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ABSTRACT

Without relying on audio data as a reference, artificial reverberation models often struggle to accurately simulate
the acoustics of real rooms. To address this, we propose a hybrid reverberator derived from a room’s physical
properties. Room geometry is extracted via Light Detection and Ranging mapping, enabling the calculation of
acoustic reflection paths via the Image Source Method. Frequency-dependent absorption is found by classifying
room surface materials with a multi-modal Large Language Model and referencing a database of absorption
coefficients. The extracted information is used to parametrise a hybrid reverberator, divided into two components:
early reflections, using a tapped delay line, and late reverberation, using a Scattering Feedback Delay Network.
Our listening test results show that participants often rate the proposed system as the most natural simulation of a
small hallway room. Additionally, we compare the reverberation metrics of the hybrid reverberator and similar
state-of-the-art models to those of the small hallway.

1 Introduction

Traditional methods for recording Room Impulse Re-
sponse (RIR) involve significant overhead, including
the use of multiple microphones, heavy speakers, and
the need for a completely silent environment. This
makes the process resource-intensive and challenging.
Without these prerequisites, the RIR becomes unusable
even after extensive post-processing.

To overcome these difficulties, we propose a system
that artificially models a room’s reverberation using
only its geometric and visual properties. We envision a
portable approach to extracting these properties, empha-
sising consumer-grade hardware like phone cameras
and LiDAR scanners. We break the task down into the
following steps, also shown in Fig. 1.

• Extracting the desired room geometry via LiDAR
scanning,

• Identifying the primary material of each surface
from images of the room,

• Finding reflection paths based on room geometry
using the Image Source Method,

• Retrieving absorption coefficients from a dataset
based on each wall’s primary material,

• Defining a hybrid reverberator based on the reflec-
tion paths and absorption characteristics.

The aim is to model the reverberation of a real room
using scalable techniques that prioritise high sound
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Fig. 1: Geometric and visual reverb system overview.

quality for audio production rather than exact acous-
tic replication. This approach emphasises creating an
idealised room response that accurately conveys the
space’s perceived size and absorption characteristics.
The idealised response should deliver an aesthetically
pleasing version of a room rather than replicating the
natural imperfections.

2 Related Work

2.1 Artificial Reverberation

The Image Source Method (ISM) [1] is a geometric
acoustic technique that simulates room acoustics with
high accuracy. The method generates virtual sources by
reflecting the original sound source across the room’s
boundaries. The source is reflected for each axis, and
the resulting virtual image sources are then reflected
again, creating higher-order reflections. This process is
repeated until the desired reflection order is achieved.

Introduced by Gerzon [2] [3] and implemented by Puck-
ette [4] the Feedback Delay Network (FDN) is a recur-
sive reverberation structure containing a set of delays
lines, a mixing matrix that controls the distribution
between delay lines, and absorption filters which set
the reverb decay time. In [5], short velvet noise Fi-
nite Impulse Response (FIR) filters are added to each
mixing matrix element to model scattering on material
surfaces, increasing reverb density.

Fig. 2: Transposed FDN, where the output is taken
from the mixing matrix. z−Mi is the feedback
delay time, G is the mixing matrix, Hi(z) is the
absorption filter of the ith delay line and b,c are
the input and output gains, respectively.

The Scattering Delay Network (SDN) [6] combines the
efficiency of the FDN with the accuracy of the Digi-
tal Waveguide Mesh [7] by using a sparse network of
waveguides, with scattering nodes placed at first-order
reflection points identified by the ISM. This ensures
that first-order reflections are rendered accurately while
the recursive structure approximates late reflections.
Frequency-dependent surface absorption is modelled
using filters at each scattering node, resulting in an
energy decay curve similar to the ISM.

2.2 Reverb Matching Systems

Extensive research has been done on deriving artificial
reverberators based on RIRs [8, 9, 10]. These sys-
tems optimise parametric reverberators by matching
features extracted from RIRs. This is demonstrated
in [9], where the authors tune the FDNs gains and
delay line lengths using a genetic algorithm with a
Mel-Frequency Cepstral Coefficients cost function.

Deep learning methods have advanced reverb estima-
tion by integrating visual and acoustic data [11, 12, 13].
In [11] the authors propose visual acoustic matching
via cross-modal transformers to apply the acoustics of a
target environment depicted in an image to audio. Fur-
thermore, [12] combines reverberant speech samples
with panoramic images of an environment to estimate
RIRs. The system employs a multi-task learning frame-
work where geometry and material properties, encoded
as "Geo-Mat" features, are extracted from visual cues.

Additionally, systems that focus on extracting acoustic
features without the use of audio are emerging [14]
[15]. For instance, [14] employs LiDAR-based ge-
ometry reduction techniques alongside visual material
classification to parametrise the ISM and generate a
RIR.
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3 Method

3.1 Geometry Extraction

We start the geometry extraction procedure by using
Apple RoomPlan API and LiDAR-capable iPhone 14
Pro to scan the room. The result is a 3D model en-
capsulating the room measurements. Since our early
reflection device uses the standard ISM, we extract a
cuboid from the room dimension by taking the max-
imum length, height, and width. After the geometry
extraction, we get the room dimensions of length 2.97
meters (m), width 2.61 m, and height 2.68 m. With
the extracted geometry, we use the ISM to find the
reflection paths in the room up to the second order.

3.2 Material Recognition

To simulate the appropriate frequency-dependent decay
time of the room, we use images of each surface and
find the primary materials present. We use the GPT-
4o multi-modal Large Language Model (LLM) [16]
to classify each image. We provide the model with a
dataset, sourced from the appendix of [17], which con-
tains a list of material names and their corresponding
absorption coefficients. Then, we prompt the model to
identify the primary material in the image based on the
material names in the dataset. The predicted name of
the primary material is then used to query the material
database. We use a temperature of 0.01 to achieve a
more deterministic response. Temperature is a hyper-
parameter that controls the randomness of the LLM
output.

We test the method in a small cuboid room with min-
imal furnishing and simple materials, shown in Fig.
6. The matching process results are shown in Fig. 3
. Ideally, a classifier trained with surface image and
absorption coefficient pairs would be used to improve
performance on complex scenes.

3.3 Hybrid Reverberator

The room simulation is broken down into early and late
reflection stages, using the ISM and Scattering FDN,
respectively. This distinction ensures that the initial
energy of the reverb matches the listener’s expectations
for the space. While the later reflections provide a max-
imally diffuse and smooth response, conveying the size
and materials of the room. We use a parallel structure,
as shown in Fig. 4, where early reflections and late

Fig. 3: Estimated surface and air absorption coeffi-
cients from material recognition process ap-
plied to the small hallway images.

Fig. 4: Block diagram for the hybrid reverberator.

reverberation are processed separately and combined.
This decision is due to a comb filtering effect when the
FDN processes the output from the early reflections
stage. Therefore, to ensure both stages are aligned in
the time domain, the FDN input is delayed until the first
reflection. Additionally, we take the output of the late
reverberation from the FDN mixing matrix to create
immediate density at the first reflection. The structure
used to achieve this is shown in Fig. 2

The delay times for the early and late stages are deter-
mined by calculating reflection paths using the ISM.
Reflections are computed up to the second order. For
each reflection path, we use (1) to find the Euclidean
distance and convert it to a sample delay between each
image source and the listener. Where x is a coordinate
vector, Sk denotes the image source, R is the receiver,
Fs is the sampling rate, and c is the speed of sound in
air.

DSk,R =

⌊
Fs
‖xSk −xR‖

c

⌋
(1)
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3.3.1 Early Reflections

To implement the delay times calculated with the ISM
we employ a tapped delay line (TDL) where each tap
represents a different reflection. Although Finite Im-
pulse Response (FIR) filters can also be used to model
the reflection paths, doing so would result in a sys-
tem with an order equal to the largest delay time. In
contrast, using a TDL results in a system order corre-
sponding to the number of reflections, thereby reducing
computational complexity.

gSk,R =
1

‖xSk −xR‖
(2)

Each tap in the TDL has an associated attenuation
gain gSk,R that follows the inverse distance law (1/r)
to simulate spherical spreading. Additionally, we de-
sign a minimum-phase FIR filter to account for the
frequency-dependent absorption properties of the ma-
terials involved in each reflection. This filter is based
on absorption coefficients estimated from the surface
image. Using the window method, we create a filter
that applies a gain of βk, f = 1−αk, f to each frequency
band, where αk, f is the absorption coefficient of the
surface k in a frequency band f .

Y (z) =
M

∑
k=0

Hk(z) ·gSk,R ·X(z) · z−DSk ,R (3)

The combined effect of all early reflection paths is cap-
tured by (3) where X(z) is the input signal and Y (z)
represents the contributions from all reflection paths.
Each term in the summation corresponds to a different
reflection, where Hk(z) is the transfer function of the
FIR filter for the kth reflection. The result is a set of re-
flections that model the time and frequency-dependent
characteristics of a room’s early energy profile.

3.3.2 Late Reverberation

Our objective is to create a smooth late reverb that
accurately mirrors the frequency-dependent decay char-
acteristics of the target room. Therefore, we assume
that the acoustic field is diffuse. We make this assump-
tion since we are interested in reasonably reverberant
rooms.

High echo and modal density correlate with smooth
reverberation [18]. To achieve this while maintaining
a low system order, we incorporate small velvet noise

FIR filters into each element of the mixing matrix. This
technique is supported by findings in [5].

The FDN delay times are determined using the values
derived from (1). To further enhance the naturalness
of the reverb, we address potential metallic ringing
common in artificial reverb. We do this by following
Schroeder’s heuristic [19] that using mutually prime
numbers for delay times can reduce such resonances by
effectively spreading out the room modes. Therefore,
for each delay DSk,R, we round up to the nearest prime
number.

The matrix used in the FDN dictates the extent of mix-
ing between the delay lines. Different matrix types are
selected based on the system’s order or computational
requirements. To utilise all DSk,R delays, we employ
a random orthogonal matrix, which can accommodate
any FDN order. However, it is not a preferred choice
due to its non-deterministic nature and time complexity
of O(N2)[20]. An alternative is the circulant matrix,
which can be arbitrarily sized and computed efficiently
using the Discrete Fourier Transform of its first row
[21].

The Hadamard matrix is typically utilised in FDNs
due to its computational efficiency, with a n logn fast
transform [20], and maximally diffuse response [22].
However, Hadamard matrices are only valid for ma-
trix orders that are powers of 2. Given that the num-
ber of image sources for the Mth order reflections is
∑

M
m=1 N (N−1)m−1 where N represents the number of

surfaces, when N = 6 and M = 2, the number of image
sources becomes 36. To adapt this to a valid Hadamard
matrix order, we apply k-th sampling (4) to evenly dis-
tribute the delay times, thus reducing the order to the
nearest power of 2. Where K is the number of image
sources and N is the target number of delay lines:

Dsampled =

{
DSk,R | k = i

K
N
, i = 0, . . . ,N−1

}
(4)

3.3.3 Frequency Dependent Reverb Time

The decay envelope across different frequency bands
in the late reverberation should match that of the target
room. To achieve this, we use (5) to find the RT60 at fre-
quency bands, where A is total absorption at frequency
band f . Using this equation with the absorption coeffi-
cients for each surface, we calculate the reverberation
times across octave band centre frequencies [125, 250,
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Fig. 5: Sabine RT60 at octave bands based on the ex-
tracted geometry and absorption coefficients
estimated from surface images.

... 8000 Hz]. The results of these calculations for the
Small Hallway room are shown in Fig. 5.

RT60, f , Sabine =
0.161V

A f
(5)

In an FDN, the absorption filters control frequency-
dependent decay time, characterised by RT60 at fre-
quency bands. Each delay line is associated with a
filter and parametrised based on its length and the de-
sired reverb time. Using (6) converts the total -60 dB
decay over time to the equivalent -1 dB per sample
decay, scaled according to the length of the delay line.
The slope is then converted from dB to magnitude and
used to control the gain of the absorption filter.

slopedB = delay
−60

RT60 fs
(6)

For computational efficiency, first-order IIR filters,
which set the decay time at both Fs/2 and 0 Hz, are
often used. Also, perceptual studies [23] have shown
that reverb time should be controlled across multiple
frequency bands. Alternatively, for precise control of
decay across many frequency bands, FIR filters can be
used where the gains are based on the RT60, f at octave-
bands. We implement the late reverberation device
using one-pole IIR and FIR filter approaches.

In the IIR approach, we employ a combination of high
and low-frequency shelving filters, as well as a mid-
frequency crossover band, as proposed in [24]. The de-
cay times at Fs/2 and 0 Hz, are set to the RT60, f , Sabine
values calculated for the 8000 Hz and 125 Hz octave
bands, respectively. To determine the crossover fre-
quency, we use (7) to apply the Schroeder formulation

of the transition frequency [25]. This crossover is typ-
ically chosen as a multiple between 1 and 4 of the
frequency. In our implementation, we use a multiple of
2, although this choice is often guided more by intuition
than by strict calculation.

fSchroeder = 2000

√
RT60

V
, (7)

For the FIR approach, we calculate the required attenu-
ation per sample at octave-bands based on the predicted
RT60, f ,Sabine and the corresponding delay length using
(6) and fit a filter with the window method. To simulate
the fast energy decay of sound at higher frequencies,
we set the RT60 at Nyquist to be zero.

To summarise, we combine the ISM with the Scatter-
ing FDN in a hybrid system to implement a reverb
with geometrically accurate early reflections and late
reverberation matching the room’s decay profile. In the
evaluation below, the presented model will be referred
to as the ISMFDN, followed by the FDN delay-line
order N and its absorption filter type, FIR or One-pole.

4 Evaluation

To evaluate the success of the proposed system, we
compare the ISMFDN One-pole and FIR methods to
the SDN and ISM. Each is parametrised based on the
geometry and surface absorption coefficients we extract
from the room. We also include a standard one-pole
absorption Hadamard FDN configured via the method
presented in the late reverberation section. Addition-
ally, a ground truth RIR was recorded in a target room,
referred to as Small Hallway, shown in Fig. 6. We
use the sine sweep and deconvolution method [26] to
reduce the noise floor and maximise frequency cov-
erage. The HISS [27] Max/MSP package was used
to generate the sine sweep, played out of a Quested
VS2205 and recorded by a SoundField SPS-442 sur-
round sound microphone. The speaker and microphone
were placed at length 0.5 m, width 1.02 m, height of
1.24 m and, length 2.2 m, width 1.02 m height 1.35 m,
respectively. In all models, where possible, the source
and microphone are placed at their respective locations.

4.1 Objective

In this section, we present the objective metrics used
to evaluate the effectiveness of the reverberation al-
gorithms, focusing on how closely they replicate the
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Fig. 6: Recording setup for creating the small hallway
RIR.

characteristics of a small hallway space Fig. 6. We
evaluate the results using the metrics: RT60 and Modal
Density at ocatve-bands and the echo density up to the
mixing time of the Small Hallway (0.83 sec). To mea-
sure performance, we take the normalised root mean
squared error (RMSE) between the metrics for the syn-
thesised RIRs and Small Hallway RIR . We then invert
the result so the performance scale is 0 (worst match)
to 1 (best match); see Fig. 7.

4.1.1 Reverb Time

To measure RT60, f we use an octave-band filter bank
to decompose the RIR. For each band we apply
Schroeder’s Energy Decay Curve method (8), where
E(t) is the Schroeder integral [28] and find the point at
which energy decays by 60 dB.

RT60, Measured = 6 · E(t)
Slope of E(t)

(8)

The resulting RMSE RT60, f ,Measured values across all
models are plotted in Fig. 7. The excellent perfor-
mance of the ISM falls in line with expectations since
it models absorption at each reflection. Additionally,
we expect a close match from the SDN as it approx-
imates the ISM. The moderate performance of the
FIR ISMFDN is due to errors introduced by using the
Sabine equation to estimate decay times. The best mod-
els (ISM, SDN and FIR ISMFDN) have absorption fil-
ters based on all octave bands of each surface’s material
coefficients. The worst-performing models (One-Pole
ISMFDN and Hadamard FDN) have first-order absorp-
tion filters based solely on the absorption coefficients
of the maximum and minimum octave bands.

4.1.2 Modal Density

Modal Density refers to the number of resonating fre-
quencies within a given range. High density typically

Fig. 7: Normalized performance of models for modal
density and RT60 at octave-bands and echo den-
sity, (1=Best).

contributes to a smoother and more diffuse reverber-
ation. In [19], the authors suggest that a minimum
of 0.15 modes per Hz is sufficient for one second of
reverb.

We estimate modal density by conducting spectral peak
picking using parabolic interpolation [29]. This method
is chosen for its robustness against noise in the fre-
quency domain. The modal density at a frequency
range is calculated as:

Modal Density =
Number of Detected Peaks

Frequency Range
.

We define modal density at a octave-band centre fre-
quency f by counting how many detected peaks lie
between f/

√
2 and f

√
2. We then divide the count by

the total number of frequencies in the same range.

Fig. 7. shows the success of the ISMFDN in its FIR
filter configuration. The higher-order FDN (N=24) sys-
tem achieves greater density in both FIR and One-pole
cases. This is due to modal density in FDNs being
proportional to the summation of all delay lengths [30].
The standard Hadamard FDN struggles to generate
sufficient modal density due to its simplified mixing
matrix. Moreover, the ISM model performs well, con-
sistent with its established reputation for accurately
modelling acoustics in simple room geometries. In-
terestingly, the SDN performs poorly in this compar-
ison. While SDNs are often praised for their natural-
sounding reverberation [31], from our findings, their
ability to provide realistic modal density appears lim-
ited.
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4.1.3 Echo Density

Echo density is a metric that reflects how densely
packed the echoes become as the sound reverberates
within a space. The echo density metric, as defined in
[32], measures a RIRs similarity to a Gaussian distri-
bution over time. Closer matches to the distribution
correlate with higher levels of sound diffusion.

The results in Fig.7 show the ISM achieves the clos-
est early echo density profile to the Small Hallway
RIR, significantly outperforming other models. The
ISMFDN with FIR absorption filters shows the second-
best performance. On the other hand, the one-pole ab-
sorption methods in the Hadamard FDN and ISMFDN
demonstrate considerably lower performance.

4.2 Subjective

We conducted an in-person subjective quality rating test
in the small hallway room with 5 participants, all knowl-
edgeable in audio production. They rated the natural-
ness of reverberation applied to a set of sounds based
on the room where the test was conducted. We used
four samples to base the stimuli. Anechoic flute, drums
and speech samples from the University of York’s Ope-
nAIR dataset (www.openair.hosted.york.ac.uk) and a
Roland 808 drum machine clap. Each is convolved
with RIRs generated by the models used in the objec-
tive analysis and the Small Hallway RIR. All stimuli
were normalised, and an unprocessed sample was also
included as an anchor. The test comprised four rounds,
with participants rating each sample on a scale from 1
(very unnatural) to 9 (extremely natural). Each stage of
the test presented different samples processed by each
RIR, with the order of stages and samples randomised.
A training stage was conducted first to familiarize par-
ticipants with the test procedure.

The results in Fig. 8 indicate a preference for the
ISMFDN methods, which generally scored higher on
average across the listening test. The Hadamard FDN
performs poorly, reflecting its limitations in achiev-
ing perceptually relevant reverberation. The ISM
method and SDN scored moderately, demonstrating
that while effective, they are preferred slightly less
than the ISMFDN approaches. As expected, the real
RIR achieved the highest ratings with minimal spread.
The anechoic sample consistently received the lowest
score, validating the participants’ understanding of the
test. Although the ISMFDN methods generally scored

higher, the overall close distribution of scores across
models suggests no obvious winner. Table 1 shows how
rating varied depending on the sample type, with the
same model receiving drastically different scores. This
highlights the subjective nature of reverb preference
and the challenges in determining the most natural-
sounding model.

5 Conclusion

We present a method for extracting acoustic reflection
paths and surface absorption from lidar scans and room
images. We show the process applied to our hybrid
artificial reverberator design and various state-of-the-
art models. We evaluate the models by comparing
them to a small hallway using reverberation metrics
for objective analysis and a listening test for perceptual
evaluation.

The promising listening test results show that the pro-
posed reverberator outperforms similar state-of-the-art
models. On the other hand, further work is needed to
evaluate the model perceptually. With only five par-
ticipants, the current listening test limits the ability to
draw definitive conclusions about the model’s viabil-
ity. A more extensive MUSHRA [33] study comparing
this model with the ISM across various perceptually
informed metrics is essential.

The model performs well on the modal and echo den-
sity metrics, which we expect based on results in [5].
On the other hand, it loses out to the more geometri-
cally informed ISM and SDN models on RT60, f . This
is due to the estimation of the FDN absorption filter
coefficients with the Sabine equation. A possible so-
lution to this problem could be calibrating the Sabine
equation via the non-linear optimisation method shown
in [34].

Acknowledgement

I want to thank Ilias Ibnyahya for his time and advice
throughout the research.

Appendix

Source code related to this paper is available from
https://github.com/ruarim/geometric_
and_visual_artificial_reverberation
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Fig. 8: Overall results of the listening test. The bars show the mean. The whiskers represent the 85% confidence
interval. ISMFDN Models in, Yellow, Green, Purple and Red.

Table 1: Mean listening test results.

Model Sample
Flute Clap Drums Speech Overall

ISM 5.9 4.1 4.4 5.3 4.9
SDN 5.8 3.2 4.5 3.7 4.3
Hadamard FDN 5.6 2.2 1.7 2.2 2.9
ISMFDN FIR N=24 4.7 5.8 5.3 5.8 5.4
ISMFDN FIR N=16 6.1 4.4 6.9 5.3 5.7
ISMFDN One-Pole N=24 4.8 6.0 6.2 4.8 5.5
ISMFDN One-Pole N=16 5.2 4.4 4.8 6.5 5.2
Small Hallway 7.2 7.0 7.6 6.8 7.2
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