, and a sum/difference stereo loss. They ex-
tended this with Diff-MST[5], a framework combining
a Transformer controller with a differentiable mixing
console. Given a reference mix and raw multitracks,
Diff-MST estimates per-track parameters—gain, EQ,
compression, and panning—without requiring explicit
source labels. Its self-attention allows it to handle arbi-
trary track counts, and shared MLPs ensure parameter
consistency.

However, the model still struggles to generalize be-
yond its training data. Loudness distributions learned
from four-track datasets may not apply to large-scale
sessions (16–64 tracks), where diversity and complex-
ity are much greater. For instance, having only seen
mixed vocals during training, the model may fail to
balance finer-grained vocal tracks, such as lead vocals
and background vocals.

1.2 Our Contributions

Real-world automatic music mixing presents several
key challenges:

• The number and variety of instruments in a produc-
tion are highly unpredictable, requiring systems
to handle an arbitrary number of input tracks.

• Due to the limited diversity of training datasets,
systems must generalize to unseen musical styles
and structures.

To address these challenges, we propose a two-step
automatic mixing system that combines knowledge
engineering with deep learning. Our key contributions
are as follows:

• Two-step mixing framework: We decompose
the mixing task into intra-group and inter-group
stages. The first stage applies a knowledge-
engineered system for level balancing within
subgroups. The second stage employs a deep
learning–based differentiable mixing style transfer
model to finalize the mix.

• Enhanced loudness computation: We refine
traditional loudness estimation by incorporating
spectral centroid and fundamental frequency fea-
tures, addressing limitations of ITU-R BS.1770
(LUFS) [16] in narrowband signals. This im-
proves level balancing robustness across different
musical styles.
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Fig. 1: Schematic diagram of the two-step automatic mixing system integrating intra-group automatic level
balancing, and a differentiable mixing style transfer framework. The structure on the right is based on the
Diff-MST model proposed in [5]

Subjective listening tests demonstrate that our intra-
group mixing approach consistently outperforms
LUFS-based baselines across multiple genres. Fur-
thermore, our two-step system enables deep learning
models to handle projects with over 100 tracks for the
first time, achieving mixing results that significantly
surpass traditional knowledge-engineering systems and
approach the quality of mixing engineers.

2 Methods

2.1 Problem Formulation

Modern music productions typically consist of multiple
individual tracks recorded, sampled, or synthesized
separately. The goal of automatic mixing is to estimate
appropriate processing parameters for each track to
produce a cohesive and balanced final mix.

Existing approaches fall into two categories, each with
limitations. Knowledge engineering methods are ro-
bust to varying input track counts but generalize poorly
to unseen data. In contrast, machine learning ap-
proaches excel in constrained scenarios—such as four-
stem mixes resembling their training data—but struggle

to handle the diversity and complexity of real-world
multitrack sessions.

A key insight from the literature is that automatic mix-
ing can benefit from a two-stage process: intra-group
and inter-group mixing. This motivates our hybrid sys-
tem design, where knowledge engineering techniques
provide robust intra-group level balancing, and deep
learning methods model complex inter-group relation-
ships. Specifically, we propose a two-step system com-
bining automatic level balancing with a differentiable
mixing style transfer framework, as illustrated in Fig-
ure 1.

The intra-group module, shown on the left side of Fig-
ure 1, computes Characteristic Frequency Band (CFB)
loudness, a measure of track energy within perceptually
relevant frequency regions, and adjusts gain for each
track. At this stage, tracks are manually grouped into
instrument-based subgroups, as the impact of different
grouping strategies remains under investigation.

The right side of Figure 1 illustrates the differen-
tiable mixing style transfer model, adapted from Diff-
MST [5]. This component combines CNN (Convolu-

AES 159th Convention, Long Beach, CA, USA
2025 October 23–25

Page 3 of 10



Shi, Xie, Ma, and Reiss Scalable Automatic Mixing with Machine Learning and Domain Expertise

tional Neural Network)-based encoders and a Trans-
former controller to estimate per-stem mixing parame-
ters. The CNNs extract spectral features from the input
stems and the reference mix, which are fused by the
Transformer to predict gain, equalizer, compression,
and panning parameters for each subgroup. These pa-
rameters are applied through a differentiable mixing
console, enabling end-to-end training and flexible style
transfer aligned with the reference mix. Each system
component is evaluated independently through listen-
ing tests.

Formally, the intra-group level balancing process is
defined as:

s j = ∑
i∈G j

λi ·ai (1)

where s j is the mixed stem for the j-th subgroup, G j
is the set of tracks in subgroup j, λi is a time-invariant
scaling coefficient, and ai is the full audio signal of
track i.

Once all subgroups are mixed into stems, the final mix-
ing stage estimates a parameter matrix P, where each
row p j contains the processing parameters for stem s j.
Given a set of subgroup stems S = s1,s2, . . . ,sM and a
reference mix Mr, we define:

P = g( f (S), f (Mr)) (2)

where f (·) denotes the feature extractors for stems and
the reference mix, and g(·) is the Transformer-based
controller that predicts the audio effect parameters for
each input stem.

Finally, the differentiable mixing console applies the
estimated parameters P to the stems to generate the
final mix Mp:

Mp = h(S,P) (3)

where h(·) represents the differentiable mixing console
that performs gain control, equalizer, compressor, and
panning.

This formulation ensures that the mixing process is
data-driven, interpretable, and flexible, allowing the
system to generalize to different input track configura-
tions while preserving the reference mix characteristics.

2.2 Intra-group level balance

The goal of intra-group level balancing is to establish
appropriate loudness relationships among tracks within
each subgroup. Setting volume levels using faders is
a fundamental task in audio mixing, with a significant
impact on the final musical outcome [17]. However,
fully automatic intra-group mixing remains challenging
due to the limitations of current machine learning sys-
tems in modeling complex inter-track relationships. At
minimum, it is essential to ensure accurate intra-group
level balance across all input tracks.

Existing automatic level balancing systems that meet
our requirements—namely, the ability to process ar-
bitrary numbers of input tracks without requiring ref-
erence stems—are primarily based on knowledge en-
gineering. These systems aim to maximize inter-
channel clarity, typically using using equal loudness
process [18, 19]. While these approaches have shown
good performance in listening tests, especially those
using LUFS, several studies have highlighted LUFS
limitations in multi-source scenarios [20, 21, 22]. In
particular, LUFS estimates can deviate by several deci-
bels from subjective assessments, especially for high-
frequency narrowband signals.

To address these issues, some researchers have explored
incorporating middle-ear transfer functions [23], but
results suggest that simpler energy-based models may
be preferred by users. In fact, complex psychoacoustic
models do not consistently outperform LUFS-based
approaches [24]. Consequently, we forgo personalized
psychoacoustic models and instead propose a refined
LUFS-based strategy.

Fenton [25, 26] demonstrated that manually optimizing
loudness model parameters—such as filter type and
integration window length—for different instrument
types yields better alignment with human mixes than
generic configurations like K-weighted filters or the
models proposed by Pestana et al. [21]. Building on this
insight, we propose an automated parameter selection
scheme to improve scalability and generalization across
diverse mixing scenarios.

2.3 Loudness of Characteristic Frequency Band

In multitrack mixing, inter-track masking often leads
listeners to perceive only the most salient narrow fre-
quency band from each track. We refer to this salient
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Table 1: Comparison of Loudness-Grouping Relation-
ships

Group Track LUFS CFB Loudness

Lead VOC -19 -24
Accompany AG PICK -21 -27
Accompany BV -22 -27

Pad EG CHO -24 -32
Pad EG DIST -32 -33
Pad PIANO -35 -32
Pad ORGAN -33 -33

region as the Characteristic Frequency Band (CFB). To
identify this band, we propose two methods: (1) the
spectral centroid ± half the spectral bandwidth, and (2)
two to four times the track’s fundamental frequency.

To enhance level balancing, we apply pre-filtering
based on each track’s CFB before gain adjustment. For
each audio track ai in a subgroup, the gain coefficient
λi is computed by first estimating the loudness li of the
pre-filtered ai. We then apply a fixed gain of b− li to
the original signal, where b is the target group loudness,
defined as −0.1− p to prevent clipping, with p being
the global peak value within the subgroup.

Using the CFB method, we analyzed multitrack mixes
from several engineers and identified patterns that were
overlooked by standard LUFS analysis (Table 1). We
asked engineers to label the musical roles of tracks
based solely on listening. The results show that tracks
with the same role tend to exhibit similar CFB loudness,
whereas their LUFS values can differ by up to 9 dB.
This inconsistency may explain why earlier studies did
not recognize loudness-grouping phenomena.

2.4 Automatic Level Balance System with
Pre-filtering

We enhance the traditional automatic level balance
framework by integrating pre-filtering based on the
Characteristic Frequency Band (CFB). Using the 2–4
times fundamental frequency filtering as an example,
the system first detects the fundamental frequency of
each track using the PESTO algorithm [27]. It then
applies a band-pass filter around 2–4 times the detected
fundamental frequency and computes loudness within
this band.

Loudness estimation is performed using the pyloud-
norm package [28], following the ITU-R BS.1770-4
standard as defined by EBU R-128. The system then
adjusts the gain of each original (unfiltered) track to
align its loudness with a predefined target. Finally, the
processed tracks are rendered as individual audio files
and combined into a mixdown for evaluation.

2.5 Subgrouping for Automatic Level Balance

Knowledge engineering-based automatic level balanc-
ing systems typically aim to maximize inter-channel
clarity through techniques such as LUFS normaliza-
tion and equal-loudness contour-based gain adjust-
ment [18, 19]. While these methods perform well in
listening tests and are widely used in industry, they
face limitations in multitrack scenarios. For example,
Jillings and Stables [29] found that in listener-preferred
mixes, lead vocals were on average 11 LU higher than
the overall mix level, highlighting a systematic bias not
addressed by existing methods [24].

However, multiple studies have highlighted their limi-
tations, though solutions were not proposed at the time
due to technical constraints[24]. For instance, Jillings
and Stables[29] conducted a survey involving 71 par-
ticipants and found that, even in attempts to create
balanced mixes, vocals tended to dominate, with lead
vocal levels averaging 11 LU higher than the overall
mix level.

Identifying grouping strategies that align with percep-
tual loudness principles is critical for the practical
deployment of knowledge engineering-based systems.
Previous research has explored how engineers create
subgroups [30], apply effects, and how subgrouping
correlates with mixing preferences [31]. Some attempts
at automatic subgrouping have used random forests
based on audio features [32], while others have relied
on simple instrument label-based grouping for loud-
ness normalization [2]. However, the impact of dif-
ferent grouping strategies on automatic mixing per-
formance—particularly for level balancing—remains
underexplored.

Given the overlap between datasets for automatic mix-
ing and source separation, we adopt the most common
source separation grouping scheme—drums, bass, vo-
cals, and other—as a starting point. If this grouping
strategy proves effective, it opens the door to using
source separation techniques to generate additional
training material for inter-group mixing tasks.

AES 159th Convention, Long Beach, CA, USA
2025 October 23–25

Page 5 of 10



Shi, Xie, Ma, and Reiss Scalable Automatic Mixing with Machine Learning and Domain Expertise

3 Evaluation and Results

The listening test comprised two components: intra-
group level balance and overall mixing. Due to track
count limitations in current machine learning systems,
the intra-group evaluation compared only the proposed
knowledge engineering-based auto-balancing system
with human mixes. The overall mixing evaluation in-
cluded three systems: knowledge engineering, knowl-
edge engineering combined with Diff-MST, and a hu-
man mix. Six multitrack sessions from the Cambridge-
MT dataset were selected, covering five musical styles
with 40–100 tracks per project.

3.1 Intra-group Level Balance

The intra-group level balance evaluation tested the ef-
fectiveness of our proposed CFB loudness and sub-
grouping methods on real-world multitrack material.
We compared our improved knowledge engineering-
based level balancing approach with both a traditional
LUFS-based method and a human mix. The main goal
was to assess whether the proposed system could de-
liver stable and perceptually good results across diverse
musical styles.
For each multitrack session, a graduate student in music
mixing grouped tracks based on their musical roles and
exported 15-second audio clips for evaluation. From
the six sessions, we selected seven instrument groups
with the highest number of tracks, mainly the Drums
and Other groups. Each group was processed using
the three different methods, and the mix engineer also
provided a reference level balance for comparison.
For each audio track within the selected groups, we
applied automatic level balancing with the following
configurations. Apart from the loudness computation
method, all other processing variables were kept con-
stant:

• Centroid: Loudness was calculated after applying
a pre-filter using the range defined by the spectral
centroid half the spectral bandwidth.

• f0: Loudness was calculated after applying a pre-
filter defined by 2 to 4 times the average funda-
mental frequency of the track.

• LUFS (Baseline): Standard LUFS-based loud-
ness equalization was applied without pre-
filtering.

• Human Mix: A graduate student in music mixing
manually balanced the levels within the group.

3.2 Overall Mixing

For the overall mixing task (intra-group + inter-group),
we tested the effectiveness of combining our intra-
group level balancing method with Diff-MST, an inter-
group mixing model based on differentiable mixing
style transfer. The tested configurations are listed in
Table 2. Rules 1–3 correspond to purely knowledge
engineering-based approaches without any learning
components, serving as baselines for the full mixing
task involving more than 100 tracks. Rule 4 represents
our proposed Two-Step Mixing architecture, which
combines the best-performing Centroid-based intra-
group balancing method with Diff-MST-based inter-
group loudness adjustment. Rule 5 corresponds to the
human-mixed reference.

Table 2: Comparison rules for intra-group and inter-
group methods.

Rule Intra-group Inter-group

Rule 1 (Centroid): Centroid Centroid
Rule 2 ( f0): f0 f0
Rule 3 (LUFS): LUFS LUFS
Rule 4 (Two-Step Mixing): Centroid Diff-MST
Rule 5 (Human Mix): Human Human

3.3 Testing Procedure

A total of 27 participants took part in the study, in-
cluding 23 mixing engineers, as well as researchers
and music enthusiasts. Since the primary aim was to
evaluate participants’ professional judgment in realistic
mixing decisions rather than strictly comparing ratings
across individuals, participants were asked to conduct
the listening tests remotely in their familiar mixing en-
vironments, which primarily consisted of professional
mixing studios or high-quality headphones.

The listening tests consisted of three phases: a prelimi-
nary trial, volume calibration, and the main experiment.

All clips in listening test were normalized to -30 LUFS.
During calibration, participants adjusted playback to
a comfortable level. The main experiment consisted
of eight groups comparing intra-group automatic level
balancing, and one group comparing the two-step auto
mixing of the complete track.

The main experiment was conducted in a blind,
MUSHRA-like format: participants did not know
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which system produced each audio clip, and the order
of clips was randomized. Among the eight intra-group
evaluations, the fourth and seventh presented the same
set of audio clips; this duplication was used to assess
rating consistency.

Participants rated the clarity of each clip. To ensure a
broad range of perceptual responses, participants were
required to assign at least one high score (80–100) and
one low score (0–20).

4 Data Analysis

4.1 Intra-group Performance Analysis

For the intra-group listening test, we included a set
of repeated hidden reference items to evaluate listener
consistency. Pearson correlation coefficients were cal-
culated to screen for reliable participants, and responses
with coefficients below 0.378 were excluded. To visual-
ize the relationship between listener experience and test
reliability, we plotted Pearson correlation coefficients
against years of experience for all 27 participants in
Figure 2. A horizontal threshold line at 0.378 indicates
the cutoff used for inclusion. The majority of excluded
participants had fewer years of experience, suggesting
a potential correlation between listening experience
and response consistency. As a result, we retained data
from 17 out of 27 participants, with most of the ex-
cluded ones being less experienced mixing engineers
or amateur listeners. This suggests that level balancing
remains a challenging task, even for trained mixing
engineers.

Fig. 2: Listener Consistency vs. Years of Experience

Violin plots in Figures 3 and 4 visualize the score distri-
butions for different methods. Wider sections indicate
where score values are more densely concentrated, and

the central lines show medians and quartiles. This al-
lows for an intuitive comparison of score spread and
central tendency across methods.

In the drum group, the LUFS method performed com-
parably to the human mix, while our Centroid method
significantly outperformed LUFS and slightly outper-
formed the human mix. This is consistent with the
violin plots, where both the Centroid and f0 methods
show higher mean scores and a greater density of high
ratings, indicated by the top-heavy shape of the plots.

In the “Other” group, both f0 and Centroid methods
yielded slightly higher mean scores than LUFS, with a
greater proportion of high ratings. While none of the
automatic systems outperformed the human mix here,
the performance gap was within an acceptable range.

Overall, in both the drum and “Other” instrument
groups, the Centroid and f0 methods outperformed
the LUFS baseline in intra-group balancing tasks.

A t-test revealed statistically significant differences be-
tween both proposed methods and the baseline. Table
3 summarizes the results of one-sided and two-sided
t-tests comparing the performance of different mixing
approaches (LUFS, Human Mix, f0, and Centroid) in
the drum and “Other” groups. Statistically significant
results are marked in bold.

Table 3: T-Test Results for Intra-group Level Balance

Instrument Group Alternative Hypothesis p-value

Drums LUFS < Human 0.301
Centroid > Human 0.145

f0 <Centroid 0.361
f0 > LUFS 0.028

Centroid > LUFS 0.047

Other LUFS 6= Human 0.016
Centroid 6= Human 0.011

f0 6=Centroid 0.771
f0 6= LUFS 0.844

LUFS 6= Centroid 0.943

While the f0-based method requires fundamental fre-
quency estimation and incurs a higher computational
cost, the Centroid-based method is more efficient and
may be preferable in time-sensitive applications.
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Fig. 3: Violin plot for Percussion and Other instruments

4.2 Overall Mixing Performance Analysis

Results for the complete mixing task, incorporating
both intra- and inter-group balancing, are shown in
Figure 4. The pure knowledge engineering system
showed a large performance gap compared to both
the human mixes and our proposed two-step system.
Notably, the two-step method achieved mean scores up
to four times higher than the LUFS-based baseline and
outperformed the human mix in some cases, indicating
strong effectiveness.

Fig. 4: Violin plot for inter-group level balance

Table 4: Summary of T-Test Results for Overall Mix-
ing Methods

Alternative Hypothesis p-value

f0 <Centroid 0.0059
f0 < LUFS 0.071

LUFS <Centroid 0.033
Centroid < Human 0.188

Table 4 shows that the Centroid method outperformed
both f0 and LUFS in overall mixing, and no statistically
significant difference was found between Centroid and
the human mix.

Overall, our knowledge engineering system achieved
competitive results with human engineers in intra-
group tasks across multiple genres and track counts
(ranging from 40 to 100). However, it fell short in
overall mixing, especially in inter-group balance. This
performance gap was effectively addressed through our
proposed machine learning–based inter-group mixing
system.

The clear performance disparity between intra-group
and inter-group results highlights the rationale behind
our two-stage architecture. The system leverages the
stability and scalability of knowledge-based methods
for intra-group tasks while compensating for their lack
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of generalizability in inter-group mixing through data-
driven models. This hybrid design extends the capabil-
ity of automatic mixing systems to handle large-scale
projects without compromising mix quality.

5 Summary

Applying machine learning models to real-world mix-
ing scenarios remains a major challenge in automatic
mixing. In this work, we proposed a two-stage mixing
architecture that combines domain-specific knowledge
with machine learning, enabling the system to handle
over 100 input tracks while maintaining robust perfor-
mance across diverse musical styles.

From a practical music production standpoint, we ad-
dressed two key limitations of traditional knowledge
engineering approaches: the inadequacy of LUFS in
capturing the perceptual loudness of narrowband high-
frequency signals, and the lack of empirical validation
for instrument grouping strategies in automatic mixing.

Listening test results confirmed that our knowledge-
based system performs reliably for intra-group level
balancing, even with large and genre-diverse sessions.
However, its performance declines in inter-group bal-
ancing tasks. Integrating a machine learning model
for inter-group mixing (Diff-MST) within our two-step
framework effectively overcomes this limitation.

We recommend using the Centroid and f0 methods for
intra-group level balancing, particularly in large ses-
sions. For full mixing tasks, combining intra-group bal-
ancing with a learned inter-group model like Diff-MST
offers a practical and scalable solution. This hybrid
approach demonstrates the strength of uniting expert-
driven rules with data-driven inference to achieve high-
quality, consistent mixes at scale.
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