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Bimodal Connection Attention Fusion for Speech
Emotion Recognition

Jiachen Luo, Huy Phan, Lin Wang, Joshua D. Reiss*

Abstract—Multi-modal emotion recognition is challenging due
to the difficulty of extracting features that capture subtle
emotional differences. Understanding multi-modal interactions
and connections is key to building effective bimodal speech
emotion recognition systems. In this work, we propose Bimodal
Connection Attention Fusion (BCAF) method, which includes
three main modules: the interactive connection network, the
bimodal attention network, and the correlative attention network.
The interactive connection network uses an encoder-decoder ar-
chitecture to model modality connections between audio and text
while leveraging modality-specific features. The bimodal attention
network enhances semantic complementation and exploits intra-
and inter-modal interactions. The correlative attention network
reduces cross-modal noise and captures correlations between
audio and text. Experiments on the MELD and IEMOCAP
datasets demonstrate that the proposed BCAF method outper-
forms existing state-of-the-art baselines.

Index Terms—deep learning, conversational emotion recogni-
tion, multi-modal fusion, modality connection, modality interac-
tion, attention

I. INTRODUCTION

THE proliferation of mobile internet and smartphones has
led to the widespread use of social networking platforms

where users create and share content in various modalities,
such as audio, text, and video. Extracting and analyzing
emotions from this multimodal content has extensive appli-
cations in human-computer interaction, surveillance, robotics,
and gaming [1], [2], [3]. However, effectively integrating
multiple modalities remains a significant challenge in emotion
recognition research.

Previous multi-modal emotion recognition methods have
achieved good performance [4]; however, key challenges re-
main in multi-modal emotion recognition. Different modali-
ties require independent preprocessing and feature extraction
designs due to their heterogeneous nature [5], [6], [7]. To
develop a model that is both applicable and generalizable
across individual modalities and fusion models, it is essential
to learn modality interactions and connections for learning
discriminative emotional content.

In multi-modal learning, modality connection in multi-
modal learning refers to the extent to which information
is shared across modalities, shaping a unified representation
[8]. Unlike correlation, which quantifies modality dependence,
modality connection captures the semantic alignment between
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modalities. For example, a higher vocal pitch may correlate
with excitement, but modality connection determines if the au-
dio tone, facial expressions, and text consistently reinforce that
excitement. A strong modality connection ensures meaningful
interaction among modalities, whereas a weak connection may
lead to ambiguity. Leveraging modality connections enables
a more nuanced understanding of emotions, improving the
robustness and accuracy of emotion recognition systems.

On the other hand, modality interaction refers to the re-
lationships and dependencies between modalities, which can
vary from strong correlations to weak or even conflicting
signals [9]. While modality connection emphasizes shared
content, modality interaction captures how different modali-
ties influence one another. For example, imagine a meeting
scenario where a participant says, “That’s great” in a flat,
monotone voice while avoiding eye contact and crossing their
arms. The verbal content suggests positivity, but the tone
and body language convey disengagement or sarcasm. Such
conflicting signals highlight the complexity of multi-modal
interactions. Accurately interpreting these interactions requires
understanding the context and modeling how modalities influ-
ence one another.

Two core types of interactions are frequently encountered
in multi-modal learning: intra-modal and inter-modal interac-
tions [10], [11]. Intra-modal interactions measure relationships
within the same modality, while inter-modal interactions cap-
ture relationships between different modalities. Understand-
ing and learning these interactions are essential for building
an effective multi-modal emotion recognition system that
achieves three key goals: multi-modal integration, robustness,
and contextual awareness.

Many multi-modal emotion recognition simply focused on
exploring interactions across different modalities while often
overlooking the importance of modality connections. Existing
approaches simply concatenated data for joint fusion and
aggregates decisions from various modalities through weighted
averaging [5], [12], [13], neglecting intra-modal interactions.
Recently attention mechanisms have gained attraction due
to their effectiveness in modeling modality interactions [14],
[15], [16]. However, such approaches often lack a deeper
understanding of modality interactions and connections. This
limitation can lead to several issues, including suboptimal con-
nection strategies, loss of critical cross-modal information, and
reduced robustness when handling conflicting or incomplete
data from specific modalities. Addressing these challenges is
crucial for enhancing the performance and generalizability
of multi-modal emotion recognition systems in real-world
applications.
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Fig. 1. Architecture of the proposed Bimodal Connection Attention Fusion (BCAF) method. The method consists of three modules: the unimodal representation
module, the connection attention fusion module, and the classification module. The core connection attention fusion module includes the interactive connection
network, the bimodal attention network, and the correlative attention network, with details depicted in Figs. 2, 3, 4 and 5. The unimodal audio representation
Ha and text representation Hl are input into the interactive connection network, the correlative attention network, and the bimodal attention network.

Motivated by the above observations (Fig. 1), we propose
a Bimodal Connection Attention Fusion (BCAF) framework
for bimodal emotion recognition, which consists of three key
modules: the uni-modal representation module, the connection
attention fusion module, and the classification module (Fig. 2).
The contribution is summarized as follows. First, we pro-
pose the interactive connection network to capture modality-
specific features and analyze multi-modal connection between
audio and text. Second, We investigate the bimodal attention
network, which assigns dynamic weights to comprehensively
learn intra- and inter-modal interactions between audio and
text. Finally, We design the correlative attention network to
effectively filter out incorrect cross-modal relationships and
enhance learning of both intra- and inter-modal interactions
between audio and text. Experimental results validate the
effectiveness of the proposed method on public datasets.

The remainder of this paper is organized as follows: Section

II presents a brief literature review. Section III describes
our method in detail. Section IV outlines the experiments
conducted. Section V discusses the results. Finally, Section
VI provides conclusions based on this work.

II. RELATED WORK

Emotion recognition in conversations has found widespread
applications across various fields [4]. Humans convey emo-
tions through multiple modalities, including speech, facial
expressions, and body postures [12], [17], [18]. Among these,
speech is a crucial modality, carrying emotional cues through
both paralinguistic features and linguistic content. Since dif-
ferent modalities provide complementary information, relying
on a single modality is often insufficient for accurate emotion
recognition [5], [19]. Therefore, combining information from
multiple modalities enhances the ability to discern emotions,
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as each modality can complement or augment others, provid-
ing richer emotion-relevant information. Consequently, multi-
modal approaches generally yield superior results compared to
uni-modal methods, leading to substantial efforts in developing
and exploring multi-modal fusion techniques for more accurate
emotion recognition in conversations.

Multi-modal fusion methods are broadly categorized into
early fusion, late fusion, and hybrid fusion [1], [2], [4], [20].
Early fusion combines features from different modalities at the
input level but often overlooks complex inter-modal dependen-
cies [21], [22]. Late fusion integrates decision-level outputs
from unimodal classifiers [23], [24], simplifying the process
but limiting cross-modal interactions. Hybrid fusion addresses
these limitations by combining intermediate representations of
multiple modalities [25], [26].

Recent multi-modal emotion recognition approaches employ
advanced fusion strategies to capture intra- and inter-modal
interactions. Transformer-based models [27] and gated recur-
rent units [28] have been explored for cross-modal fusion.
Multi-head attention mechanisms, as used in M2FNet [14],
effectively learn intra- and inter-modal relationships. Similarly,
HCAM [29] leverages recurrent and co-attention networks
for improved fusion. CFN-ESA [30] introduces emotion-shift
awareness in cross-modal fusion, while TelME [31] enhances
non-verbal modalities through knowledge transfer. Mamba
[32] employs probability-guided multi-modal fusion to main-
tain consistency across modalities, and AGF-IB [33] uses
contrastive learning for capturing inter-class and intra-class
semantic relationships.

Despite these advances, challenges remain. Many methods
underutilize audio representations, often prioritizing text due
to its rich contextual information. Additionally, existing ap-
proaches struggle to fully capture cross-modal dependencies
across different levels, limiting their ability to model long-
term emotional context. To address these issues, we propose
the BCAF method, which enhances modality interactions for
bimodal speech emotion recognition.

III. METHODOLOGY

Our proposed BCAF method simultaneously models modal-
ity connections and interactions for bimodal speech recogni-
tion system. Fig. 1 illustrates the architecture of BCAF, which
consists of the uni-modal representation module, the connec-
tion attention fusion module, and the classification module.
The core connection attention fusion module comprises of
the the interactive connection network, the bimodal attention
network and the correlative attention network (see Figs. 3-5).

A. Uni-modal Representation Module
1) Acoustic Encoder: We use the large wav2vec model

as the audio modality encoder to obtain a 1024-dimensional
utterance-level audio representation from raw audio signals
[34]. The large wav2vec model is an advanced self-supervised
learning framework designed for speech representation learn-
ing. It consists of three key components: a feature encoder,
a Transformer-based contextual representation module, and
a quantization module. In total, 1024-dimensional utterance-
level acoustic features were extracted (Ha).

2) Textual Encoder: We use the RoBERTa model as the
text modality encoder to extract a 1024-dimensional utterance-
level text representation from raw text [35]. RoBERTa takes
the utterance transcript as input and generates rich contex-
tual representations from the final four layers. This process
produces four 1024-dimensional vectors for each token in the
input. We then average these vectors to obtain a contextual
utterance feature vector with a dimension of 1024 (Hl).

B. Connection Attention Fusion Module

We propose the connection attention fusion module to
learn modality connections and interactions between audio
and text for bimodal speech emotion recognition. The module
comprises three main components: the interactive connection
network, the bimodal attention network, and the correlative
attention network (see Figs. 3-5). Detailed explanations of
these components are provided in the following subsections.

1) Interactive Connection Network: The interactive con-
nection network uses an encoder-decoder architecture to learn
modality connections between audio and text (see Fig. 3).
Both the encoder and decoder consist of three fully con-
nected layers, with each layer applying a linear transformation
followed by a non-linear ReLU activation function. In the
encoder, the fully connected layers progressively reduce the
dimensionality of the input uni-modal representation Hm,
extracting important features and compressing them into a
fixed-size latent vector em. This process of hierarchical di-
mensionality reduction enables the encoder to capture the
essential characteristics of the input modality while filtering
out irrelevant or redundant information.

The decoder, which also consists of three fully connected
layers, reverses this process by gradually increasing the dimen-
sionality of the latent vector em. It reconstructs the original
uni-modal representation dm using the latent features as a
guide. Each layer in the decoder applies a linear transformation
and ReLU activation function to ensure that the reconstructed
output closely resembles the original input. This encoder-
decoder architecture effectively enables feature compression
and reconstruction, facilitating the robust learning of modality
connections.

This symmetric encoder-decoder architecture facilitates ef-
ficient feature extraction, compression, and reconstruction. By
designing the encoder to focus on compact and meaningful
representations and the decoder to restore the input features
accurately, the network ensures that modality-specific infor-
mation is preserved while enabling cross-modality learning.

The interactive connection network adopts an architecture
comprising stacked fully connected layers followed by a
dropout layer in both the encoder and decoder (see Fig. 3).
For each modality m ∈ {a, l}, a simple encoder-decoder is
formulated as:

em = Em(Hm, θem) (1)

dm = Dm(em, θdm) (2)

where Em(·) denotes the encoder function for modality m,
with θem as its trainable parameters, and Dm(·) represents the
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Fig. 2. Architecture of our proposed the Bimodal Connection Attention Fusion method. The method consists of three modules, the uni-modal representation,
the connection attention fusion module and the classification module. The uni-modal audio representation Ha and text representation Hl are inputted into
all the interactive connection network, correlative attention network and bimodal attention network. The core connection attention fusion module includes the
interactive connection network, the bimodal attention network and correlative attention network, with the details depicted in Figs. 3-5, respectively.
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Fig. 3. Update scheme of the interactive connection network.

decoder function for modality m, with θdm as its trainable
parameters. The dimensions of Hm and dm are both 1024.
The dimension of em is 512.

The objective function models the learning problem using
the self-supervised spirit. We design the connection loss func-
tion to maximize modality connections between audio and text.

It is defined as follows:

Lc =
(
∥Ha − da∥2

F + ∥Hl − dl∥2
F + µ

(
∥Ie − e

⊤
a el∥2

F − ∥Id − d
⊤
a dl∥2

F

))
(3)

where ∥ · ∥2F is the squared Frobenius norm, which calculates
the sum of squared elements in a matrix. Ie and Il represent
the identity matrix, and µ is a non-negative hyperparameter
that controls the balance between terms.

The first term of the objective function, ∥Ha − da∥2F +
∥Hl − dl∥2F , measures the reconstruction error between the
original input representations and their reconstructed outputs
for both the audio (Ha, da) and text (Hl, dl) modalities. By
minimizing this term, the model ensures that the decoder
can accurately reconstruct the original input representations,
preserving the modality-specific information unique to each
modality. This encourages the encoder-decoder mechanism to
retain the essential features of each modality while discarding
irrelevant or redundant information. As a result, the model
achieves high-quality reconstruction for both modalities, which
is critical for ensuring robust performance in downstream
tasks.

The second term, ∥Ie−e⊤a el∥2F −∥Id−d⊤a dl∥2F , focuses on
learning meaningful connectionsbetween audio and text. The
first component, ∥Ie−e⊤a el∥2F , aligns the latent representations
(ea, el) in the feature space, ensuring strong modality con-
nections during the encoding process. The second component,
∥Id−d⊤a dl∥2F , maintains these connections in the reconstructed
space by aligning the outputs (da, dl). Together, these terms
promote consistency between the latent and reconstructed
spaces, enabling the model to capture robust cross-modal rela-
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tionships. This ensures that the learned modality connections
are both meaningful and preserved across all stages of the
network.

2) Bimodal Attention Network: The bimodal attention net-
work introduces self-attention and cross-attention mechanisms
to learn intra- and inter-modal interactions between audio and
text. Fig. 5 illustrates the architecture of the bimodal attention
network. The input to this network consists of queries, keys,
and values. The dot product of the query and each key is
computed, and a softmax function is applied to generate
weights for the values [36]. The bimodal attention network
comprises stacked self-attention and cross-attention layers,
along with feed-forward layers.

The core idea of this module is to learn intra- and inter-
modal interactions between audio and text, then propagate
information from both modality-specific patterns and modal-
ity associations based on the attention weights. Technically,
the self-attention layer aims to learn intra-modal interactions
within each modality, such as audio or text. The query, key,
and value are derived from the same modality. Given weight
matrices WQ

m , WK
m , and WV

m , the modality representation Hm

is projected into the query matrix (Qm), key matrix (Km),
and value matrix (Vm) through linear projections without bias.
The self-attention representation can then be summarized as
follows:

ζHm = softmax
(
QmKT

m√
dk

)
Vm (4)

where ζHm represents the self-attention representation with
a dimensionality of 1024. dk represents the dimension of the
key vector.

To further enhance the representation capacity, the self-
attention representation is passed through a LayerNorm layer
followed by an AddNorm layer to obtain the enhanced self-
attention representation.

Hs
m = LayerNorm(Hm ⊕ ζHm) (5)

hs
m = AddNorm(Hs

m ⊕ FeedForward(Hs
m)) (6)

where hs
a and hs

l represent the enhanced self-attention repre-
sentations for audio and text, respectively. The dimensions of
hs
a and hs

l are both 1024.
Parallel to the self-attention layer, the cross-attention layer

captures inter-modal interactions between audio and text. It
learns associations between the two modalities and propa-
gates information from one modality to the other based on
these associations. Specifically, the cross-attention mechanism
follows a similar principle to the self-attention mechanism,
with the key difference being that the query, key, and value
are derived from different modalities. The enhanced cross-
attention representation is summarized as follows:

ζHl−a = softmax
(
QlK

T
a√

dk

)
Va (7)

Hc
a = LayerNorm(Ha ⊕ ζHl−a) (8)

hc
a = AddNorm(Hc

a ⊕ FeedForward(Hc
a)) (9)

ζHa−l = softmax
(
QaK

T
l√

dk

)
Vl (10)

Hc
l = LayerNorm(Hl ⊕ ζHa−l) (11)

hc
l = AddNorm(Hc

l ⊕ FeedForward(Hc
l )) (12)

where ζHa−l and ζHl−a represent the propagated information
from audio to text and from text to audio, respectively, both
with dimensions of 1024. The variables hc

a and hc
l denote the

enhanced cross-attention representations for audio and text,
respectively, and their dimensions are also both 1024. dk
represents the dimension of the key vector.

3) Correlative Attention Network: The correlative atten-
tion network is designed to enhance sentiment analysis by
explicitly modeling the relationships between uni-modal and
bimodal representations. It takes as input the latent uni-modal
representations from the interactive correlation network and
correlates them with the bimodal representation to capture
both intra-modal and inter-modal dependencies. This network
is crucial for bridging the gap between individual modality
features and their combined representation, ensuring that the
interactions between modalities are accurately captured.

The correlative attention network comprises two submod-
ules: the joint attention network and the bimodal correlation
evaluation network (see Fig. 5). The joint attention network
integrates the uni-modal latent features from the audio and text
modalities to produce a comprehensive bimodal representation,
allowing the model to focus on the most salient features from
each modality. Meanwhile, the bimodal correlation evaluation
network assesses the correlations between these modalities by
quantifying their interdependencies, offering a deeper under-
standing of how features from one modality influence those
of the other.

By incorporating the correlative attention network, the
model achieves a more robust and nuanced representation
of the input data, improving its ability to analyze sentiment
effectively. This approach ensures that the unique contributions
of each modality are not only preserved but also synergistically
leveraged to enhance overall performance.

Joint Attention Network: The joint attention network aims
to enhance the cross-modal relationship between audio and
text by reducing noise and highlighting meaningful interac-
tions. This is achieved using a pair of softmax functions, which
help focus on the most relevant features from both modalities
while suppressing less informative or noisy elements. The
network effectively refines the cross-modal representation,
enabling the model to better capture salient patterns for
downstream tasks such as sentiment analysis.

The attention mechanism operates by mapping query, key,
and value vectors to outputs. Specifically, it computes attention
scores using query and key vectors and applies these scores
to calculate a weighted sum of the value vectors. Given the
uni-modal representations Hm, the joint attention network first
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projects these representations into query, key, and value vectors
(Qj

a, Q
j
l ,K

j
a,K

j
l , V

j
a , V

j
l ) as follows:

Qj
m = hs

mWQj

m , Kj
m = hs

mWKj

m , V j
m = hs

mWV j

m (13)

The joint attention network computes the joint bimodal
representation using the following equation:

h
∗
=

(
softmax

(
Qj

aK
j⊤
a + Qj

l
Kj⊤

l√
dk

)
− λ softmax

(
Qj

aK
j⊤
l√

dk

))
V

j

(14)

where h∗ denotes the joint bimodal representation with a
dimension of 1024. λ is a learnable scalar that adjusts the
weight of the second term, which represents cross-modal
attention. V j represents the average of the value vectors V j

a

and V j
l , encapsulating information from both modalities. dk

represents the dimension of the key vector.
The use of a pair of softmax functions serves a dual purpose.

The first softmax term emphasizes intra-modal relationships
by combining attention scores from the query and key vectors
within each modality. This term ensures that strong intra-
modal signals are preserved. The second softmax term focuses
on cross-modal relationships, computing the attention scores
between the query of one modality and the key of the
other. By subtracting the cross-modal scores (weighted by λ),
the network suppresses noisy or irrelevant interactions while
retaining meaningful cross-modal dependencies. This design
improves the robustness of the joint attention mechanism and
enhances the overall representation quality for tasks requiring
fine-grained cross-modal understanding.

Bimodal Correlation Evaluation: The latent uni-modal
representations from the interactive correlation network (ea
for audio and el for text), along with the joint bimodal
representation from the joint attention network (h∗), are input
into the bimodal correlation evaluation network to assess the
correlations between audio and text. Inspired by CLIP [37],
cosine similarity is employed to measure the correlations
between different modalities, resulting in the pairwise cross-
modal correlation coefficients, cora−m and corl−m (see Fig.
4). The joint multi-modal representation h∗ is passed through
a linear layer, reducing its dimension to 512, resulting in hb,
which serves as the fused representation used for bimodal
correlation evalution.

cora−b =
〈
ea, h

b
〉
, corl−b =

〈
el, h

b
〉

(15)
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where ⟨·⟩ denotes cosine similarity, and cora−b and corl−b

represent the correlation coefficients for the audio-bimodal and
text-bimodal pairs, respectively.

The pairwise cross-modal correlation coefficients are sub-
sequently integrated into the enhanced self-attention represen-
tations (hs

a for audio and hs
l for text) to produce correlative

representations. This process ensures that the resulting rep-
resentations fully capture inter-modal interactions by utilizing
the correlation information to strengthen the interplay between
modalities. Through this integration, the model becomes better
equipped to align and fuse audio and text features effectively,
thereby facilitating a more comprehensive understanding of
cross-modal relationships, as described below:

h∗
a = hs

a × cora−b, h∗
l = hs

l × corl−b (16)

where h∗
a and h∗

l denote the correlative uni-modal repre-
sentations, enhanced by their respective modality correlation
coefficients. These coefficients represent the weighted impor-
tance of one modality’s features in the context of the other,
effectively capturing the interdependence between modalities.
The dimensions of both h∗

a and h∗
l are 512.

Finally, hc
a, hc

l , h∗
a, and h∗

l are concatenated to form
the aggregated bimodal representation, which is then passed
through four fully connected layers for classification.

h∗
m = hc

a ⊕ hc
l ⊕ h∗

a ⊕ h∗
l (17)

where h∗
m represents the aggregated bimodal representation

with a dimension of 3072.

C. Classification

The overall optimization objective consists of the connec-
tion loss Lc, the audio loss La, the text loss Ll, and the
bimodal loss Lm. Specifically, the audio loss, the text loss,
and the bimodal loss are processed independently to generate
predictions, which are then combined to make a final decision.

D. Training

For the classification task, the audio loss, the text loss, and
the bimodal loss are defined as the standard cross-entropy
loss. Finally, the overall loss function is expressed as a linear
combination of Lc, La, Ll, and Lm:

L = αLc + β(La + Ll) + Lm (18)

where α, and β are weighting factors that balance the contri-
bution of each loss term.

• The audio loss La is used to capture distinctive audio
information for emotion prediction:

ŷca = softmax(W a
e h

s
a + bae) (19)

La = −
C∑

c=1

yca log(ŷ
c
a) (20)

TABLE I
STATISTICS OF TWO BENCHMARK DATASETS: MELD AND IEMOCAP

Dataset # Conversations # Utterances
Train/Validation Test Train/Validation Test

MELD [21] 1,153 280 11,098 2,610
IEMOCAP [38] 120 31 5,810 1,623

where the parameters W a
e and bae are learnable weights

and biases. c represents the emotion categories, and ŷca
and yca denote the predicted and true labels, respectively.

• The text loss Ll is used to capture distinctive textual
information for emotion prediction:

ŷcl = softmax(W l
eh

s
l + ble) (21)

Ll = −
C∑

c=1

ycl log(ŷ
c
l ) (22)

where the parameters W l
e and ble are learnable weights

and biases. c represents the emotion categories, and ŷcl
and ycl denote the predicted and true labels, respectively.

• The bimodal loss Lm is used to capture interactions
between modalities for emotion prediction:

ŷcm = softmax(Wm
e h∗

m + bme ) (23)

Lm = −
C∑

c=1

ycm log(ŷcm) (24)

where the parameters Wm
e and bme are learnable weights

and biases. c represents the emotion categories, and ŷcm
and ycm denote the predicted and true labels, respectively.

IV. EXPERIMENTS

A. Database and Metrics

We evaluated our proposed BCAF method on the two
benchmark datasets: MELD [21] and IEMOCAP [38]. Both
these two commonly used public datasets are multi-modal,
containing audio, text and video modality for every utterance.
Due to the natural imbalance across various emotions, we
choose weighted average F1-score as the evaluation metric.
Table I shows the distribution of train and validation and test
samples for both two datasets.

• MELD is a multi-modal and multi-party dataset for
conversational emotion recognition [21]. It consists of
13,708 utterances in 1,433 dialogues collecting from the
Friends TV shows. Each utterance is labeled with one in
seven emotions: anger, joy, sadness, neutral, disgust, fear
and surprise.

• IEMOCAP contains videos of dyadic conversations of ten
speakers, spanning 12.46 hours [38]. Each utterance is
annotated using the following discrete categories: happy,
sad, neutral, angry, excited, and frustrated.

Given the inherent imbalance across different emotion
classes, we used the weighted F1-score as our primary eval-
uation metric. The weighted F1-score calculates the F1-score
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for each class and applies weights based on the proportion
of samples in each class. This approach ensures that the
evaluation metric reflects the contribution of each class to the
overall performance, addressing the impact of class imbalance
effectively.

B. Baseline and State-of-the-Art Methods

To comprehensively evaluate the performance of the pro-
posed method, we compared our results with those of the
bidirectional LSTM (bc-LSTM) baseline [21]. This baseline
system leveraged an utterance-level LSTM to model context-
aware representations from surrounding utterances. Addition-
ally, we compared the proposed BCAF method to various
existing state-of-the-art methods:

• M2FNet [14] employed a multi-head attention-based fu-
sion mechanism to combine emotion-rich latent represen-
tations of emotion-relevant features from visual, audio,
and text modalities, learning both intra- and inter-modal
relationships.

• HCAM [29] used a combination of recurrent and co-
attention neural network to capture intra- and inter-modal
interactions for emotion classification.

• CFN-ESA [30] incorporated a cross-modal fusion net-
work with emotion-shift awareness for dialogue emotion
recognition.

• TelME [31] used cross-modal knowledge transfer, using
a language model (as the teacher) to enhance non-verbal
modalities (as the student), thereby optimizing the per-
formance of weaker modalities.

• Mamba [32] designed a multi-modal fusion strategy
based on probability guidance to maximize information
consistency across modalities and capture intra- and inter-
modal interactions for conversational emotion recogni-
tion.

• AGF-IB [33] introduced graph contrastive representation
learning to capture intra- and inter-modal complementary
semantic information, as well as intra-class and inter-class
boundary information for emotion categories.

C. Model Configuration

We implemented our proposed BCAF method using the
PyTorch 1.11.0 framework. The model was trained with the
Adam optimizer with an initial learning rate of 1e-4 and
an early-stopping strategy with a patience of 15 epochs. To
aid convergence and improve generalization, we applied L2

regularization with a weight of 0.0001 and used dropout with
a rate of p = 0.3 to mitigate overfitting.

V. RESULTS AND DISCUSSION

We start by conducting comparative experiments against
previous state-of-the-art baselines. Next, we ablate core mod-
ule to verify the effectiveness of our proposed BCAF method.
Following that, we emphasize the importance of bimodal
attention network and qualitative analysis. Finally, we conduct
case studies and error analysis.

A. Comparison with State-of-the-art Baselines

We compared our proposed BCAF model against state-of-
the-art baseline systems on two datasets, MELD and IEMO-
CAP. As shown in Fig. 6, BCAF demonstrates superior perfor-
mance compared to state-of-the-art baseline systems in terms
of the weighted F1-score, achieving a 3.15% improvement
over HCAM [29] on the MELD dataset and a 4.11% im-
provement over Mamba [32] on the IEMOCAP dataset. These
encouraging results demonstrate the superior expressive power
and effectiveness of integrating the interactive connection
network, bimodal attention network, and correlative attention
network for bimodal speech emotion recognition.

Our BCAF model showed significant improvements over
contextual models such as bc-LSTM [21], M2FNet [14], and
TelME [31]. We attribute this improvement to the fact that
many contextual models fail to effectively learn modality
connections and model intra- and inter-modality interactions
between audio and text. In contrast, BCAF addresses these
interactions through its interactive connection network, bi-
modal attention network, and correlative attention network.
Specifically, BCAF demonstrated a strong ability to infer
major emotion categories, such as neutral and joy, though it
occasionally misclassified minority classes, such as anger, on
both the MELD and IEMOCAP datasets. We suggest that this
may be due to the implicit expression and limited sample size
of these emotions.

Our BCAF model exhibited smaller performance improve-
ments on the MELD dataset compared to the IEMOCAP
dataset. Specifically, while BCAF outperformed baseline sys-
tems on both datasets, the relative performance gain over state-
of-the-art baseline systems (M2FNet [14] on MELD versus
TelME [31] on IEMOCAP) was more pronounced on the
IEMOCAP dataset. Upon further analysis, we observed that
dialogues in the MELD dataset are relatively shorter, typically
consisting of 5 to 9 utterances, whereas dialogues in the
IEMOCAP dataset average around 70 utterances per dialogue.
Additionally, the MELD dataset, derived from real-world sce-
narios, contains significant background noise (e.g., honking,
barking). Such noise, often uncontrollable and undesirable,
can hinder the ability of individual modalities to effectively
capture and convey emotional information. Furthermore, this
noise may have introduced interference in the model, partic-
ularly for emotions like fear and frustration, which are more
susceptible to being masked by background noise. As a result,
the BCAF model achieved relatively better performance on
the IEMOCAP dataset, where dialogues are longer and less
affected by background noise, enabling the model to better
capture emotional nuances.

B. Ablation Study

In this section, we conducted ablation studies to verify the
effectiveness of our proposed BCAF model. We systematically
ablated the model’s interactive connection network, bimodal
attention network, and correlative attention network (see Fig.
6). Additionally, we investigated the contribution of each
component by removing it from BCAF. Overall, we observed
that the full version of BCAF achieved the best performance on
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Fig. 6. Overall performance comparison between the BCAF method, the state-of-the-art methods, and the baselines.

both the MELD and IEMOCAP datasets. Particular emphasis
was placed on the removal of the interactive connection
network, the bimodal attention network, and the correlative
attention network, each of which adversely impacted the
model’s results.

Specifically, the performance decline exhibits a consistent
pattern when different components are removed from the
BCAF model: the correlative attention network > the bimodal
attention network > the interactive connection network (see
Fig. 6). This suggests that the integration of these three core
networks significantly enhances the performance of bimodal
speech emotion recognition. The results demonstrate that our
proposed BCAF method improves the representation capability
of multi-modal features and effectively models correlations, as
well as intra- and inter-modal interactions,between audio and
text.

1) Effect of the Interactive Connection Network: We first
investigated the effect of the interactive connection network in
our proposed BCAF. The interactive connection network was
designed to leverage an encoder-decoder architecture to learn
modality-specific features and capture modality connections
between audio and text.

We observed that the interactive connection network con-
tributed to a performance improvement of 2.81% on the
MELD dataset and 2.83% on the IEMOCAP dataset compared
to the BCAF model without this component (see Fig. 6).
This highlights the importance of the interactive connection
network in enhancing the model’s ability to capture and model
intra- and inter-modal interactions between audio and text,
leading to more accurate bimodal speech emotion recognition.

In the interactive connection network, each modality was
processed using an encoder-decoder architecture to extract
modality-specific features and analyze modality connections
between audio and text. Specifically, the encoder transformed
the raw input into a latent representation that captured es-
sential characteristics specific to each modality. The decoder
then reconstructed the original input from this latent space,
effectively preserving intrinsic features within each modality,
such as nuances in speech patterns or subtleties in textual

expressions.
The connection loss encourages the BCAF model to learn

modality connections by capturing shared features, enhancing
emotion understanding. Previous approaches often processed
modalities independently [30], [33], potentially overlooking
synergistic information from their interactions. By introducing
regularization, the connection loss facilitates semantic com-
plementation across modalities and maximizes the utility of
modality connections.

2) Effect of the Bimodal Attention Network: We then
explored the role of the bimodal attention network, which
aimed to leverage dynamic attention weights to learn intra-
and inter-modal interactions between audio and text. Ablation
results in Fig. 6 demonstrated an absolute improvement of
4.1% on the MELD dataset and 5.12% on the IEMOCAP
dataset when the bimodal attention network was included
in our BCAF model, compared to the version without this
network. This improvement underscores the critical role of
the bimodal attention network in enhancing the model’s ability
to focus on emotion-relevant features by effectively capturing
interactions between audio and text. By selectively attending to
important modality-specific information and their interactions,
the bimodal attention network significantly contributed to
improved bimodal speech emotion recognition performance.

In the ablation study of the multi-modal fusion module,
we attributed the performance improvement to the bimodal
attention network, which facilitated intra- and inter-modal
interactions within and between audio and text while capturing
long-term contextual information. By introducing dynamic
self- and cross-modal attention weights to uni-modal repre-
sentations, we enhanced these representations to build a robust
and effective bimodal representation.

We proposed that the bimodal fusion module leveraged het-
erogeneous knowledge in a high-dimensional space to capture
detailed information embedded in each modality while adap-
tively fusing implicit complementary content. This strength-
ened interactions and correlations, encouraging the model to
explore complementary information and dynamic interactions
between audio and text. As a result, the multi-modal fusion
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module significantly improved performance in bimodal speech
emotion recognition tasks.

3) Effect of the Correlative Attention Network: Finally,
we examined the impact of the correlative attention network,
which was designed to filter out noise in cross-modal rela-
tionships and learn inter-correlations between uni-modal and
bimodal representations.

As shown in Fig. 6, removing the correlative attention
network from the BCAF model resulted in a performance
decrease of 5.24% on the MELD dataset and 6.68% on the
IEMOCAP dataset compared to the complete model with
all components included. This comparison underscores the
significant role of the correlative attention network in im-
proving emotion recognition by accurately integrating audio-
text inter-correlations. The absence of this network hindered
the model’s ability to effectively filter noise and capture
meaningful relationships across modalities.

The joint attention mechanism within the correlative atten-
tion network utilized a pair of softmax functions to simultane-
ously consider both self- and cross-attention weights for joint
bimodal representation. This mechanism allowed the model
to refine incorrect cross-modal information and dynamically
adjust the influence of each modality, enabling comprehensive
learning of intra- and inter-modal interactions between audio
and text.

C. Impact of Attention
Furthermore, the bimodal correlation evaluation explicitly

measured similarity by incorporating correlation coefficients
into the uni-modal representations. This process aligned the
uni-modal features with the joint bimodal space, enhancing
the model’s ability to capture and leverage complementary
information across modalities for more accurate emotion
recognition.

In this section, we examined the impact of different attention
variants (see Fig. 7). For each modality, self-attention and
cross-attention mechanisms were employed to capture intra-
and inter-modal interactions between audio and text. To eval-
uate the effectiveness of the proposed attention mechanism in
modeling these interactions, we implemented four comparison
systems. The experimental results are presented in Fig. 65 and
Table II.

• Bimodal Attention Network (BAN): This network em-
ployed separate softmax functions to independently apply
self-attention and cross-attention weights, enabling dis-
tinct modeling of intra- and inter-modal interactions (see
Fig. 7 (a)).

• Joint Attention Network (JAN): This network utilized
a combined pair of softmax functions to simultaneously
apply both self-attention and cross-attention weights, al-
lowing for integrated modeling of intra- and inter-modal
interactions (see Fig. 7 (b)).

• Bimodal Attention Network - Self-Attention (BAN-
SA): This variant used only self-attention, omitting the
cross-attention mechanism to focus solely on intra-modal
interaction modeling (see Fig. 7 (c)).

• Bimodal Attention Network - Cross-Attention (BAN-
CA): This variant used only cross-attention, omitting the

self-attention mechanism to concentrate exclusively on
inter-modal interaction modeling (see Fig. 7 (d)).

We observed that the BAN achieved the best performance
on both the MELD and IEMOCAP datasets. As shown in
Fig. 6 and Table II, the inclusion of the BAN contributed to
a performance improvement of 3.6% on the MELD dataset
and 6.6% on the IEMOCAP dataset compared to the baseline
model without BAN. This comparison highlights the effective-
ness of BAN in leveraging both intra-modal and inter-modal
interactions between audio and text.

Additionally, the decline in performance followed a con-
sistent trend: BAN > JAN > BAN-SA > BAN-CA. This
means that removing certain attention mechanisms resulted
in progressively worse performance. Specifically, the absence
of JAN caused a performance decrease of 2.85% on the
MELD dataset and 3.34% on the IEMOCAP dataset. Similarly,
excluding BAN-SA led to a decrease of 1.72% on MELD and
2.53% on IEMOCAP, while removing BAN-CA resulted in
the smallest decline of 1.41% on the MELD and 1.69% on the
IEMOCAP. These results underscore the relative importance
of each attention mechanism in modeling effective intra- and
inter-modal interactions between audio and text.

The bimodal attention network independently enabled com-
plementary processing of intra-modal and inter-modal interac-
tions between audio and text. We argue that intra-modal inter-
actions provided the most essential information for accurate
predictions, as they captured key modality-specific features
directly tied to emotion recognition. Although inter-modal
interactions added valuable complementary insights, core emo-
tional cues were typically best represented within each in-
dividual modality, making intra-modal processing a primary
factor in the model’s effectiveness. Moreover, maintaining
sufficient layers in the BAN was crucial for optimal perfor-
mance. Reducing the number of layers negatively impacted the
model’s ability to process intra- and inter-modal interactions
effectively, thereby degrading overall performance.

D. Case Studies

To illustrate the effectiveness of our proposed BCAF model,
we selected samples from two datasets and conducted exten-
sive experiments comparing BCAF with baseline models. The
results, as shown in Fig. 8, revealed the following insights:

• In most cases, our BCAF model achieved correct predic-
tions, whereas the baseline models failed. This result indi-
cates that BCAF effectively integrates audio information
with the text modality, enhancing bimodal speech emo-
tion recognition. By exploring correlations and intra- and
inter-modal interactions between audio and text, BCAF
provides richer, emotion-relevant insights, enabling the
modalities to complement and augment each other.

• We observed challenges in predicting minor emotions
when speech with significant background noise was intro-
duced into the text modality for prediction. Specifically,
ambiguous expressions, such as the single word “Um”,
were affected by unwanted and uncontrollable noise,
further limiting the model’s ability to comprehend human
emotional expressions.



11

(d) BAN-CA 

(c) BAN-SA 

Layer
Norm

Layer
Norm

Ha Hl

Self
Attention

Cross
Attention

Qa Ka Va Va Ka Ql

ζHl - a ζHa

Layer
NormLayer
Norm

Layer
NormLayer
Norm

（a）BAN 

Layer
Norm

Layer
Norm

Hl Ha

Self
Attention

Cross
Attention

Ql Kl Vl Vl Kl Qa

ζHa - l ζHl

Layer
NormLayer
Norm

Layer
NormLayer
Norm

LayerNormLayerNorm LayerNormLayerNorm

Vj

h*

Ha Hl

LayerNorm

Softmax

LayerNorm

Qj
a Kj

l Kj
lKj

a Qj
l

Softmax

Qj
aVj

LayerNormLayerNorm LayerNormLayerNorm

（b）JAN 

Layer
Norm

Ha

Self
Attention

Qa Va Ka

Layer
NormLayer
Norm

ζHa 

Layer
Norm

Layer
Norm

Hl Ha

Cross
Attention

Kl Va Qa

Layer
Norm

ζHl - a 

Fig. 7. Different attention variants: (a) BAN, (b) JAN, (c) BAN-SA, and (d) BAN-CA.

TABLE II
IMPACT OF DIFFERENT ATTENTION MECHANISMS ON OUR PROPOSED BCAF MODEL (BOLD FONT INDICATES THAT BAN ACHIEVES THE BEST F1

SCORE).

Attention Equation w/o Number of Layers

MELD IEMOCAP MELD IEMOCAP

BAN softmax
(

QaK
⊤
a√

d

)
Va + softmax

(
QaK

⊤
l√

d

)
Va + softmax

(
QlK

⊤
l√

d

)
Vl + softmax

(
QaK

⊤
l√

d

)
Vl 64.83 69.57 5 3

JAN
(

softmax
(

QaK
⊤
a +QlK

⊤
l√

d

)
− λ softmax

(
QaK

⊤
l√

d

))
V 66.08 71.35 3 4

BAN-SA softmax
(

QaK
⊤
l√

d

)
Va 67.21 72.16 7 5

BAN-CA softmax
(

QaK
⊤
a√

d

)
Va 67.52 73.01 7 6

• Unexpectedly, while our proposed BCAF method out-
performed the baseline models in terms of weighted F1-
score, it performed worse than the state-of-the-art HCAM
model. Upon further analysis, we attributed this to the
emotional cues learned by the graph convolutional net-
work in HCAM, which played a critical role in modeling
and leveraging speaker information to capture intra- and
inter-speaker dependencies for emotion recognition.

E. Error Analysis

We present the confusion matrices for the MELD and
IEMOCAP datasets in Fig. 9. As shown, although our BCAF

model achieved significant improvements over previous meth-
ods, as discussed in Section V.A, its performance on several
rare emotions (such as disgust, fear, and happiness) remained
unsatisfactory. Similar observations have been reported in
previous studies, likely due to the implicit expression of these
emotions.

By inferring predefined emotions in conversations, we ob-
served that the errors made by the BCAF model were primarily
caused by the following factors:

• Emotions are complex interactions between subjective
and objective factors, leading to potential biases in affect
annotations. The emotion experienced by the speaker and
the emotion perceived by human annotators may differ.
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Fig. 8. Inputs from bimodal data and predictions using bc-LSTM, HACM, and our proposed BCAF method on the MELD and IEMOCAP datasets are
analyzed in our case study.
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Consequently, the BCAF model sometimes confused and
misclassified similar or closely related emotions, such as
fear and sadness (see Fig. 9).

• The MELD and IEMOCAP datasets closely mirror real-
world scenarios, exhibiting significant class imbalances
and substantial background noise. This observation aligns
with the fact that humans remain neutral most of the
time. In bimodal speech emotion recognition systems, this
often resulted in minority emotions being predominantly
misclassified as major classes.

• Humans express emotions through various modalities, in-
cluding facial expressions, body posture, speech, and the
linguistic content of verbal communication. However, the
BCAF method relied solely on audio and text modalities
for predicting emotions in conversations.

To address these challenges, we plan to implement several
effective strategies, including resampling techniques, data aug-
mentation, and transfer learning. Additionally, integrating in-
formation from multiple modalities in human communication
could enhance the accuracy of emotion recognition, as differ-
ent modalities complement and enrich each other, providing a
more comprehensive set of emotion-relevant information.

VI. CONCLUSION

We proposed the Bimodal Connection Attention Fusion
(BCAF) method for efficient and robust bimodal speech emo-
tion recognition. BCAF consists of three key modules: the
interactive connection network, the bimodal attention network,
and the correlative attention network. The interactive connec-
tion network enables the model to learn modality connections
between audio and text. The bimodal attention network fa-
cilitates semantic complementation and optimally leverages
intra- and inter-modal interactions between audio and text.
Finally, the correlative attention network filters noise from
cross-modal relationships and learns inter-correlations between
uni-modal and bimodal representations. Experimental results
demonstrated that BCAF outperforms state-of-the-art methods
in bimodal speech emotion recognition task.
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