Audio Engineering Society

& Conference Paper 24

Presented at the AES International Conference on Machine Learning and
Artificial Intelligence for Audio
2025 September 8-10, London, UK

This paper was peer-reviewed as a complete manuscript for presentation at this conference. This paper is available in the AES
E-Library (http://www.aes.org/e-lib), all rights reserved. Reproduction of this paper, or any portion thereof, is not permitted
without direct permission from the Journal of the Audio Engineering Society.

Procedural Music Generation Systems in Games

Shangxuan Luo', Joshua Reiss!
!Queen Mary University of London

Correspondence should be addressed to Shangxuan Luo (s . luo@gmul.ac.uk)

ABSTRACT

Procedural Music Generation (PMG) is an emerging field that algorithmically creates music content for video
games. By leveraging techniques from simple rule-based approaches to advanced machine learning algorithms,
PMG has the potential to significantly improve development efficiency, provide richer musical experiences, and
enhance player immersion. However, academic prototypes often diverge from applications due to differences in
priorities such as novelty, reliability, and allocated resources. This paper bridges the gap between research and
applications by presenting a systematic overview of current PMG techniques in both fields, offering a two-aspect
taxonomy. Through a comparative analysis, this study identifies key research challenges in algorithm
implementation, music quality and game integration. Finally, the paper outlines future research directions,
emphasising task-oriented and context-aware design, more comprehensive quality evaluation methods, and
improved research tool integration to provide actionable insights for developers, composers, and researchers
seeking to advance PMG in game contexts.

1 Introduction In addition to significantly impacting the player’s
immersion by generating diverse content, PCG also
dramatically reduces the development time and cost
[1], [3], [4], particularly benefits the non-linearity
characteristic of games that require dynamic,
replayable, or expansive content, such as Rogue-
likes, Sandboxes, Open-World Games, etc.

Procedural Music Generation (PMG) originates from
the concept of Procedural Content Generation (PCG),
which is the algorithmic creation of game content
with limited or indirect user input [1]. The basic idea
of PCG seems to first appear concurrently with the
early development of computers around the 1980s
[2]. One early example of using PCG was Rogue in
1978, which became the beginning of Rogue-like
games. In Rogue, algorithms were used to generate
randomised dungeons, with the map changing each
time you played. Without storing massive static
assets, PCG addressed hardware memory bottlenecks
in the early days, but has since become more widely
used to expand the game content and richness,
including levels, characters, stories and sound.

Music, as an important aspect of game content,
provides unique functional support to enhance the
game experience. For example, theme music aims to
express the core tone or character identity of a work,
whereas background music seeks to render the
atmosphere of a scene. Moreover, music offers a
unique means of enhancing storytelling through its
ability to adapt dynamic environmental changes in
games and facilitate smoother scene or state
transitions.

Luo and Reiss

Procedural Music in Games

However, most games comprise a soundtrack of
between one and four hours of music, whereas the
duration of game-play can vary considerably, from
dozens to hundreds of hours [5]. Furthermore, Live
Service Games are often designed to provide endless
player experience by iterating the gameplay [6]. Yet
very little music goes with it. This results in players
hearing music repeated on many occasions. While
repetition is a critical element of music, excess can
disrupt immersion and become a source of frustration
and fatigue for the player [7], [8]. Therefore,
extending the concepts and methodologies of PCG to
music is a highly effective strategy that alleviates this
fatigue by generating a wide variety of unique
content, thus improving the overall game quality.

This paper aims to examine the evolution of PMG
systems in both research and application areas. It
intends to compare current methodologies, highlight
emerging trends, identify gaps and challenges, and
provide constructive recommendations for future
advancements in the field.

2 Background

2.1 Definition

An early definition of procedural music given by
Collins is a composition that evolves in real-time
according to a specific set of rules or control logics
[9]. To further elucidate the evolution of the system
in response to input data, this paper adopts a
definition closer to procedural audio generation
[10]: PMG is the use of algorithms to dynamically
generate music content in real time while
adapting to changing inputs.

Compared to similar concepts like algorithmic
music or generative music, which also involve
creating music through systemic automation, the
critical characteristic of PMG is its real-time
adaptability to dynamic game content. This requires
systems capable of making instant adjustments and
variations to the music in response to changes in the
game state. As a result, PMG often relies on
complex rule-based frameworks in larger games to
determine how to interpret and respond to game
data, ensuring the music remains cohesive and
contextually appropriate throughout the player's
experience.

A typical workflow of PMG systems is illustrated in
Figure 1. The system receives two primary types of

Inputs

I

Game Data

¥ Music Assets

Recognition Model

!

Core Algorithm

Machine

Rule-based .
Learning

Search-based

Y
QOutputs

T

Adaptive music

Figure 1. A Typical Workflow of PMG Systems.

input: in-game state data and music asset data. Based
on these inputs, the system generates real-time
adaptive music as its output, dynamically adjusting to
reflect the evolving context and gameplay.

The state data usually refers to all the information
used in a video game to describe the current condition
of play. The following parameters are commonly
used to define and control various elements of
procedural music:

o Character parameters include vitality status
(healthy or dangerous), behavioural patterns
(e.g. sneaking or attacking), etc.

o Environment parameters include weather,
time of day, terrain, etc.

e Spatial parameters include enemy distance,
location coordinates, etc.

e Game mechanics parameters include quest
progression, difficulty level, etc.

e [nteraction parameters include player input
(mouse/keyboard mapping) and the results
of interactions with other events or objects.

In academic research, many systems introduce an
intermediate model, which we tentatively call
cognitive models, to interpret and analyse the above
parameters to generate a reference that guides the
subsequent music generation [11], [12], [13], [14].
The main references involve emotion labels and
intensity levels. Essentially, this approach maps high-

AES International Conference on Atrtificial Intelligence and Machine Learning for Audio, London, UK
2025 September 8-10
Page 2 of 10

Luo and Reiss Procedural Music in Games

Taxonomy
.
4 Y
Musicology Methodology

) 1 J]

{ v] v v ! v v
— . . .) Knowledge .

Task Direction Granularity Grid Generality Algorithm Sourceg Representation
« Generative « Horizontal : gz:d +0n « Generic * Rule-based « External » Symbolic
« Transform. - Vertical vete - Off » Specific : '%‘eLarch-based « Internal « Audio

Figure 2. Hierarchy Taxonomy of Procedural Music Systems.

dimensional data into a low-dimensional space to
reduce system complexity for prototyping.

Another type of input data, music assets, are audio
files or resources that are used in the game
development process, mainly including sound effects
and soundtrack clips. There are two types of musical
compositions in games that indicate whether music
assets are involved in the generation progress.
Generative composition refers to music created
entirely by algorithms without using pre-existing
music assets as inputs. In contrast, transformational
composition involves rearranging or modifying
existing fragments from music assets to generate new
music [15].

Based on the input of game data and music assets, the
system dynamically generates music through its core
algorithms. These algorithms are classified into three
main categories: rule-based, search-based and
machine learning. However, a mixed approach is
commonly used in practice. We will further discuss
them in the subsequent sections.

2.2 Taxonomy

To systematically categorise and analyse PMG
systems, we adopt a comprehensive taxonomy that
inherits and adapts the work of [16], shown in Figure
2. For a detailed comparison of the systems studied,
see Table 1 in Appendix. We investigated eight
dimensions of these systems in two main aspects:
Musicology and Methodology. Musicology contains
four categories, including Task, Direction,
Granularity and Grid. Methodology also contains
four categories: Generality, Algorithm, Knowledge
Source and Representation.

Tasks indicate whether the system is generative or
transformational [15]. Transformational systems
generate new music by reorganising existing music
assets, whereas generative systems usually do not
require music assets as input and can generate
music from scratch using rules and algorithms. The
boundary between the two is not entirely
deterministic, and is mainly measured by the
granularity of the music manipulated by the system.

Direction refers to whether the system can
manipulate the music horizontally or vertically.
Horizontal manipulation involves generating or
rearranging music over time, such as adjusting the
order of measures or phrases. In contrast, vertical
manipulation involves changing the music in terms
of layer at a single time point, such as instrument
groups.

Granularity refers to the level of detail with which a
music system generates musical elements or aspects.
A generative system has higher levels of detail in
terms of note compared to a transformational system,
which often manipulates the music at a coarser level,
such as measures or phrases. Other aspects of
granularity include chords, timbre, tempo, velocity,
etc.

Grid refers to whether the music generated by the
system is aligned to the beat. In other words,
whether the music has a relatively fixed groove. In
Western classical music, the rhythm is mainly
triple and quadruple meter, and the music's tempo,
dynamics, and chords are usually based on the
meter. Non-aligned music is common in some
Eastern cultures, but in the context of game music,
it is generally for ambient establishment.

AES International Conference on Atrtificial Intelligence and Machine Learning for Audio, London, UK
2025 September 8-10
Page 3 of 10

Luo and Reiss

Procedural Music in Games

Generality refers to the purpose for which a system
is designed. Specific systems are designed for a
particular game or style of play, whereas generic
systems are designed to provide a more general
solution for a wider range of game scenarios or
categories.

Algorithms refer to the methodology used by the
system and are categorised into rule-based, search-
based and machine learning. Rule-based methods
refer to techniques according to predefined rules or
patterns. Some stochastic methods, such as Markov
models, are often integrated into rule-based
methods. Search-based methods explore a vast
space of possible solutions to find the best or most
desirable outcome based on specific criteria or
fitness functions. Machine learning methods
simulate neural networks and are trained on large-
scale data to learn music patterns.

Knowledge Source (KS) is where information of the
algorithm comes from. External knowledge comes
from composers or system designers, especially in
rule-based systems. They predefine the rules based on
their experience and understanding of the music,
which is often complex and done manually. Internal
knowledge comes from the data itself, for example,
the hidden state of a stochastic model or the weight of
a trained deep-learning model.

Representation refers to the method that a system
uses to store and organise its musical knowledge.
In computing systems, the most widely used format
for symbolic representation is MIDI (Musical
Instrument Digital Interface), where each musical
event is encoded using variables such as pitch,
velocity, channel, and on/off states. Audio
representation involves capturing analog signals of
real-world music and converting them into a digital
format for storage and processing.

3 Research

In academia, a variety of advanced methods are used.
We broadly classify them into three categories, rule-
based, search-based, and machine learning-based,
according to the research in PCG [1].

3.1 Rule-based methods

Rule-based methods, sometimes referred to as
constrictive methods, usually act as constraints by
encoding rules from music theory. One example is the
use of a feasibility equation to limit the content

generated [17]. This equation encodes the following
rules:
N-1

Feasibility = — ZO Lin,n+1)+ S(n,n+ 1)+ D(n,n+1)) (1)
Where L encodes that it should not have leaps
between notes bigger than a fifth, S encodes that it
should contain at least a minimum number of leaps of
a second and D encodes that each note pitch should
differ from the preceding note pitch. All of the sub-
equations in the equation are Boolean, and thus the
whole function returns a range of values from -3 to 0.
A 0 means that the music generated is reasonable, and
a negative value does not.

Lopez uses Max/MSP, a visual programming
environment, to implement a rule-based system that
generates real-time game music and provides
interesting generation results [18]. The rhythmic
development algorithm is based on Lerdahl &
Jackendoff’s Generative theory [19]. Pitch
Generation utilises ‘drunk ' and “drunk-contour”
modes for real-time pitch assignment, with
parameters for step, range, and non-repetition. The
drunk mode based on the idea of random-walk
generates discrete sequences of notes, where each
note is independent and random. The drunken contour
pattern generates continuous melodic contours, with
randomly generated key points connected by
interpolated notes.

Rule-based methods are strongly interpretable and
extendable. Researchers can easily control and shape
the output music in terms of different elements
without affecting other aspects. However, they
require high maintenance and are limited to the
designer's musical knowledge.

3.2 Search-based methods

The most common search-based method, Genetic
Algorithm (GA), is adopted in many game music
studies [17], [20], [21], [22]. Musical generation is
represented as an optimisation problem, and the
search space here is the set of all possible music
pieces generated.

GA can be non-deterministic by providing a diverse
set of solutions. It creates a varied population of
candidate music to adapt creative tasks. However, this
requires delicate fitness function design considering
both the quality and novelty of a music piece. Three
fitness equations can be used to evaluate the
individual music piece of a population in GA:

AES International Conference on Atrtificial Intelligence and Machine Learning for Audio, London, UK
2025 September 8-10
Page 4 of 10

Luo and Reiss

Procedural Music in Games

e Rule-based fitness function - Rules extracted
from the original material or external music
theory rules.

e Human fitness function - based on direct
feedback from the composer [23].

e [earned fitness function - Training a neural
network to decide [24].

An example of a rule-based fitness equation is:

N-1
Csiep = »_ I(n,n+1)(P(n,n+1) + Q(n,n+1))/L (2)

n=0
Where Cs., stands for Counter Step; P for Pre-
Counter Step; O for Post-Counter Step; and L for
Leap. All sub-equations are Boolean, and the
equation evaluates whether the melody has a nice
smooth contour, specifically, whether it reverses
motion after a big jump (greater than a second
interval). It is a common technique in musical
progressions to reverse the movement of the melody
after a big jump in order to make the musical
progression aurally unobtrusive. Other rule-based
fitness functions include melodic novelty, note
density, etc. [21].

Unlike pure rule-based systems, rule-based fitness
functions provide a more indirect way to select
desired music, leaving more space for interesting
music candidates. However, it involves high-latency
iterations, making real-time deployment challenging.

When more than one fitness equation needs to be
satisfied at the same time, the problem is programmed
as a multi-objective optimisation (MOO), which can
be solved by a method like Non-dominated Sorting
Genetic Algorithm IT (NSGA-II) [25]. This algorithm
is designed to find Pareto bounds - the set of optimal
solutions.

However, there are exceptions that use only crossover
and mutation techniques of GA due to the subjective
nature of fitness equations [26].

3.3 Machine learning

There has been a growing trend of using machine
learning methods in game music systems, especially
transformer architectures in recent years [11], [12],
[27]. This architecture shows surprising potential in
commercial areas on large-scale training, such as
sunoAl and Udio. However, the data hunger of
machine learning and the difficulty in controllability
have been research hindrances.

Traditional neural-network architectures have not
been completely abandoned either. [20] uses a multi-
agent RNN model to handle melody, harmony and
other tasks separately. [28] also used RNN to
implement a simple adaptive music generation
system. [11] used CNN to identify the mood of the
game screen, combined with a transformer to
generate music. Research using simple probabilistic
models such as Markov chains for music generation
dwindled.

3.4 Hybrid Method

When involving varied tasks in a complex system, it
is common to use a hybrid approach to tackle
different challenges [12], [18], [20], [29]. Normally,
researchers adopt distinct methods to handle the
generation and recognition tasks, for example,
interpreting game status as emotion or intensity using
a recognition model (Figure 1).

In [20], Hutchings proposed a novel Adaptive Music
System (AMS) that combines cognitive models with
a multi-agent composition system. The cognitive
model is responsible for identifying the emotion of
the game content, while three agents cooperate on
melody, harmony and percussive rhythm tasks to
adapt the pre-composed music to match the
emotion in real-time. He incorporated a variant of
genetic algorithms, Wilson's eXtended learning
Classifier System [30], into his melody agent, while
Recurrent Neural Networks were the backend in other
agents.

4 Applications

In commercial games, most existing procedural music
generation systems are rule-based. These rules are
designed to be based on the composer or sound
designer's musical knowledge and are game-specific.
Compared to the advancement of PCG in the design
of levels, terrain, characters, etc., game music is less
well regarded and easier to adhere to traditional
methods. However, many great games show the
potential of applying PMG technology.

Spore is a successful early example of implementing
PMG. The prototype was completed in Max/MSP,
and adapted to a customised version of PureData [31].
In Spore, the music is stochastically generated in real
time from many music samples through a set of rules
[9], [31]. Leonard Paul was inspired by Spore and
also used PureData to construct his procedural music
system for Sim Cell [32]. Graphical music tools like
Max/MSP and PureData have also been widely used

AES International Conference on Atrtificial Intelligence and Machine Learning for Audio, London, UK
2025 September 8-10
Page 5 of 10

Luo and Reiss

Procedural Music in Games

i
., - |
et + Skin conductance I
+ Brain activity o |
s Music | Qualitative
i | a Experience Quality | | Analysis:
: 2 § W Thematic
w w
= « Harmony
ol
Start Gameplay o 2 [_ ;:;:;::_?c"e + Consistensy [, Data
& Session g . elc Analysis
Q
E
3 S Quantitative
: : b g’ Choices Ranking/ Written “» Analysis:
Original Generated No 3 g Rating Feedback Statistical
Music Music Music e

Figure 3. A Flowchart of Evaluation Design.

for implementing PMG in other games, for example,
The Legend of Zelda: Tears of the Kingdom [33].

Proteus [34], DOOM [35] and Ape Out [36] all use
timbre manipulation as a way of creating variations in
the content of the music, expanding somewhat into
the realm of procedural audio generation. Proteus is
creative in its use of various effects to change the

timbre and arrange the music in a non-aligned manner.

DOOM creates sequences of varying sounds by
stacking many different effects on top of each other,
and then samples from a different sequence position
each time using a simple rhythmic pattern to achieve
a constantly changing timbre. Ape Out generates
varied musical content by associating in-game action
with percussion sounds.

Both Ape Out [36] and Rez Infinite [37] are highly
adaptive music systems, which can also be referred to
as reactive music systems, where changes in music or
sound are triggered by actions/key presses. Reactive
music is a special case of adaptive music, more like
an interactive synthesiser, commonly found in
rhythm games [16]. Here, the input is mainly the
player’s interaction data. Unlike Ape Out's timbre
mapping, music and sound in Rez Infinite are
primarily pitch mapped and are generated
procedurally by responding to the player's shooting
action with a constant rhythmic beat that synchronises
with the character's vibration.

Genesis Noir [38] creatively takes advantage of Jazz
improvisation in its music system and brings a unique
solution for PMG systems. Recorded music based on
preset chord progression provides the overall music
ambience, while the player’s reaction generates the
leading melody in real time. There are two ways
music adapts to the gameplay, one of which is by
responding to a series of players’ inputs through
dialogue. For example, the player clicks several

buttons to generate a melody sequence, and the
system re-arranges it in terms of rhythm and
decoration; another way is by instantaneously
responding to the interaction. For example, the
mouse's motion speed controls the rhythm, and its y-
axis coordinates on the screen control the pitch.
Whilst audio middleware is a versatile solution for
deploying adaptive music for small to medium-sized
games, large games require more complex and
flexible solutions to arrange music. As a consequence,
they develop independent systems that can integrate
seamlessly with the game engine and handle all the
interaction logic on how the music adapts to changes
in the game. For example, Music Manager in Ara:
History Untold [39] is a data-driven system
combining both a weighting scheme and stochastic
rules. It collects data within a turn and makes a
decision about music generation at the end of each
turn. Other applications include Pulse in NMS [40],
and a server-based music system in The Outlast Trials
[41].

5 Evaluation Design

One crucial aspect that differentiates research from
application is that researchers typically employ a
rigorous assessment to evaluate the effectiveness of
PMG systems, which involves multiple gameplay
sessions under different music playback conditions
[11], [18], [20], followed by post-gameplay
questionnaires and optional physiological data
collection, shown in Figure 3.

For music systems without real game integration, a
purely listening test is often used instead of a game
session [12], [29]. Where available, physiological and
behavioural data, such as heart rate and skin
conductance, are collected during gameplay [13].
This objective data complements the subjective
feedback gathered through questionnaires. However,
it is more difficult to obtain due to the experimental

AES International Conference on Atrtificial Intelligence and Machine Learning for Audio, London, UK
2025 September 8-10
Page 6 of 10

Luo and Reiss

Procedural Music in Games

conditions. After each gameplay session, participants
complete a questionnaire assessing player experience
and music quality. The questionnaire includes
multiple-choice questions, ranking/rating scales, and
sometimes written feedback [18] to capture both
quantitative and qualitative insights.

The collected data is then analysed using thematic
analysis for qualitative feedback and statistical
methods for quantitative data. This dual approach
ensures a comprehensive evaluation of the procedural
music generation systems. However, most studies
investigated in this paper are primarily subjective,
focusing on player experience and music quality; few
papers have investigated the user experience of
composers or sound designers working with the
generation tools.

6 Challenges

By analysing research and application practices, we
identify three key gaps. First, many academic systems
are too experimental or computationally expensive
for game developers to adopt. As shown in Figure 4,
researchers focus on cutting-edge algorithms—such
as reinforcement learning, genetic algorithms, and
other advanced methods—that often require
prerequisites for practical application, including
high-quality datasets, real-time integration, and
sophisticated fine-tuning. However, game developers
often have to consider the overall allocation of
resources in the game. Sound is often not the highest
priority [31]. Therefore, they are less willing to
experiment with risky or unconventional methods and
instead prefer reliable, scalable, and extensible
approaches, which has led to rule-based systems
dominating the industry.

Second, the quality of many existing academic music
systems is currently not up to industry standards.
Based on the evaluation results of the academic
research investigated in this paper, there is no strong
evidence to suggest they provide a more enjoyable or
immersive experience for players. A study of
interviews with sound designers also confirms that
music quality is a major contributor to the lack of
acceptance of academic systems [8]. To simplify
experimental design, many systems rely on high-level
or single parameters—such as “emotion”—to control
overall musical output [12], [13], [29], which
significantly limits expressivity. In contrast, sound
designers employ a wider range of game parameters
to fine-tune various musical elements in real-world
applications, yielding a much richer listening
experience. Yet music quality depends on more than

Algorithm
Rule-based
Search-based
Machine Learning

Task
Generative
Transformational
Mixed

Generality
2 Generic
Specific

Res App. Res. App. Res. App.
Algorithm Task Generality

Figure 4. Comparison of Algorithm, Task
and Generality in Research and Application

symbolic representation. Many sub-tasks of music
generation—such as expressive rendering and
modelling musical styles to match different gameplay
scenarios—remain complex, unresolved challenges.

A third challenge is the absence of a standardised,
user-friendly framework for integrating music
systems into games[6]. Deploying these systems in a
real game demands specialised expertise and
considerable effort, since gameplay mechanics differ
widely across styles and developers need solutions
that plug directly into popular game engines. In
practice, this often requires a dedicated team of audio
engineers and access to proprietary assets, making it
resource-intensive and sometimes legally complex.
The fact that these music systems in academia are
difficult to tailor to specific game contexts creates a
gap that hampers the collection of in-game feedback
and limits the real-world impact and evolution of
academic work in this area.

7 Future Directions

Future research should focus on the following key
areas to address the identified challenges.

A task-oriented approach that considers practical
constraints such as available resources, deployment
environments, and specific application requirements
is advocated. When employing cutting-edge
technologies like machine learning, focus on
amplifying their benefits while thoughtfully
addressing any limitations. By designing experiments
with contextual awareness, researchers can create
solutions that are both more extendable and
industry-ready. At the same time, game developers
should foster a spirit of experimentation with their
music systems. Embracing a little risk can unlock
richer, more immersive player experiences.

AES International Conference on Atrtificial Intelligence and Machine Learning for Audio, London, UK
2025 September 8-10
Page 7 of 10

Luo and Reiss

Procedural Music in Games

Beyond improving a music system’s quality, it is even
more important to establish evaluation criteria that
accurately measure its contribution within the
creative process. Such a framework must inclusively
account for every participant involved in generating
the music. While a long-term aim of Procedural
Music Generation is to move beyond assisted creation
toward fully autonomous composition, this shift must
always serve to amplify human creativity. It is crucial
to acknowledge the system's role as well as its users,
ensuring we design tools that avoid stepping on the
toes of our creatives [42], [43].

Integrating music into games involves a complex
pipeline—DAWSs, audio middleware, and the game
engine—and many studios even build custom music
and audio engines. To streamline procedural music
system development, we need reusable, user-friendly
research frameworks that plug seamlessly into
popular game engines [16]. Studies like [13], [18]
show how prototype games can serve as testbeds,
giving researchers real-time player feedback to refine
their systems and design more robust evaluations,
despite the extra effort this requires. Ultimately,
building a collaborative platform where researchers
and developers share tools, datasets, and best
practices will prove invaluable, accelerating
innovation, fostering knowledge exchange, and
bridging the gap between academic research and real-
world game implementation.

8 Conclusion

This paper provides a comprehensive survey and
analysis of PMG systems in both research and
application domains. By employing a unified
taxonomy, we compare these systems across various
dimensions, identifying their development patterns,
gaps, and challenges. Our analysis reveals that while
advanced approaches and generative systems thrive
in the research landscape, significant barriers must be
conquered to achieve practical application, including
deployment difficulties, music quality limitations,
and a lack of seamless integration with games.

To address these challenges, we propose future
directions that emphasise context-aware approaches
tailored to specific tasks, music quality assessment
considering human involvement in the creative
process, and the development of enhanced research
platforms and frameworks. We hope these efforts
contribute to the long-term advancement of PMG,
fostering both technological progress and practical
application in the field.

References

[1] N. Shaker, J. Togelius, and M. J. Nelson, Procedural
Content Generation in Games. in Computational
Synthesis and Creative Systems. Springer
International Publishing, 2016.

[2] M. Scirea, ‘Affective Music Generation and its effect
on player experience’, IT-Universitetet i Kebenhavn,
2017.

[3] F.Amato and F. Moscato, ‘Formal Procedural
Content Generation in Games Driven by Social
Analyses’, in 2017 31st International Conference on
Advanced Information Networking and Applications
Workshops (WAINA), Taipei, Taiwan: IEEE, Mar.
2017, pp. 674-679.

[4] A.Summerville et al., ‘Procedural Content
Generation via Machine Learning (PCGML)’, I[EEE
Trans. Games, vol. 10, no. 3, pp. 257-270, Sept.
2018.

[5] J. Cullimore, H. Hamilton, and D. Gerhard, ‘Directed
Transitional Composition for Gaming and Adaptive
Music Using Q-Learning’, ICMC, 2014.

[6] K. Worrall, Z. Yin, and T. Collins, ‘Comparative
Evaluation in the Wild: Systems for the Expressive
Rendering of Music’, IEEE Trans. Artif- Intell., vol.
5, no. 10, pp. 5290-5303, 2024.

[71 S. Michael, Writing interactive music for video
games: a composer’s guide. Pearson Education,
2015.

[8] K. Worrall and T. Collins, ‘Considerations and
Concerns of Professional Game Composers
Regarding Artificially Intelligent Music
Technology’, IEEE Trans. Games, pp. 1-13, 2023,

[9] K. Collins, ‘An Introduction to Procedural Music in
Video Games’, Contemp. Music Rev., vol. 28, no. 1,
pp. 5-15, Feb. 2009.

[10] D. Menexopoulos, P. Pestana, and J. Reiss, ‘The
State of the Art in Procedural Audio’, J. Audio Eng.
Soc.,vol. 71, no. 12, pp. 825-847, Dec. 2023.

[11] F. Zumerle, L. Comanducci, M. Zanoni, A.
Bernardini, F. Antonacci, and A. Sarti, ‘Procedural
music generation for videogames conditioned
through video emotion recognition’, in 2023 4th
International Symposium on the Internet of Sounds,
Pisa, Italy: IEEE, Oct. 2023, pp. 1-8.

[12] L. Ferreira, L. Lelis, and J. Whitehead, ‘Computer-
Generated Music for Tabletop Role-Playing Games’,
Proc. AAAI Conf. Artif. Intell. Interact. Digit.
Entertain., vol. 16, no. 1, pp. 59-65, Oct. 2020.

[13] A. Prechtl, ‘Adaptive Music Generation for
Computer Games’, Open University (United
Kingdom), 2016.

[14] J. Tanabe, I. Khan, T. V. Nguyen, C.
Nimpattanavong, and R. Thawonmas, ‘Adaptive
Background Music According to the Player’s
Arousal for DareFightingICE’, in Proceedings of the
13th International Conference on Advances in
Information Technology, Bangkok Thailand: ACM,
Dec. 2023, pp. 1-6.

[15] R. Wooller, A. R. Brown, E. Miranda, R. Berry, and
D. Joachim, ‘A framework for comparison of process

AES International Conference on Atrtificial Intelligence and Machine Learning for Audio, London, UK
2025 September 8-10
Page 8 of 10

Luo and Reiss

Procedural Music in Games

in algorithmic music systems’, Gener. Arts Pract.,
2005.

[16] C. Plut and P. Pasquier, ‘Generative music in video
games: State of the art, challenges, and prospects’,
Entertain. Comput., vol. 33, p. 100337, Mar. 2020,

[17] M. Scirea, J. Togelius, P. Eklund, and S. Risi,
‘Affective evolutionary music composition with
MetaCompose’, Genet. Program. Evolvable Mach.,
vol. 18, no. 4, pp. 433-465, Dec. 2017.

[18] A. Lopez Duarte, ‘A Progressive-Adaptive Music
Generator for Videogames (PAMG): an Approach to
Real-Time Algorithmic Composition’, UC Riverside,
2023.

[19] F. Lerdahl and R. S. Jackendoff, 4 Generative
Theory of Tonal Music, reissue, with a new preface.
MIT Press, 1996.

[20] P. E. Hutchings and J. McCormack, ‘Adaptive Music
Composition for Games’, I[EEE Trans. Games, vol.
12, no. 3, pp. 270-280, Sept. 2020.

[21] D. Plans and D. Morelli, ‘Experience-Driven
Procedural Music Generation for Games’, IEEE
Trans. Comput. Intell. AI Games, vol. 4, no. 3, pp.
192-198, Sept. 2012.

[22] V. Arutyunov and A. Averkin, ‘Genetic algorithms
for music variation on genom platform’, Procedia
Comput. Sci., vol. 120, pp. 317-324, Jan. 2017,

[23] J. A. Biles, ‘Interactive GenJam: Integrating real-
time performance with a genetic algorithm’, /CMC,
1998.

[24] J. Biles, P. Anderson, and L. Loggi, ‘Neural network
fitness functions for a musical IGA’, Present.
Scholarsh., Mar. 1996.

[25] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘A
fast and elitist multiobjective genetic algorithm:
NSGA-II’, IEEFE Trans. Evol. Comput., vol. 6, no. 2,
pp. 182-197, Apr. 2002.

[26] J. A. Biles, ‘Autonomous GenJam: Eliminating the
Fitness Bottleneck by Eliminating Fitness’, Proc.
2001 Genet. Evol. Comput. Conf. Workshop
Program, 2001.

[27] G. Amaral, A. Baffa, J.-P. Briot, B. Feijd, and A.
Furtado, ‘An adaptive music generation architecture
for games based on the deep learning Transformer
model’, in 21st Brazilian Symposium on Computer
Games and Digital Entertainment (SBGames), Natal,
Brazil: IEEE, Oct. 2022, pp. 1-6.

[28] M. Kopel, D. Antczak, and M. Walczynski,
‘Generating Music for Video Games with Real-Time
Adaptation to Gameplay Pace’, in Intelligent
Information and Database Systems, Singapore:
Springer Nature, 2023, pp. 261-272.

[29] M. Scirea, J. Togelius, P. Eklund, and S. Risi,
‘MetaCompose: A Compositional Evolutionary
Music Composer’, in Evolutionary and Biologically
Inspired Music, Sound, Art and Design, C. Johnson,
V. Ciesielski, J. Correia, and P. Machado, Eds, in
Lecture Notes in Computer Science, vol. 9596.
Cham: Springer International Publishing, 2016, pp.
202-217.

[30] S. W. Wilson, ‘Classifier Fitness Based on
Accuracy’, Evol. Comput., vol. 3, no. 2, pp. 149-175,
June 1995.

[31] K. Jolly, ‘Procedural Music in Spore’, presented at
the Game Developers Conference, 2008.

[32] L. Paul, ‘The Generative Music and Procedural
Sound Design of Sim Cell’, YouTube, 2014.

[33] J. Osada, ‘Tunes of the Kingdom: Evolving Physics
and Sounds for “The Legend of Zelda: Tears of the
Kingdom™’, presented at the Game Developers
Conference, 2024.

[34] P. Morton, ‘The Sound and Music of Proteus - An
Academic Case Study’.

[35] M. Gordon, ‘DOOM: Behind the Music’, presented
at the Game Developers Conference, 2017.

[36] Ape Out - Reactive Music System, (2020).

[37] T. Mizuguchi, ‘Classic Game Postmortem: Rez’,
presented at the Game Developers Conference, 2016.

[38] J. Abel, ‘Genesis Noir: Bringing Jazz Improvisation
To Gaming’, presented at the Game Developers
Conference, June 20, 2022.

[39] P. Klassen, M. Curran, and J. Peros, ‘Technical
Music Design in Ara History Untold’, presented at
the Game Sound Conference, CA, Oct. 30, 2024.

[40] P. Weir, ‘The Sound of No Man’s Sky’, presented at
the Game Developers Conference, 2017.

[41] T. Salta, ‘Scoring and Implementation in a
Multiplayer Horror Game’, presented at the Game
Sound Conference, 2024.

[42] K. Worrall, ‘Crafting Better Procedural Music with
Deep Learning’, presented at the Game Sound
Conference, 2024.

[43] B. L. T. Sturm, M. Iglesias, O. Ben-Tal, M. Miron,
and E. Goémez, ‘Artificial Intelligence and Music:
Open Questions of Copyright Law and Engineering
Praxis’, Arts, vol. 8, no. 3, Art. no. 3, Sept. 2019.

AES International Conference on Atrtificial Intelligence and Machine Learning for Audio, London, UK
2025 September 8-10
Page 9 of 10

Luo and Reiss

Procedural Music in Games

Appendix
Author/System Year Field Generality Task Algorithm Direction Granularity Grid KS Representation

Spore [31] 2008 Application Specific Mixed Rule-based Horizontal Note On External Symbolic
Plans [21] 2012 Research Generic Generative GA Horizontal Note, Chord On External Symbolic

Proteus [34] 2013 Application Specific Mixed Rule-based Mixed Timbre Off External Audio
Sim Cell [32] 2014 Application Specific Mixed Rule-based Mixed Note On External Symbolic
Prechtl [13] 2016 Research Generic Mixed Markov chain Horizontal %:r(r)lr;c;,l;(/):lilciti{;/ On External Symbolic

DOOM |[35] 2016 Application Specific Transformational Rule-based Horizontal Timbre On External Audio

No Man’s Sky [40] 2016 Application Specific Transformational Rule-based Mixed Phrase On External Audio
Genesis Noir [38] 2016 Application Specific Transformational Rule-based Horizontal Note On External Symbolic
Meta Compose [29] 2017 Rescarch Generic Mixed Stgﬁ?g;gﬁ’ Mixed g?:;ﬂlgﬂgl‘zt On External Symbolic

Rez Infinite [37] 2017 Application Specific Generative Rule-based Horizontal Note Off External Audio
AMS [20] 2019 Research Generic Transformational GA, }?\/IN;:Ii’elG raph Horizontal Note On Both Symbolic

Ape Out [36] 2019 Application Specific Generative Rule-based Horizontal Timbre On External Audio
Bardo Composer [12] 2020 Research Generic Generative Transfgz;qrirﬁ Beam Horizontal Note On Internal Symbolic
Amaral [27] 2022 Research Generic Generative Transformer Mixed Note, Timbre On Both Symbolic
PAMG [18] 2023 Research Specific Mixed Rsliec-}?:sstei(ci, Mixed Note, Timbre On External Symbolic
Kopel [28] 2023 Research Generic Generative RNN Horizontal Note On Both Symbolic
Zumerle [11] 2023 Research Generic Generative CNN, Transformer Horizontal Note On Internal Symbolic
Tanabe [14] 2023 Research Specific Generative Rule-based Horizontal Pits}le’lg;rtl; PO On External Symbolic

The Outlast trials [41] 2024 Application Specific Transformational Rule-based Mixed Phrase On External Audio

Ara: History Untold [39] 2024 Application Specific Transformational Rule-based Mixed Phrase On External Audio

Table 1. Key Procedural Music Systems in Research and Application

AES International Conference on Artificial Intelligence and Machine Learning for Audio, London, UK
2025 September 8-10

Page 10 of 10

