
Audio Engineering Society

Conference Paper 24
Presented at the AES International Conference on Machine Learning and

Artificial Intelligence for Audio
2025 September 8-10, London, UK

This paper was peer-reviewed as a complete manuscript for presentation at this conference. This paper is available in the AES

E-Library (http://www.aes.org/e-lib), all rights reserved. Reproduction of this paper, or any portion thereof, is not permitted

without direct permission from the Journal of the Audio Engineering Society.

Procedural Music Generation Systems in Games

Shangxuan Luo1, Joshua Reiss1

1Queen Mary University of London

Correspondence should be addressed to Shangxuan Luo (s.luo@qmul.ac.uk)

ABSTRACT
Procedural Music Generation (PMG) is an emerging field that algorithmically creates music content for video

games. By leveraging techniques from simple rule-based approaches to advanced machine learning algorithms,

PMG has the potential to significantly improve development efficiency, provide richer musical experiences, and

enhance player immersion. However, academic prototypes often diverge from applications due to differences in

priorities such as novelty, reliability, and allocated resources. This paper bridges the gap between research and

applications by presenting a systematic overview of current PMG techniques in both fields, offering a two-aspect

taxonomy. Through a comparative analysis, this study identifies key research challenges in algorithm

implementation, music quality and game integration. Finally, the paper outlines future research directions,

emphasising task-oriented and context-aware design, more comprehensive quality evaluation methods, and

improved research tool integration to provide actionable insights for developers, composers, and researchers

seeking to advance PMG in game contexts.

1 Introduction

Procedural Music Generation (PMG) originates from

the concept of Procedural Content Generation (PCG),

which is the algorithmic creation of game content

with limited or indirect user input [1]. The basic idea

of PCG seems to first appear concurrently with the

early development of computers around the 1980s

[2]. One early example of using PCG was Rogue in

1978, which became the beginning of Rogue-like

games. In Rogue, algorithms were used to generate

randomised dungeons, with the map changing each

time you played. Without storing massive static

assets, PCG addressed hardware memory bottlenecks

in the early days, but has since become more widely

used to expand the game content and richness,

including levels, characters, stories and sound.

In addition to significantly impacting the player’s

immersion by generating diverse content, PCG also

dramatically reduces the development time and cost

[1], [3], [4], particularly benefits the non-linearity

characteristic of games that require dynamic,

replayable, or expansive content, such as Rogue-

likes, Sandboxes, Open-World Games, etc.

Music, as an important aspect of game content,

provides unique functional support to enhance the

game experience. For example, theme music aims to

express the core tone or character identity of a work,

whereas background music seeks to render the

atmosphere of a scene. Moreover, music offers a

unique means of enhancing storytelling through its

ability to adapt dynamic environmental changes in

games and facilitate smoother scene or state

transitions.

Luo and Reiss Procedural Music in Games

AES International Conference on Artificial Intelligence and Machine Learning for Audio, London, UK

2025 September 8-10
Page 2 of 10

However, most games comprise a soundtrack of

between one and four hours of music, whereas the

duration of game-play can vary considerably, from

dozens to hundreds of hours [5]. Furthermore, Live

Service Games are often designed to provide endless

player experience by iterating the gameplay [6]. Yet

very little music goes with it. This results in players

hearing music repeated on many occasions. While

repetition is a critical element of music, excess can

disrupt immersion and become a source of frustration

and fatigue for the player [7], [8]. Therefore,

extending the concepts and methodologies of PCG to

music is a highly effective strategy that alleviates this

fatigue by generating a wide variety of unique

content, thus improving the overall game quality.

This paper aims to examine the evolution of PMG

systems in both research and application areas. It

intends to compare current methodologies, highlight

emerging trends, identify gaps and challenges, and

provide constructive recommendations for future

advancements in the field.

2 Background

2.1 Definition

An early definition of procedural music given by

Collins is a composition that evolves in real-time

according to a specific set of rules or control logics

[9]. To further elucidate the evolution of the system

in response to input data, this paper adopts a

definition closer to procedural audio generation

[10]: PMG is the use of algorithms to dynamically

generate music content in real time while

adapting to changing inputs.

Compared to similar concepts like algorithmic

music or generative music, which also involve

creating music through systemic automation, the

critical characteristic of PMG is its real-time

adaptability to dynamic game content. This requires

systems capable of making instant adjustments and

variations to the music in response to changes in the

game state. As a result, PMG often relies on

complex rule-based frameworks in larger games to

determine how to interpret and respond to game

data, ensuring the music remains cohesive and

contextually appropriate throughout the player's

experience.

A typical workflow of PMG systems is illustrated in

Figure 1. The system receives two primary types of

input: in-game state data and music asset data. Based

on these inputs, the system generates real-time

adaptive music as its output, dynamically adjusting to

reflect the evolving context and gameplay.

The state data usually refers to all the information

used in a video game to describe the current condition

of play. The following parameters are commonly

used to define and control various elements of

procedural music:

• Character parameters include vitality status

(healthy or dangerous), behavioural patterns

(e.g. sneaking or attacking), etc.

• Environment parameters include weather,

time of day, terrain, etc.

• Spatial parameters include enemy distance,

location coordinates, etc.

• Game mechanics parameters include quest

progression, difficulty level, etc.

• Interaction parameters include player input

(mouse/keyboard mapping) and the results

of interactions with other events or objects.

In academic research, many systems introduce an

intermediate model, which we tentatively call

cognitive models, to interpret and analyse the above

parameters to generate a reference that guides the

subsequent music generation [11], [12], [13], [14].

The main references involve emotion labels and

intensity levels. Essentially, this approach maps high-

Figure 1. A Typical Workflow of PMG Systems.

Luo and Reiss Procedural Music in Games

AES International Conference on Artificial Intelligence and Machine Learning for Audio, London, UK

2025 September 8-10
Page 3 of 10

dimensional data into a low-dimensional space to

reduce system complexity for prototyping.

Another type of input data, music assets, are audio

files or resources that are used in the game

development process, mainly including sound effects

and soundtrack clips. There are two types of musical

compositions in games that indicate whether music

assets are involved in the generation progress.

Generative composition refers to music created

entirely by algorithms without using pre-existing

music assets as inputs. In contrast, transformational

composition involves rearranging or modifying

existing fragments from music assets to generate new

music [15].

Based on the input of game data and music assets, the

system dynamically generates music through its core

algorithms. These algorithms are classified into three

main categories: rule-based, search-based and

machine learning. However, a mixed approach is

commonly used in practice. We will further discuss

them in the subsequent sections.

2.2 Taxonomy

To systematically categorise and analyse PMG

systems, we adopt a comprehensive taxonomy that

inherits and adapts the work of [16], shown in Figure

2. For a detailed comparison of the systems studied,

see Table 1 in Appendix. We investigated eight

dimensions of these systems in two main aspects:

Musicology and Methodology. Musicology contains

four categories, including Task, Direction,

Granularity and Grid. Methodology also contains

four categories: Generality, Algorithm, Knowledge

Source and Representation.

Tasks indicate whether the system is generative or

transformational [15]. Transformational systems

generate new music by reorganising existing music

assets, whereas generative systems usually do not

require music assets as input and can generate

music from scratch using rules and algorithms. The

boundary between the two is not entirely

deterministic, and is mainly measured by the

granularity of the music manipulated by the system.

Direction refers to whether the system can

manipulate the music horizontally or vertically.

Horizontal manipulation involves generating or

rearranging music over time, such as adjusting the

order of measures or phrases. In contrast, vertical

manipulation involves changing the music in terms

of layer at a single time point, such as instrument

groups.

Granularity refers to the level of detail with which a

music system generates musical elements or aspects.

A generative system has higher levels of detail in

terms of note compared to a transformational system,

which often manipulates the music at a coarser level,

such as measures or phrases. Other aspects of

granularity include chords, timbre, tempo, velocity,

etc.

Grid refers to whether the music generated by the

system is aligned to the beat. In other words,

whether the music has a relatively fixed groove. In

Western classical music, the rhythm is mainly

triple and quadruple meter, and the music's tempo,

dynamics, and chords are usually based on the

meter. Non-aligned music is common in some

Eastern cultures, but in the context of game music,

it is generally for ambient establishment.

Figure 2. Hierarchy Taxonomy of Procedural Music Systems.

Luo and Reiss Procedural Music in Games

AES International Conference on Artificial Intelligence and Machine Learning for Audio, London, UK

2025 September 8-10
Page 4 of 10

Generality refers to the purpose for which a system

is designed. Specific systems are designed for a

particular game or style of play, whereas generic

systems are designed to provide a more general

solution for a wider range of game scenarios or

categories.

Algorithms refer to the methodology used by the

system and are categorised into rule-based, search-

based and machine learning. Rule-based methods

refer to techniques according to predefined rules or

patterns. Some stochastic methods, such as Markov

models, are often integrated into rule-based

methods. Search-based methods explore a vast

space of possible solutions to find the best or most

desirable outcome based on specific criteria or

fitness functions. Machine learning methods

simulate neural networks and are trained on large-

scale data to learn music patterns.

Knowledge Source (KS) is where information of the

algorithm comes from. External knowledge comes

from composers or system designers, especially in

rule-based systems. They predefine the rules based on

their experience and understanding of the music,

which is often complex and done manually. Internal

knowledge comes from the data itself, for example,

the hidden state of a stochastic model or the weight of

a trained deep-learning model.

Representation refers to the method that a system

uses to store and organise its musical knowledge.

In computing systems, the most widely used format

for symbolic representation is MIDI (Musical

Instrument Digital Interface), where each musical

event is encoded using variables such as pitch,

velocity, channel, and on/off states. Audio

representation involves capturing analog signals of

real-world music and converting them into a digital

format for storage and processing.

3 Research

In academia, a variety of advanced methods are used.

We broadly classify them into three categories, rule-

based, search-based, and machine learning-based,

according to the research in PCG [1].

3.1 Rule-based methods

Rule-based methods, sometimes referred to as

constrictive methods, usually act as constraints by

encoding rules from music theory. One example is the

use of a feasibility equation to limit the content

generated [17]. This equation encodes the following

rules:

(1)

Where L encodes that it should not have leaps

between notes bigger than a fifth, S encodes that it

should contain at least a minimum number of leaps of

a second and D encodes that each note pitch should

differ from the preceding note pitch. All of the sub-

equations in the equation are Boolean, and thus the

whole function returns a range of values from -3 to 0.

A 0 means that the music generated is reasonable, and

a negative value does not.

Lopez uses Max/MSP, a visual programming

environment, to implement a rule-based system that

generates real-time game music and provides

interesting generation results [18]. The rhythmic

development algorithm is based on Lerdahl &

Jackendoff’s Generative theory [19]. Pitch

Generation utilises ‘drunk ' and “drunk-contour”

modes for real-time pitch assignment, with

parameters for step, range, and non-repetition. The

drunk mode based on the idea of random-walk

generates discrete sequences of notes, where each

note is independent and random. The drunken contour

pattern generates continuous melodic contours, with

randomly generated key points connected by

interpolated notes.

Rule-based methods are strongly interpretable and

extendable. Researchers can easily control and shape

the output music in terms of different elements

without affecting other aspects. However, they

require high maintenance and are limited to the

designer's musical knowledge.

3.2 Search-based methods

The most common search-based method, Genetic

Algorithm (GA), is adopted in many game music

studies [17], [20], [21], [22]. Musical generation is

represented as an optimisation problem, and the

search space here is the set of all possible music

pieces generated.

GA can be non-deterministic by providing a diverse

set of solutions. It creates a varied population of

candidate music to adapt creative tasks. However, this

requires delicate fitness function design considering

both the quality and novelty of a music piece. Three

fitness equations can be used to evaluate the

individual music piece of a population in GA:

Luo and Reiss Procedural Music in Games

AES International Conference on Artificial Intelligence and Machine Learning for Audio, London, UK

2025 September 8-10
Page 5 of 10

● Rule-based fitness function - Rules extracted

from the original material or external music

theory rules.

● Human fitness function - based on direct

feedback from the composer [23].

● Learned fitness function - Training a neural

network to decide [24].

An example of a rule-based fitness equation is:

(2)

Where CStep stands for Counter Step; P for Pre-

Counter Step; Q for Post-Counter Step; and L for

Leap. All sub-equations are Boolean, and the

equation evaluates whether the melody has a nice

smooth contour, specifically, whether it reverses

motion after a big jump (greater than a second

interval). It is a common technique in musical

progressions to reverse the movement of the melody

after a big jump in order to make the musical

progression aurally unobtrusive. Other rule-based

fitness functions include melodic novelty, note

density, etc. [21].

Unlike pure rule-based systems, rule-based fitness

functions provide a more indirect way to select

desired music, leaving more space for interesting

music candidates. However, it involves high-latency

iterations, making real-time deployment challenging.

When more than one fitness equation needs to be

satisfied at the same time, the problem is programmed

as a multi-objective optimisation (MOO), which can

be solved by a method like Non-dominated Sorting

Genetic Algorithm II (NSGA-II) [25]. This algorithm

is designed to find Pareto bounds - the set of optimal

solutions.

However, there are exceptions that use only crossover

and mutation techniques of GA due to the subjective

nature of fitness equations [26].

3.3 Machine learning

There has been a growing trend of using machine

learning methods in game music systems, especially

transformer architectures in recent years [11], [12],

[27]. This architecture shows surprising potential in

commercial areas on large-scale training, such as

sunoAI and Udio. However, the data hunger of

machine learning and the difficulty in controllability

have been research hindrances.

Traditional neural-network architectures have not

been completely abandoned either. [20] uses a multi-

agent RNN model to handle melody, harmony and

other tasks separately. [28] also used RNN to

implement a simple adaptive music generation

system. [11] used CNN to identify the mood of the

game screen, combined with a transformer to

generate music. Research using simple probabilistic

models such as Markov chains for music generation

dwindled.

3.4 Hybrid Method

When involving varied tasks in a complex system, it

is common to use a hybrid approach to tackle

different challenges [12], [18], [20], [29]. Normally,

researchers adopt distinct methods to handle the

generation and recognition tasks, for example,

interpreting game status as emotion or intensity using

a recognition model (Figure 1).

In [20], Hutchings proposed a novel Adaptive Music

System (AMS) that combines cognitive models with

a multi-agent composition system. The cognitive

model is responsible for identifying the emotion of

the game content, while three agents cooperate on

melody, harmony and percussive rhythm tasks to

adapt the pre-composed music to match the

emotion in real-time. He incorporated a variant of

genetic algorithms, Wilson's eXtended learning

Classifier System [30], into his melody agent, while

Recurrent Neural Networks were the backend in other

agents.

4 Applications

In commercial games, most existing procedural music

generation systems are rule-based. These rules are

designed to be based on the composer or sound

designer's musical knowledge and are game-specific.

Compared to the advancement of PCG in the design

of levels, terrain, characters, etc., game music is less

well regarded and easier to adhere to traditional

methods. However, many great games show the

potential of applying PMG technology.

Spore is a successful early example of implementing

PMG. The prototype was completed in Max/MSP,

and adapted to a customised version of PureData [31].

In Spore, the music is stochastically generated in real

time from many music samples through a set of rules

[9], [31]. Leonard Paul was inspired by Spore and

also used PureData to construct his procedural music

system for Sim Cell [32]. Graphical music tools like

Max/MSP and PureData have also been widely used

Luo and Reiss Procedural Music in Games

AES International Conference on Artificial Intelligence and Machine Learning for Audio, London, UK

2025 September 8-10
Page 6 of 10

for implementing PMG in other games, for example,

The Legend of Zelda: Tears of the Kingdom [33].

Proteus [34], DOOM [35] and Ape Out [36] all use

timbre manipulation as a way of creating variations in

the content of the music, expanding somewhat into

the realm of procedural audio generation. Proteus is

creative in its use of various effects to change the

timbre and arrange the music in a non-aligned manner.

DOOM creates sequences of varying sounds by

stacking many different effects on top of each other,

and then samples from a different sequence position

each time using a simple rhythmic pattern to achieve

a constantly changing timbre. Ape Out generates

varied musical content by associating in-game action

with percussion sounds.

Both Ape Out [36] and Rez Infinite [37] are highly

adaptive music systems, which can also be referred to

as reactive music systems, where changes in music or

sound are triggered by actions/key presses. Reactive

music is a special case of adaptive music, more like

an interactive synthesiser, commonly found in

rhythm games [16]. Here, the input is mainly the

player’s interaction data. Unlike Ape Out's timbre

mapping, music and sound in Rez Infinite are

primarily pitch mapped and are generated

procedurally by responding to the player's shooting

action with a constant rhythmic beat that synchronises

with the character's vibration.

Genesis Noir [38] creatively takes advantage of Jazz

improvisation in its music system and brings a unique

solution for PMG systems. Recorded music based on

preset chord progression provides the overall music

ambience, while the player’s reaction generates the

leading melody in real time. There are two ways

music adapts to the gameplay, one of which is by

responding to a series of players’ inputs through

dialogue. For example, the player clicks several

buttons to generate a melody sequence, and the

system re-arranges it in terms of rhythm and

decoration; another way is by instantaneously

responding to the interaction. For example, the

mouse's motion speed controls the rhythm, and its y-

axis coordinates on the screen control the pitch.

Whilst audio middleware is a versatile solution for

deploying adaptive music for small to medium-sized

games, large games require more complex and

flexible solutions to arrange music. As a consequence,

they develop independent systems that can integrate

seamlessly with the game engine and handle all the

interaction logic on how the music adapts to changes

in the game. For example, Music Manager in Ara:

History Untold [39] is a data-driven system

combining both a weighting scheme and stochastic

rules. It collects data within a turn and makes a

decision about music generation at the end of each

turn. Other applications include Pulse in NMS [40],

and a server-based music system in The Outlast Trials

[41].

5 Evaluation Design

One crucial aspect that differentiates research from

application is that researchers typically employ a

rigorous assessment to evaluate the effectiveness of

PMG systems, which involves multiple gameplay

sessions under different music playback conditions

[11], [18], [20], followed by post-gameplay

questionnaires and optional physiological data

collection, shown in Figure 3.

For music systems without real game integration, a

purely listening test is often used instead of a game

session [12], [29]. Where available, physiological and

behavioural data, such as heart rate and skin

conductance, are collected during gameplay [13].

This objective data complements the subjective

feedback gathered through questionnaires. However,

it is more difficult to obtain due to the experimental

Figure 3. A Flowchart of Evaluation Design.

Luo and Reiss Procedural Music in Games

AES International Conference on Artificial Intelligence and Machine Learning for Audio, London, UK

2025 September 8-10
Page 7 of 10

conditions. After each gameplay session, participants

complete a questionnaire assessing player experience

and music quality. The questionnaire includes

multiple-choice questions, ranking/rating scales, and

sometimes written feedback [18] to capture both

quantitative and qualitative insights.

The collected data is then analysed using thematic

analysis for qualitative feedback and statistical

methods for quantitative data. This dual approach

ensures a comprehensive evaluation of the procedural

music generation systems. However, most studies

investigated in this paper are primarily subjective,

focusing on player experience and music quality; few

papers have investigated the user experience of

composers or sound designers working with the

generation tools.

6 Challenges

By analysing research and application practices, we

identify three key gaps. First, many academic systems

are too experimental or computationally expensive

for game developers to adopt. As shown in Figure 4,

researchers focus on cutting-edge algorithms—such

as reinforcement learning, genetic algorithms, and

other advanced methods—that often require

prerequisites for practical application, including

high-quality datasets, real-time integration, and

sophisticated fine-tuning. However, game developers

often have to consider the overall allocation of

resources in the game. Sound is often not the highest

priority [31]. Therefore, they are less willing to

experiment with risky or unconventional methods and

instead prefer reliable, scalable, and extensible

approaches, which has led to rule-based systems

dominating the industry.

Second, the quality of many existing academic music

systems is currently not up to industry standards.

Based on the evaluation results of the academic

research investigated in this paper, there is no strong

evidence to suggest they provide a more enjoyable or

immersive experience for players. A study of

interviews with sound designers also confirms that

music quality is a major contributor to the lack of

acceptance of academic systems [8]. To simplify

experimental design, many systems rely on high-level

or single parameters—such as “emotion”—to control

overall musical output [12], [13], [29], which

significantly limits expressivity. In contrast, sound

designers employ a wider range of game parameters

to fine-tune various musical elements in real-world

applications, yielding a much richer listening

experience. Yet music quality depends on more than

symbolic representation. Many sub-tasks of music

generation—such as expressive rendering and

modelling musical styles to match different gameplay

scenarios—remain complex, unresolved challenges.

A third challenge is the absence of a standardised,

user-friendly framework for integrating music

systems into games[6]. Deploying these systems in a

real game demands specialised expertise and

considerable effort, since gameplay mechanics differ

widely across styles and developers need solutions

that plug directly into popular game engines. In

practice, this often requires a dedicated team of audio

engineers and access to proprietary assets, making it

resource‑intensive and sometimes legally complex.

The fact that these music systems in academia are

difficult to tailor to specific game contexts creates a

gap that hampers the collection of in‑game feedback

and limits the real‑world impact and evolution of

academic work in this area.

7 Future Directions

Future research should focus on the following key

areas to address the identified challenges.

A task-oriented approach that considers practical

constraints such as available resources, deployment

environments, and specific application requirements

is advocated. When employing cutting-edge

technologies like machine learning, focus on

amplifying their benefits while thoughtfully

addressing any limitations. By designing experiments

with contextual awareness, researchers can create

solutions that are both more extendable and

industry‑ready. At the same time, game developers

should foster a spirit of experimentation with their

music systems. Embracing a little risk can unlock

richer, more immersive player experiences.

Figure 4. Comparison of Algorithm, Task

and Generality in Research and Application

Luo and Reiss Procedural Music in Games

AES International Conference on Artificial Intelligence and Machine Learning for Audio, London, UK

2025 September 8-10
Page 8 of 10

Beyond improving a music system’s quality, it is even

more important to establish evaluation criteria that

accurately measure its contribution within the

creative process. Such a framework must inclusively

account for every participant involved in generating

the music. While a long-term aim of Procedural

Music Generation is to move beyond assisted creation

toward fully autonomous composition, this shift must

always serve to amplify human creativity. It is crucial

to acknowledge the system's role as well as its users,

ensuring we design tools that avoid stepping on the

toes of our creatives [42], [43].

Integrating music into games involves a complex

pipeline—DAWs, audio middleware, and the game

engine—and many studios even build custom music

and audio engines. To streamline procedural music

system development, we need reusable, user-friendly

research frameworks that plug seamlessly into

popular game engines [16]. Studies like [13], [18]

show how prototype games can serve as testbeds,

giving researchers real-time player feedback to refine

their systems and design more robust evaluations,

despite the extra effort this requires. Ultimately,

building a collaborative platform where researchers

and developers share tools, datasets, and best

practices will prove invaluable, accelerating

innovation, fostering knowledge exchange, and

bridging the gap between academic research and real-

world game implementation.

8 Conclusion

This paper provides a comprehensive survey and

analysis of PMG systems in both research and

application domains. By employing a unified

taxonomy, we compare these systems across various

dimensions, identifying their development patterns,

gaps, and challenges. Our analysis reveals that while

advanced approaches and generative systems thrive

in the research landscape, significant barriers must be

conquered to achieve practical application, including

deployment difficulties, music quality limitations,

and a lack of seamless integration with games.

To address these challenges, we propose future

directions that emphasise context-aware approaches

tailored to specific tasks, music quality assessment

considering human involvement in the creative

process, and the development of enhanced research

platforms and frameworks. We hope these efforts

contribute to the long-term advancement of PMG,

fostering both technological progress and practical

application in the field.

References

[1] N. Shaker, J. Togelius, and M. J. Nelson, Procedural

Content Generation in Games. in Computational

Synthesis and Creative Systems. Springer

International Publishing, 2016.

[2] M. Scirea, ‘Affective Music Generation and its effect

on player experience’, IT-Universitetet i København,

2017.

[3] F. Amato and F. Moscato, ‘Formal Procedural

Content Generation in Games Driven by Social

Analyses’, in 2017 31st International Conference on

Advanced Information Networking and Applications

Workshops (WAINA), Taipei, Taiwan: IEEE, Mar.

2017, pp. 674–679.

[4] A. Summerville et al., ‘Procedural Content

Generation via Machine Learning (PCGML)’, IEEE

Trans. Games, vol. 10, no. 3, pp. 257–270, Sept.

2018.

[5] J. Cullimore, H. Hamilton, and D. Gerhard, ‘Directed

Transitional Composition for Gaming and Adaptive

Music Using Q-Learning’, ICMC, 2014.

[6] K. Worrall, Z. Yin, and T. Collins, ‘Comparative

Evaluation in the Wild: Systems for the Expressive

Rendering of Music’, IEEE Trans. Artif. Intell., vol.

5, no. 10, pp. 5290–5303, 2024.

[7] S. Michael, Writing interactive music for video

games: a composer’s guide. Pearson Education,

2015.

[8] K. Worrall and T. Collins, ‘Considerations and

Concerns of Professional Game Composers

Regarding Artificially Intelligent Music

Technology’, IEEE Trans. Games, pp. 1–13, 2023,

[9] K. Collins, ‘An Introduction to Procedural Music in

Video Games’, Contemp. Music Rev., vol. 28, no. 1,

pp. 5–15, Feb. 2009.

[10] D. Menexopoulos, P. Pestana, and J. Reiss, ‘The

State of the Art in Procedural Audio’, J. Audio Eng.

Soc., vol. 71, no. 12, pp. 825–847, Dec. 2023.

[11] F. Zumerle, L. Comanducci, M. Zanoni, A.

Bernardini, F. Antonacci, and A. Sarti, ‘Procedural

music generation for videogames conditioned

through video emotion recognition’, in 2023 4th

International Symposium on the Internet of Sounds,

Pisa, Italy: IEEE, Oct. 2023, pp. 1–8.

[12] L. Ferreira, L. Lelis, and J. Whitehead, ‘Computer-

Generated Music for Tabletop Role-Playing Games’,

Proc. AAAI Conf. Artif. Intell. Interact. Digit.

Entertain., vol. 16, no. 1, pp. 59–65, Oct. 2020.

[13] A. Prechtl, ‘Adaptive Music Generation for

Computer Games’, Open University (United

Kingdom), 2016.

[14] J. Tanabe, I. Khan, T. V. Nguyen, C.

Nimpattanavong, and R. Thawonmas, ‘Adaptive

Background Music According to the Player’s

Arousal for DareFightingICE’, in Proceedings of the

13th International Conference on Advances in

Information Technology, Bangkok Thailand: ACM,

Dec. 2023, pp. 1–6.

[15] R. Wooller, A. R. Brown, E. Miranda, R. Berry, and

D. Joachim, ‘A framework for comparison of process

Luo and Reiss Procedural Music in Games

AES International Conference on Artificial Intelligence and Machine Learning for Audio, London, UK

2025 September 8-10
Page 9 of 10

in algorithmic music systems’, Gener. Arts Pract.,

2005.

[16] C. Plut and P. Pasquier, ‘Generative music in video

games: State of the art, challenges, and prospects’,

Entertain. Comput., vol. 33, p. 100337, Mar. 2020,

[17] M. Scirea, J. Togelius, P. Eklund, and S. Risi,

‘Affective evolutionary music composition with

MetaCompose’, Genet. Program. Evolvable Mach.,

vol. 18, no. 4, pp. 433–465, Dec. 2017.

[18] A. Lopez Duarte, ‘A Progressive-Adaptive Music

Generator for Videogames (PAMG): an Approach to

Real-Time Algorithmic Composition’, UC Riverside,

2023.

[19] F. Lerdahl and R. S. Jackendoff, A Generative

Theory of Tonal Music, reissue, with a new preface.

MIT Press, 1996.

[20] P. E. Hutchings and J. McCormack, ‘Adaptive Music

Composition for Games’, IEEE Trans. Games, vol.

12, no. 3, pp. 270–280, Sept. 2020.

[21] D. Plans and D. Morelli, ‘Experience-Driven

Procedural Music Generation for Games’, IEEE

Trans. Comput. Intell. AI Games, vol. 4, no. 3, pp.

192–198, Sept. 2012.

[22] V. Arutyunov and A. Averkin, ‘Genetic algorithms

for music variation on genom platform’, Procedia

Comput. Sci., vol. 120, pp. 317–324, Jan. 2017,

[23] J. A. Biles, ‘Interactive GenJam: Integrating real-

time performance with a genetic algorithm’, ICMC,

1998.

[24] J. Biles, P. Anderson, and L. Loggi, ‘Neural network

fitness functions for a musical IGA’, Present.

Scholarsh., Mar. 1996.

[25] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘A

fast and elitist multiobjective genetic algorithm:

NSGA-II’, IEEE Trans. Evol. Comput., vol. 6, no. 2,

pp. 182–197, Apr. 2002.

[26] J. A. Biles, ‘Autonomous GenJam: Eliminating the

Fitness Bottleneck by Eliminating Fitness’, Proc.

2001 Genet. Evol. Comput. Conf. Workshop

Program, 2001.

[27] G. Amaral, A. Baffa, J.-P. Briot, B. Feijó, and A.

Furtado, ‘An adaptive music generation architecture

for games based on the deep learning Transformer

model’, in 21st Brazilian Symposium on Computer

Games and Digital Entertainment (SBGames), Natal,

Brazil: IEEE, Oct. 2022, pp. 1–6.

[28] M. Kopel, D. Antczak, and M. Walczyński,

‘Generating Music for Video Games with Real-Time

Adaptation to Gameplay Pace’, in Intelligent

Information and Database Systems, Singapore:

Springer Nature, 2023, pp. 261–272.

[29] M. Scirea, J. Togelius, P. Eklund, and S. Risi,

‘MetaCompose: A Compositional Evolutionary

Music Composer’, in Evolutionary and Biologically

Inspired Music, Sound, Art and Design, C. Johnson,

V. Ciesielski, J. Correia, and P. Machado, Eds, in

Lecture Notes in Computer Science, vol. 9596.

Cham: Springer International Publishing, 2016, pp.

202–217.

[30] S. W. Wilson, ‘Classifier Fitness Based on

Accuracy’, Evol. Comput., vol. 3, no. 2, pp. 149–175,

June 1995.

[31] K. Jolly, ‘Procedural Music in Spore’, presented at

the Game Developers Conference, 2008.

[32] L. Paul, ‘The Generative Music and Procedural

Sound Design of Sim Cell’, YouTube, 2014.

[33] J. Osada, ‘Tunes of the Kingdom: Evolving Physics

and Sounds for “The Legend of Zelda: Tears of the

Kingdom”’, presented at the Game Developers

Conference, 2024.

[34] P. Morton, ‘The Sound and Music of Proteus - An

Academic Case Study’.

[35] M. Gordon, ‘DOOM: Behind the Music’, presented

at the Game Developers Conference, 2017.

[36] Ape Out - Reactive Music System, (2020).

[37] T. Mizuguchi, ‘Classic Game Postmortem: Rez’,

presented at the Game Developers Conference, 2016.

[38] J. Abel, ‘Genesis Noir: Bringing Jazz Improvisation

To Gaming’, presented at the Game Developers

Conference, June 20, 2022.

[39] P. Klassen, M. Curran, and J. Peros, ‘Technical

Music Design in Ara History Untold’, presented at

the Game Sound Conference, CA, Oct. 30, 2024.

[40] P. Weir, ‘The Sound of No Man’s Sky’, presented at

the Game Developers Conference, 2017.

[41] T. Salta, ‘Scoring and Implementation in a

Multiplayer Horror Game’, presented at the Game

Sound Conference, 2024.

[42] K. Worrall, ‘Crafting Better Procedural Music with

Deep Learning’, presented at the Game Sound

Conference, 2024.

[43] B. L. T. Sturm, M. Iglesias, O. Ben-Tal, M. Miron,

and E. Gómez, ‘Artificial Intelligence and Music:

Open Questions of Copyright Law and Engineering

Praxis’, Arts, vol. 8, no. 3, Art. no. 3, Sept. 2019.

Luo and Reiss Procedural Music in Games

AES International Conference on Artificial Intelligence and Machine Learning for Audio, London, UK

2025 September 8-10
Page 10 of 10

Table 1. Key Procedural Music Systems in Research and Application

Appendix

Author/System Year Field Generality Task Algorithm Direction Granularity Grid KS Representation

Spore [31] 2008 Application Specific Mixed Rule-based Horizontal Note On External Symbolic

Plans [21] 2012 Research Generic Generative GA Horizontal Note, Chord On External Symbolic

Proteus [34] 2013 Application Specific Mixed Rule-based Mixed Timbre Off External Audio

Sim Cell [32] 2014 Application Specific Mixed Rule-based Mixed Note On External Symbolic

Prechtl [13] 2016 Research Generic Mixed Markov chain Horizontal
Chord, Tonality,

Tempo, Velocity
On External Symbolic

DOOM [35] 2016 Application Specific Transformational Rule-based Horizontal Timbre On External Audio

No Man’s Sky [40] 2016 Application Specific Transformational Rule-based Mixed Phrase On External Audio

Genesis Noir [38] 2016 Application Specific Transformational Rule-based Horizontal Note On External Symbolic

Meta Compose [29] 2017 Research Generic Mixed
Stochastic, GA,

Rule-based
Mixed

Chord, Melody,

Accompaniment
On External Symbolic

Rez Infinite [37] 2017 Application Specific Generative Rule-based Horizontal Note Off External Audio

AMS [20] 2019 Research Generic Transformational
GA, RNN, Graph

Model
Horizontal Note On Both Symbolic

Ape Out [36] 2019 Application Specific Generative Rule-based Horizontal Timbre On External Audio

Bardo Composer [12] 2020 Research Generic Generative
Transformer, Beam

Search
Horizontal Note On Internal Symbolic

Amaral [27] 2022 Research Generic Generative Transformer Mixed Note, Timbre On Both Symbolic

PAMG [18] 2023 Research Specific Mixed
Rule-based,
Stochastic

Mixed Note, Timbre On External Symbolic

Kopel [28] 2023 Research Generic Generative RNN Horizontal Note On Both Symbolic

Zumerle [11] 2023 Research Generic Generative CNN, Transformer Horizontal Note On Internal Symbolic

Tanabe [14] 2023 Research Specific Generative Rule-based Horizontal
Pitch, Tempo,

Velocity
On External Symbolic

The Outlast trials [41] 2024 Application Specific Transformational Rule-based Mixed Phrase On External Audio

Ara: History Untold [39] 2024 Application Specific Transformational Rule-based Mixed Phrase On External Audio

