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ABSTRACT 
Procedural Music Generation (PMG) is an emerging field that algorithmically creates music content for video 

games. By leveraging techniques from simple rule-based approaches to advanced machine learning algorithms, 

PMG has the potential to significantly improve development efficiency, provide richer musical experiences, and 

enhance player immersion. However, academic prototypes often diverge from applications due to differences in 

priorities such as novelty, reliability, and allocated resources. This paper bridges the gap between research and 

applications by presenting a systematic overview of current PMG techniques in both fields, offering a two-aspect 

taxonomy. Through a comparative analysis, this study identifies key research challenges in algorithm 

implementation, music quality and game integration. Finally, the paper outlines future research directions, 

emphasising task-oriented and context-aware design, more comprehensive quality evaluation methods, and 

improved research tool integration to provide actionable insights for developers, composers, and researchers 

seeking to advance PMG in game contexts.

1 Introduction 

Procedural Music Generation (PMG) originates from 

the concept of Procedural Content Generation (PCG), 

which is the algorithmic creation of game content 

with limited or indirect user input [1]. The basic idea 

of PCG seems to first appear concurrently with the 

early development of computers around the 1980s 

[2]. One early example of using PCG was Rogue in 

1978, which became the beginning of Rogue-like 

games. In Rogue, algorithms were used to generate 

randomised dungeons, with the map changing each 

time you played. Without storing massive static 

assets, PCG addressed hardware memory bottlenecks 

in the early days, but has since become more widely 

used to expand the game content and richness, 

including levels, characters, stories and sound.  

In addition to significantly impacting the player’s 

immersion by generating diverse content, PCG also 

dramatically reduces the development time and cost 

[1], [3], [4], particularly benefits the non-linearity 

characteristic of games that require dynamic, 

replayable, or expansive content, such as Rogue-

likes, Sandboxes, Open-World Games, etc. 

Music, as an important aspect of game content, 

provides unique functional support to enhance the 

game experience. For example, theme music aims to 

express the core tone or character identity of a work, 

whereas background music seeks to render the 

atmosphere of a scene. Moreover, music offers a 

unique means of enhancing storytelling through its 

ability to adapt dynamic environmental changes in 

games and facilitate smoother scene or state 

transitions.  
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However, most games comprise a soundtrack of 

between one and four hours of music, whereas the 

duration of game-play can vary considerably, from 

dozens to hundreds of hours [5]. Furthermore, Live 

Service Games are often designed to provide endless 

player experience by iterating the gameplay [6]. Yet 

very little music goes with it. This results in players 

hearing music repeated on many occasions. While 

repetition is a critical element of music, excess can 

disrupt immersion and become a source of frustration 

and fatigue for the player [7], [8]. Therefore, 

extending the concepts and methodologies of PCG to 

music is a highly effective strategy that alleviates this 

fatigue by generating a wide variety of unique 

content, thus improving the overall game quality. 

 

This paper aims to examine the evolution of PMG 

systems in both research and application areas. It 

intends to compare current methodologies, highlight 

emerging trends, identify gaps and challenges, and 

provide constructive recommendations for future 

advancements in the field. 

 

2 Background 

2.1 Definition 

An early definition of procedural music given by 

Collins is a composition that evolves in real-time 

according to a specific set of rules or control logics 

[9]. To further elucidate the evolution of the system 

in response to input data, this paper adopts a 

definition closer to procedural audio generation 

[10]: PMG is the use of algorithms to dynamically 

generate music content in real time while 

adapting to changing inputs. 

 

Compared to similar concepts like algorithmic 

music or generative music, which also involve 

creating music through systemic automation, the 

critical characteristic of PMG is its real-time 

adaptability to dynamic game content. This requires 

systems capable of making instant adjustments and 

variations to the music in response to changes in the 

game state. As a result, PMG often relies on 

complex rule-based frameworks in larger games to 

determine how to interpret and respond to game 

data, ensuring the music remains cohesive and 

contextually appropriate throughout the player's 

experience. 

 

A typical workflow of PMG systems is illustrated in 

Figure 1. The system receives two primary types of 

input: in-game state data and music asset data. Based 

on these inputs, the system generates real-time 

adaptive music as its output, dynamically adjusting to 

reflect the evolving context and gameplay. 

 

The state data usually refers to all the information 

used in a video game to describe the current condition 

of play. The following parameters are commonly 

used to define and control various elements of 

procedural music: 

 

• Character parameters include vitality status 

(healthy or dangerous), behavioural patterns 

(e.g. sneaking or attacking), etc.  

• Environment parameters include weather, 

time of day, terrain, etc. 

• Spatial parameters include enemy distance, 

location coordinates, etc.  

• Game mechanics parameters include quest 

progression, difficulty level, etc. 

• Interaction parameters include player input 

(mouse/keyboard mapping) and the results 

of interactions with other events or objects. 

 

In academic research, many systems introduce an 

intermediate model, which we tentatively call 

cognitive models, to interpret and analyse the above 

parameters to generate a reference that guides the 

subsequent music generation [11], [12], [13], [14]. 

The main references involve emotion labels and 

intensity levels. Essentially, this approach maps high-

Figure 1. A Typical Workflow of PMG Systems. 
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dimensional data into a low-dimensional space to 

reduce system complexity for prototyping. 

 

Another type of input data, music assets, are audio 

files or resources that are used in the game 

development process, mainly including sound effects 

and soundtrack clips. There are two types of musical 

compositions in games that indicate whether music 

assets are involved in the generation progress. 

Generative composition refers to music created 

entirely by algorithms without using pre-existing 

music assets as inputs. In contrast, transformational 

composition involves rearranging or modifying 

existing fragments from music assets to generate new 

music [15]. 

 

Based on the input of game data and music assets, the 

system dynamically generates music through its core 

algorithms. These algorithms are classified into three 

main categories: rule-based, search-based and 

machine learning. However, a mixed approach is 

commonly used in practice. We will further discuss 

them in the subsequent sections.  

 

2.2 Taxonomy 

To systematically categorise and analyse PMG 

systems, we adopt a comprehensive taxonomy that 

inherits and adapts the work of  [16], shown in Figure 

2. For a detailed comparison of the systems studied, 

see Table 1 in Appendix. We investigated eight 

dimensions of these systems in two main aspects: 

Musicology and Methodology. Musicology contains 

four categories, including Task, Direction, 

Granularity and Grid. Methodology also contains 

four categories: Generality, Algorithm, Knowledge 

Source and Representation.  

 

Tasks indicate whether the system is generative or 

transformational [15]. Transformational systems 

generate new music by reorganising existing music 

assets, whereas generative systems usually do not 

require music assets as input and can generate 

music from scratch using rules and algorithms. The 

boundary between the two is not entirely 

deterministic, and is mainly measured by the 

granularity of the music manipulated by the system. 

 

Direction refers to whether the system can 

manipulate the music horizontally or vertically. 

Horizontal manipulation involves generating or 

rearranging music over time, such as adjusting the 

order of measures or phrases. In contrast, vertical 

manipulation involves changing the music in terms 

of layer at a single time point, such as instrument 

groups. 

 

Granularity refers to the level of detail with which a 

music system generates musical elements or aspects. 

A generative system has higher levels of detail in 

terms of note compared to a transformational system, 

which often manipulates the music at a coarser level, 

such as measures or phrases. Other aspects of 

granularity include chords, timbre, tempo, velocity, 

etc. 

 

Grid refers to whether the music generated by the 

system is aligned to the beat. In other words, 

whether the music has a relatively fixed groove. In 

Western classical music, the rhythm is mainly 

triple and quadruple meter, and the music's tempo, 

dynamics, and chords are usually based on the 

meter. Non-aligned music is common in some 

Eastern cultures, but in the context of game music, 

it is generally for ambient establishment. 

Figure 2. Hierarchy Taxonomy of Procedural Music Systems. 
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Generality refers to the purpose for which a system 

is designed. Specific systems are designed for a 

particular game or style of play, whereas generic 

systems are designed to provide a more general 

solution for a wider range of game scenarios or 

categories.  

 

Algorithms refer to the methodology used by the 

system and are categorised into rule-based, search-

based and machine learning. Rule-based methods 

refer to techniques according to predefined rules or 

patterns. Some stochastic methods, such as Markov 

models, are often integrated into rule-based 

methods. Search-based methods explore a vast 

space of possible solutions to find the best or most 

desirable outcome based on specific criteria or 

fitness functions. Machine learning methods 

simulate neural networks and are trained on large-

scale data to learn music patterns.  

 

Knowledge Source (KS) is where information of the 

algorithm comes from. External knowledge comes 

from composers or system designers, especially in 

rule-based systems. They predefine the rules based on 

their experience and understanding of the music, 

which is often complex and done manually. Internal 

knowledge comes from the data itself, for example, 

the hidden state of a stochastic model or the weight of 

a trained deep-learning model. 

 

Representation refers to the method that a system 

uses to store and organise its musical knowledge. 

In computing systems, the most widely used format 

for symbolic representation is MIDI (Musical 

Instrument Digital Interface), where each musical 

event is encoded using variables such as pitch, 

velocity, channel, and on/off states. Audio 

representation involves capturing analog signals of 

real-world music and converting them into a digital 

format for storage and processing. 

3 Research 

In academia, a variety of advanced methods are used. 

We broadly classify them into three categories, rule-

based, search-based, and machine learning-based, 

according to the research in PCG [1].  

3.1 Rule-based methods 

Rule-based methods, sometimes referred to as 

constrictive methods, usually act as constraints by 

encoding rules from music theory. One example is the 

use of a feasibility equation to limit the content 

generated [17]. This equation encodes the following 

rules:  

 

(1) 

 

Where L encodes that it should not have leaps 

between notes bigger than a fifth, S encodes that it 

should contain at least a minimum number of leaps of 

a second and D encodes that each note pitch should 

differ from the preceding note pitch. All of the sub-

equations in the equation are Boolean, and thus the 

whole function returns a range of values from -3 to 0. 

A 0 means that the music generated is reasonable, and 

a negative value does not.  

 

Lopez uses Max/MSP, a visual programming 

environment, to implement a rule-based system that 

generates real-time game music and provides 

interesting generation results [18]. The rhythmic 

development algorithm is based on Lerdahl & 

Jackendoff’s Generative theory [19]. Pitch 

Generation utilises ‘drunk ' and “drunk-contour” 

modes for real-time pitch assignment, with 

parameters for step, range, and non-repetition. The 

drunk mode based on the idea of random-walk 

generates discrete sequences of notes, where each 

note is independent and random. The drunken contour 

pattern generates continuous melodic contours, with 

randomly generated key points connected by 

interpolated notes.  

 

Rule-based methods are strongly interpretable and 

extendable. Researchers can easily control and shape 

the output music in terms of different elements 

without affecting other aspects. However, they 

require high maintenance and are limited to the 

designer's musical knowledge. 

3.2 Search-based methods 

The most common search-based method, Genetic 

Algorithm (GA), is adopted in many game music 

studies [17], [20], [21], [22]. Musical generation is 

represented as an optimisation problem, and the 

search space here is the set of all possible music 

pieces generated.  

 

GA can be non-deterministic by providing a diverse 

set of solutions. It creates a varied population of 

candidate music to adapt creative tasks. However, this 

requires delicate fitness function design considering 

both the quality and novelty of a music piece. Three 

fitness equations can be used to evaluate the 

individual music piece of a population in GA: 
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● Rule-based fitness function - Rules extracted 

from the original material or external music 

theory rules. 

● Human fitness function - based on direct 

feedback from the composer [23]. 

● Learned fitness function - Training a neural 

network to decide [24]. 

 

An example of a rule-based fitness equation is: 

 

(2) 

 

Where CStep stands for Counter Step; P for Pre-

Counter Step; Q for Post-Counter Step; and L for 

Leap. All sub-equations are Boolean, and the 

equation evaluates whether the melody has a nice 

smooth contour, specifically, whether it reverses 

motion after a big jump (greater than a second 

interval). It is a common technique in musical 

progressions to reverse the movement of the melody 

after a big jump in order to make the musical 

progression aurally unobtrusive. Other rule-based 

fitness functions include melodic novelty, note 

density, etc. [21]. 

 

Unlike pure rule-based systems, rule-based fitness 

functions provide a more indirect way to select 

desired music, leaving more space for interesting 

music candidates. However, it involves high-latency 

iterations, making real-time deployment challenging. 

 

When more than one fitness equation needs to be 

satisfied at the same time, the problem is programmed 

as a multi-objective optimisation (MOO), which can 

be solved by a method like Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) [25]. This algorithm 

is designed to find Pareto bounds - the set of optimal 

solutions.  

 

However, there are exceptions that use only crossover 

and mutation techniques of GA due to the subjective 

nature of fitness equations [26].  

3.3 Machine learning  

There has been a growing trend of using machine 

learning methods in game music systems, especially 

transformer architectures in recent years [11], [12], 

[27]. This architecture shows surprising potential in 

commercial areas on large-scale training, such as 

sunoAI and Udio. However, the data hunger of 

machine learning and the difficulty in controllability 

have been research hindrances.  

 

Traditional neural-network architectures have not 

been completely abandoned either. [20] uses a multi-

agent RNN model to handle melody, harmony and 

other tasks separately. [28] also used RNN to 

implement a simple adaptive music generation 

system. [11] used CNN to identify the mood of the 

game screen, combined with a transformer to 

generate music. Research using simple probabilistic 

models such as Markov chains for music generation 

dwindled. 

 
3.4 Hybrid Method 

When involving varied tasks in a complex system, it 

is common to use a hybrid approach to tackle 

different challenges [12], [18], [20], [29]. Normally, 

researchers adopt distinct methods to handle the 

generation and recognition tasks, for example, 

interpreting game status as emotion or intensity using 

a recognition model (Figure 1). 

 

In [20], Hutchings proposed a novel Adaptive Music 

System (AMS) that combines cognitive models with 

a multi-agent composition system. The cognitive 

model is responsible for identifying the emotion of 

the game content, while three agents cooperate on 

melody,  harmony and percussive rhythm tasks to 

adapt the pre-composed music to match the 

emotion in real-time.  He incorporated a variant of 

genetic algorithms, Wilson's eXtended learning 

Classifier System [30], into his melody agent, while 

Recurrent Neural Networks were the backend in other 

agents. 

4 Applications 

In commercial games, most existing procedural music 

generation systems are rule-based. These rules are 

designed to be based on the composer or sound 

designer's musical knowledge and are game-specific. 

Compared to the advancement of PCG in the design 

of levels, terrain, characters, etc., game music is less 

well regarded and easier to adhere to traditional 

methods. However, many great games show the 

potential of applying PMG technology. 

 

Spore is a successful early example of implementing 

PMG. The prototype was completed in Max/MSP, 

and adapted to a customised version of PureData [31]. 

In Spore, the music is stochastically generated in real 

time from many music samples through a set of rules 

[9], [31]. Leonard Paul was inspired by Spore and 

also used PureData to construct his procedural music 

system for Sim Cell [32]. Graphical music tools like 

Max/MSP and PureData have also been widely used 
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for implementing PMG in other games, for example, 

The Legend of Zelda: Tears of the Kingdom [33].  

 

Proteus [34], DOOM [35] and Ape Out [36] all use 

timbre manipulation as a way of creating variations in 

the content of the music, expanding somewhat into 

the realm of procedural audio generation. Proteus is 

creative in its use of various effects to change the 

timbre and arrange the music in a non-aligned manner. 

DOOM creates sequences of varying sounds by 

stacking many different effects on top of each other, 

and then samples from a different sequence position 

each time using a simple rhythmic pattern to achieve 

a constantly changing timbre. Ape Out generates 

varied musical content by associating in-game action 

with percussion sounds. 

 

Both Ape Out [36] and Rez Infinite [37] are highly 

adaptive music systems, which can also be referred to 

as reactive music systems, where changes in music or 

sound are triggered by actions/key presses. Reactive 

music is a special case of adaptive music, more like 

an interactive synthesiser, commonly found in 

rhythm games [16]. Here, the input is mainly the 

player’s interaction data. Unlike Ape Out's timbre 

mapping, music and sound in Rez Infinite are 

primarily pitch mapped and are generated 

procedurally by responding to the player's shooting 

action with a constant rhythmic beat that synchronises 

with the character's vibration. 

 

Genesis Noir [38] creatively takes advantage of Jazz 

improvisation in its music system and brings a unique 

solution for PMG systems. Recorded music based on 

preset chord progression provides the overall music 

ambience, while the player’s reaction generates the 

leading melody in real time. There are two ways 

music adapts to the gameplay, one of which is by 

responding to a series of players’ inputs through 

dialogue. For example, the player clicks several 

buttons to generate a melody sequence, and the 

system re-arranges it in terms of rhythm and 

decoration; another way is by instantaneously 

responding to the interaction. For example, the 

mouse's motion speed controls the rhythm, and its y-

axis coordinates on the screen control the pitch. 

Whilst audio middleware is a versatile solution for 

deploying adaptive music for small to medium-sized 

games, large games require more complex and 

flexible solutions to arrange music. As a consequence, 

they develop independent systems that can integrate 

seamlessly with the game engine and handle all the 

interaction logic on how the music adapts to changes 

in the game. For example, Music Manager in Ara: 

History Untold [39] is a data-driven system 

combining both a weighting scheme and stochastic 

rules. It collects data within a turn and makes a 

decision about music generation at the end of each 

turn. Other applications include Pulse in NMS [40], 

and a server-based music system in The Outlast Trials 

[41]. 

5 Evaluation Design 

One crucial aspect that differentiates research from 

application is that researchers typically employ a 

rigorous assessment to evaluate the effectiveness of 

PMG systems, which involves multiple gameplay 

sessions under different music playback conditions 

[11], [18], [20], followed by post-gameplay 

questionnaires and optional physiological data 

collection, shown in Figure 3.  

 

For music systems without real game integration, a 

purely listening test is often used instead of a game 

session [12], [29]. Where available, physiological and 

behavioural data, such as heart rate and skin 

conductance, are collected during gameplay [13]. 

This objective data complements the subjective 

feedback gathered through questionnaires. However, 

it is more difficult to obtain due to the experimental 

Figure 3. A Flowchart of Evaluation Design. 
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conditions. After each gameplay session, participants 

complete a questionnaire assessing player experience 

and music quality. The questionnaire includes 

multiple-choice questions, ranking/rating scales, and 

sometimes written feedback [18] to capture both 

quantitative and qualitative insights. 

 

The collected data is then analysed using thematic 

analysis for qualitative feedback and statistical 

methods for quantitative data. This dual approach 

ensures a comprehensive evaluation of the procedural 

music generation systems. However, most studies 

investigated in this paper are primarily subjective, 

focusing on player experience and music quality; few 

papers have investigated the user experience of 

composers or sound designers working with the 

generation tools. 

6 Challenges 

By analysing research and application practices, we 

identify three key gaps. First, many academic systems 

are too experimental or computationally expensive 

for game developers to adopt. As shown in Figure 4, 

researchers focus on cutting-edge algorithms—such 

as reinforcement learning, genetic algorithms, and 

other advanced methods—that often require 

prerequisites for practical application, including 

high-quality datasets, real-time integration, and 

sophisticated fine-tuning. However, game developers 

often have to consider the overall allocation of 

resources in the game. Sound is often not the highest 

priority [31]. Therefore, they are less willing to 

experiment with risky or unconventional methods and 

instead prefer reliable, scalable, and extensible 

approaches, which has led to rule-based systems 

dominating the industry. 

 

Second, the quality of many existing academic music 

systems is currently not up to industry standards. 

Based on the evaluation results of the academic 

research investigated in this paper, there is no strong 

evidence to suggest they provide a more enjoyable or 

immersive experience for players. A study of 

interviews with sound designers also confirms that 

music quality is a major contributor to the lack of 

acceptance of academic systems [8]. To simplify 

experimental design, many systems rely on high-level 

or single parameters—such as “emotion”—to control 

overall musical output [12], [13], [29], which 

significantly limits expressivity. In contrast, sound 

designers employ a wider range of game parameters 

to fine-tune various musical elements in real-world 

applications, yielding a much richer listening 

experience. Yet music quality depends on more than 

symbolic representation. Many sub-tasks of music 

generation—such as expressive rendering and 

modelling musical styles to match different gameplay 

scenarios—remain complex, unresolved challenges. 

 

A third challenge is the absence of a standardised, 

user-friendly framework for integrating music 

systems into games[6].  Deploying these systems in a 

real game demands specialised expertise and 

considerable effort, since gameplay mechanics differ 

widely across styles and developers need solutions 

that plug directly into popular game engines. In 

practice, this often requires a dedicated team of audio 

engineers and access to proprietary assets, making it 

resource‑intensive and sometimes legally complex. 

The fact that these music systems in academia are 

difficult to tailor to specific game contexts creates a 

gap that hampers the collection of in‑game feedback 

and limits the real‑world impact and evolution of 

academic work in this area. 

7 Future Directions 

Future research should focus on the following key 

areas to address the identified challenges.  

 

A task-oriented approach that considers practical 

constraints such as available resources, deployment 

environments, and specific application requirements 

is advocated. When employing cutting-edge 

technologies like machine learning, focus on 

amplifying their benefits while thoughtfully 

addressing any limitations. By designing experiments 

with contextual awareness, researchers can create 

solutions that are both more extendable and 

industry‑ready. At the same time, game developers 

should foster a spirit of experimentation with their 

music systems. Embracing a little risk can unlock 

richer, more immersive player experiences. 

Figure 4. Comparison of Algorithm, Task 

and Generality in Research and Application 
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Beyond improving a music system’s quality, it is even 

more important to establish evaluation criteria that 

accurately measure its contribution within the 

creative process. Such a framework must inclusively 

account for every participant involved in generating 

the music. While a long-term aim of Procedural 

Music Generation is to move beyond assisted creation 

toward fully autonomous composition, this shift must 

always serve to amplify human creativity. It is crucial 

to acknowledge the system's role as well as its users, 

ensuring we design tools that avoid stepping on the 

toes of our creatives [42], [43].  

 

Integrating music into games involves a complex 

pipeline—DAWs, audio middleware, and the game 

engine—and many studios even build custom music 

and audio engines. To streamline procedural music 

system development, we need reusable, user-friendly 

research frameworks that plug seamlessly into 

popular game engines [16]. Studies like [13], [18] 

show how prototype games can serve as testbeds, 

giving researchers real-time player feedback to refine 

their systems and design more robust evaluations, 

despite the extra effort this requires. Ultimately, 

building a collaborative platform where researchers 

and developers share tools, datasets, and best 

practices will prove invaluable, accelerating 

innovation, fostering knowledge exchange, and 

bridging the gap between academic research and real-

world game implementation. 

8 Conclusion 

This paper provides a comprehensive survey and 

analysis of PMG systems in both research and 

application domains. By employing a unified 

taxonomy, we compare these systems across various 

dimensions, identifying their development patterns, 

gaps, and challenges. Our analysis reveals that while 

advanced approaches and generative systems thrive 

in the research landscape, significant barriers must be 

conquered to achieve practical application, including 

deployment difficulties, music quality limitations, 

and a lack of seamless integration with games.  

 

To address these challenges, we propose future 

directions that emphasise context-aware approaches 

tailored to specific tasks, music quality assessment 

considering human involvement in the creative 

process, and the development of enhanced research 

platforms and frameworks. We hope these efforts 

contribute to the long-term advancement of PMG, 

fostering both technological progress and practical 

application in the field. 
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Table 1. Key Procedural Music Systems in Research and Application 

 

Appendix 

 

Author/System Year Field Generality Task Algorithm Direction Granularity Grid KS Representation 

Spore [31] 2008 Application Specific Mixed Rule-based Horizontal Note On External Symbolic 

Plans [21] 2012 Research Generic Generative GA Horizontal Note, Chord On External Symbolic 

Proteus [34] 2013 Application Specific Mixed Rule-based Mixed Timbre Off External Audio 

Sim Cell [32] 2014 Application Specific Mixed Rule-based Mixed Note On External Symbolic 

Prechtl [13] 2016 Research Generic Mixed Markov chain Horizontal 
Chord, Tonality, 

Tempo, Velocity 
On External Symbolic 

DOOM [35] 2016 Application Specific Transformational Rule-based Horizontal Timbre On External Audio 

No Man’s Sky [40] 2016 Application Specific Transformational Rule-based Mixed Phrase On External Audio 

Genesis Noir [38] 2016 Application Specific Transformational Rule-based Horizontal Note On External Symbolic 

Meta Compose [29] 2017 Research Generic Mixed 
Stochastic, GA, 

Rule-based 
Mixed 

Chord, Melody, 

Accompaniment 
On External Symbolic 

Rez Infinite [37] 2017 Application Specific Generative Rule-based Horizontal Note Off External Audio 

AMS [20] 2019 Research Generic Transformational 
GA, RNN, Graph 

Model 
Horizontal Note On Both Symbolic 

Ape Out [36] 2019 Application Specific Generative Rule-based Horizontal Timbre On External Audio 

Bardo Composer [12] 2020 Research Generic Generative 
Transformer, Beam 

Search 
Horizontal Note On Internal Symbolic 

Amaral [27] 2022 Research Generic Generative Transformer Mixed Note, Timbre On Both Symbolic 

PAMG [18] 2023 Research Specific Mixed 
Rule-based,  
Stochastic 

Mixed Note, Timbre On External Symbolic 

Kopel [28] 2023 Research Generic Generative RNN Horizontal Note On Both Symbolic 

Zumerle [11] 2023 Research Generic Generative CNN, Transformer Horizontal Note On Internal Symbolic 

Tanabe [14] 2023 Research Specific Generative Rule-based Horizontal 
Pitch, Tempo, 

Velocity 
On External Symbolic 

The Outlast trials [41] 2024 Application Specific Transformational Rule-based Mixed Phrase On External Audio 

Ara: History Untold [39] 2024 Application Specific Transformational Rule-based Mixed Phrase On External Audio 


