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Abstract— In multimedia applications such as films and video
games, spatial audio techniques are widely employed to enhance
user experiences by simulating 3D sound: transforming mono
audio into binaural formats. However, this process is often
complex and labor-intensive for sound designers, requiring
precise synchronization of audio with the spatial positions of
visual components. To address these challenges, we propose a
visual-based spatial audio generation system - an automated
system that integrates face detection YOLOVS for object detec-
tion, monocular depth estimation, and spatial audio techniques.
Notably, the system operates without requiring additional
binaural dataset training. The proposed system is evaluated
against existing Spatial Audio generation system using objective
metrics. Experimental results demonstrate that our method
significantly improves spatial consistency between audio and
video, enhances speech quality, and performs robustly in multi-
speaker scenarios. By streamlining the audio-visual alignment
process, the proposed system enables sound engineers to achieve
high-quality results efficiently, making it a valuable tool for
professionals in multimedia production.

Index Terms—Spatial audio, multi-model, audio-visual system

I. INTRODUCTION

In multimedia production, including films, advertisements,
teleconferencing and video games, achieving seamless align-
ment between character dialogue and corresponding visual
elements is essential for creating immersive experiences. As
humans rely on multi-modal cues to interpret and engage
with real-world events [1], the demand for high-quality
audio-visual experiences continues to grow. With the rise
of three dimensional (3D) audio, virtual reality (VR), and
augmented reality (AR), the importance of accurate spatial
audio alignment has become increasingly evident [2]. Visual-
based audio spatialization has become a prominent area of
research due to its broad applications in AR [3], VR [4],
social video sharing [5] [6] and audio-visual video under-
standing [7]. Effective audio-visual spatialization enhances
realism, enabling audiences to feel as though they are present
within the environment.

Currently, most post-production professionals and audio
engineers manually adjust spatial audio parameters on digital
platforms, relying on visual cues to determine the positions
of sound sources. This process is highly labor-intensive and
requires significant time and effort.
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Some researchers have already explored generating spatial
audio based on video input. Lin et al. [7] proposed a
model for generating binaural audio from visual frames
and monaural audio inputs, demonstrating its effectiveness
through comparisons with other models on the FAIR-Play
dataset (binaural audio clips recorded in a controlled music
room) and the MUSIC-Stereo dataset (a diverse collection
of audio-visual clips from musical performances). Ruohan
Gao and Kristen Grauman [8] introduced Mono2 Binaural,
a deep network that takes a mixed monaural audio and
its accompanying visual frame as input, using a ResNet-18
network to extract visual features and U-NET to extract audio
features.

However, these systems [7]-[9] rely heavily on large
binaural datasets, which pose significant challenges, such as
requiring specialized equipment, controlled recording envi-
ronments, precise audio-visual synchronization, and labor-
intensive annotation processes. Additionally, they face issues
with overfitting when handling multiple audio tracks, further
complicating the training and optimization process. They
also struggle to achieve precise spatial positioning with more
than two audio sources, frequently leading to compromised
sound quality or reduced immersion, ultimately impacting
the user experience. This lack of fidelity not only affects
the user experience but also poses challenges in professional
multimedia production environments, where rapid adaptation
and precision are essential.

Pseudo Binaural [10] has been introduced as an innovative
model to generate visually coherent binaural audios from
multiple sound sources without requiring recorded binaural
data. However, for these system the coordinates for Azimuth
and Elevation must be manually pre-defined.
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Fig. 1: Spatialisation of audio representing X, Y and Z
coordinates.
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To address these challenges, we propose a visual-based
spatial audio generation system designed to support multi-
speaker scenarios while eliminating the dependency on large-
scale binaural datasets. In this approach (see Fig. [I), the
center of each video frame is assumed to be the origin of a
Cartesian coordinate system. Using this framework, the facial
positions of individual speakers are accurately calculated,
providing spatial cues for generating realistic spatial audio.

Our system integrates object detection using YOLOvVS
[11] with the WIDER FACE Dataset [12] and pre-trained
Depth Estimation model Depth Anything [13], to enhance the
precision of spatial audio alignment by extracting visual cues
with high accuracy, thus facilitating the automatic adjustment
of audio sources based on spatial positioning in real-time.

To assess the effectiveness of our system objectively,
we compare its performance against existing audio-visual
spatial audio generators using established metrics: Perceptual
Evaluation of Speech Quality (PESQ), Short-Time Fournier
Transform (STFT) Distance, Envelope (ENV) Distance, and
Mean Opinion Score (MOS). These metrics enable a com-
prehensive evaluation of our system’s ability to maintain
audio quality and synchronization under varying conditions,
demonstrating its applicability in high-fidelity audio post-
production environments.

Our contributions can be summarized as follows:

Elimination of Large Binaural Dataset Dependency: Un-
like existing systems that heavily rely on extensive binaural
datasets, which require specialized recording setups and
labor-intensive annotations, our method generates spatial
audio without the need for large scale binaural datasets.
Multi-Speaker Scenario Support: In contrast to traditional
methods that struggle with precise spatial positioning beyond
two audio sources, our system effectively supports multiple
speakers, maintaining spatial accuracy and immersion.
The using in real-world: The proposed system can stream-
line sound design workflows, it makes a contribution to
audio/music producer in the Post-production audio mixing,
or improves user experience in teleconferencing application
(e.g. Zoom).
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Fig. 2: Flowgraph of the system showcasing the main processing pipeline.

Audio quality and Immersive Promotion: Our method
outperforms existing works in audio quality, particularly in
speech scenarios, as shown in Table [[TI] and Table

II. METHODOLOGY

Our modeﬂ consists of two main components: visual
processing and audio processing. For visual processing, we
compare current YOLO models and employ YOLOVS in
combination with the Depth Estimation model Depth Any-
thing (see Sec. [[I-A). Details of audio source preparation and
facial annotation are provided in Sec. [[I'B] and [[I-C| In the
audio processing pipeline, we implement two spatialization
methods: HRTF convolution and a 3D algorithmic approach,
as detailed in Sec. [[I-D] The overall workflow of the system
is illustrated in Fig. [2]

A. Visual

Object detection facilitates the localization of spatial po-
sitions, particularly azimuthal information, of characters or
objects in real-time, acting as anchors for their corresponding
audio sources. By generating precise bounding boxes around
detected objects, the object detection model ensures consis-
tent spatial alignment, even in dynamic scenes where sources
may move or overlap.

YOLO (You Only Look Once) is a widely used object
detection model renowned for its speed and accuracy. First
introduced by Joseph Redmon et al [14] in 2016, YOLO
has undergone numerous advancements, with the latest it-
eration, YOLOV10, incorporating state-of-the-art techniques
for enhanced performance and efficiency. This makes it well-
suited for applications requiring real-time tracking and local-
ization in complex environments. To evaluate advancements
in YOLO’s performance and its suitability for real-time
applications, we conducted comparative testing across differ-
ent YOLO versions using the WIDER FACE dataset. This
dataset comprises 32,203 images and 393,703 labeled faces,
with significant variations in scale, pose, and occlusion. It
is divided into training (40%), validation (10%), and testing

Ihttps://youtu.be/1lWbx58GmP-0
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(50%) sets, ensuring a balanced distribution. The results are
summarized in Table [l and Table [

The experiments are conducted using PyTorch 1.7.0 on an
NVIDIA RTX 3090 GPU with CUDA 11.0. The system is
configured with a 15-core Intel Xeon Platinum CPU and 80
GB RAM, providing sufficient computational resources for
training and evaluation.

TABLE I: Performance comparison of YOLO models (P:
Precision, R: Recall, mAP50: mean average precision at IoU
threshold 0.5, mAP50-95: mean average precision at IoU
thresholds ranging from 0.5 to 0.95).

Module P R mAP50 mAP50-95
YOLOV5-n 0.838  0.598 0.726 0.342
YOLOV10-n 0.829  0.554 0.633 0.316
YOLOVS8-n 0.845  0.588 0.669 0.366
YOLOv-Face2 0.896 0.666 0.735 0.397
YOLOVS-s 0.872  0.655 0.696 0.347

TABLE II: Speed comparison of YOLO models (measured
in milliseconds, ms).

Model Pre-process  Inference =~ NMS
YOLOV5-n 0.2 6.1 0.8
YOLOvV10-n 0.1 1.2 0.0
YOLOVS8-n 0.1 0.6 0.5
YOLOv-Face2 16.3 1.0 17.4
YOLOV5-s 16.3 1.0 17.4

Through Table[l|and Table ([T} bold numbers denote highest
performance. YOLOvS8-n [11] demonstrates a well-balanced
trade-off between accuracy and speed. It achieves a mean
average precision of 0.669 (mAP50) and 0.366 (mAP50-
95), outperforming YOLOV10-n in both precision (P) and re-
call (R) metrics while maintaining competitive performance
against YOLOv-Face2. Although YOLOv-Face2 achieves
slightly higher accuracy, its increased inference time makes
it less ideal for real-time applications. YOLOvS8-n, with its
processing and inference times of just 0.1 ms and 0.6 ms per
image, significantly surpasses models like YOLOvVS-s and
YOLOv-Face2 in speed. This balance of accuracy and effi-
ciency makes YOLOVS8-n particularly suitable for scenarios
requiring rapid and precise visual tracking to enhance spatial
audio generation.

In the results of YOLOvV8-n, we obtain the center co-
ordinates (Zcenter, Yeenter) Of the detected bounding box (as
shown in [3), which are normalized by default. To adapt
these coordinates for audio processing, we first normalize
(Zcenters Yeenter) them into the range [—1,1].

X = 2Zcenter — 1, (1)
Y=1- 2Ycenter

In three-dimensional space and spatial audio processing,
the Cartesian Coordinate System, defined by X (left and
right),Y (up and down), and Z (front and back) coordinates.

Fig. 3: YOLOV8-n Output: Object Detection with Bounding
Box Predictions

Object detection models, such as YOLOvS8-n, provide accu-
rate X and Y coordinates in a 2D plane, enabling real-time
detection and localization of individual speakers within an
image frame. To extend this to 3D space, depth information
(Z-coordinate) must be incorporated, offering a more realistic
representation of the environment.

For this purpose, we employ depth estimation techniques
to compute the Z-coordinate, representing the distance be-
tween the camera and each detected facial individual. Fol-
lowing the methodology outlined in [13], we utilize the pre-
trained ViT-S model from the Depth Anything framework
for robust monocular depth estimation. This model excels
in handling diverse environments and arbitrary images, de-
livering precise depth measurements. We chose the Depth
Anything ViT-S model for its demonstrated speed efficiency
and accuracy in depth estimation tasks, which are crucial
for accurately estimating the distance between the sound
source and the camera (audience). An example of the results
obtained using this model is illustrated in Fig. {]

(a) Raw Image

(b) Depth Anything

Fig. 4: Depth estimation model visualization.

In @), g, and g, represents the range of gray scale
value in the depth map, ranging from 0 to 255 [13]. The O
represents the gray scale value calculated from the depth
estimation at the location of the image corresponding to
each facial detection in YOLOvV8-n. dpyi, and dp,x are the
minimum and maximum self-defined values of the actual
distance Z in the scene (in meters), set to range from 0.1 to
5.

dmax - dmin
7= dmax - (O - gmin) ' (2)

Emax — &min

By combining YOLOv8-n’s X and Y coordinate with



the output Z calculated from depth estimation model, our
approach ensures a higher level of realism and accuracy in
tracking and mapping the individual speakers’ position in 3D
space.

B. Audio Source Preparation

To prepare the audio input, we employ different source
separation models depending on the scenario. For multiple
speaker scenarios, we utilize Conv-TasNet [15], a convolu-
tional time-domain audio separation network known for its
efficiency and strong performance in speech separation tasks.
For music scenarios, we adopt Demucs [16], which enables
the separation of musical tracks such as vocals, drums,
bass, and other instruments. All models used are pre-trained
without additional fine-tuning. In cases involving more than
two concurrent speakers, where the source separation quality
becomes insufficient, we directly use pre-separated audio
tracks provided by the dataset (Sec. [[TI-A).

C. Facial Annotation

After source separation, we assign speaker identities to
each separated audio track using annotations. This iden-
tity labeling enables alignment with visual information to
support subsequent spatialization. It is important to note
that our work primarily focuses on visual and spatial audio
synchronization, rather than speaker diarization or audio-
speaker identification association. Future studies may explore
automatic speaker identification and alignment to enhance
practical deployment.

D. Audio

To achieve accurate spatialization while maintaining high
audio quality, we adopt two methods for audio processing.
In the first method, we employ the SADIE II DatabaseE]
(Subject: KEMAR) [17], which offers precise Head-Related
Transfer Function (HRTF) measurements specifically de-
signed for virtual environments. The spatial coordinates (X,
Y, Z) from the visual cues are converted into azimuth and
elevation angles. These angles are then used to select the
corresponding HRTF files, which are convolved with the
individual audio tracks.

In the second method, we implement a 3D audio po-
sitioning algorithm that enhances the spatial perception of
stereo signals by simulating sound propagation in different
directions. The algorithm comprises three main steps.
Left-Right Positioning: The algorithm adjusts the signal
strength of the left and right channels to control the perceived
horizontal position of the sound, effectively creating a stereo
panning effect. The signal S represents the input audio as a
1-D mono track, which is split into two channels (left and
right) by applying the following (3], where X is a horizontal
positioning factor which is calculated from (T)).

- 1-X

Left channel = 2% = S - —5
(3)

- 1+X

Right channel = 2% = § - +T

Zhttps://www.york.ac.uk/sadie-project/database.html

Up-Down Positioning: The elevation is adjusted through
frequency filtering, primarily by enhancing or attenuating
high frequencies to simulate changes in the sound source’s
vertical angle.

In @), F(f) represents the frequency adjustment factor,
which modifies the energy distribution across frequencies.
The Y is the output from the equation (1). The variable f
denotes the frequency in Hz. S(f) represents the original
frequency spectrum of the stereo signal which is the output
from (3], while S’(f) is the adjusted spectrum after applying
the frequency adjustment factor.

f 1.5
F=1+Y- (1h5) "
S'(f) = S() - F ()

Front-Back Positioning: The algorithm simulates the prox-
imity of the sound source by reducing the volume and adding
reverberation. For distant sound sources, the volume is lower,
and the reverberation effect is more pronounced.

The output signal Seupu(t) is computed as:

signal(t) signal(t — Atsamples)
z Z

&)

Soutput (t) =

where

Z- f
Atsamples = Tf 6)

and f, is the sampling rate, v = 343 m/s is the speed of
sound, and o = 0.3 is the reverberation intensity factor. ¢
is the time variable representing the sampling point of the
audio signal. signal(t): The input audio signal at time t.
signal(t — Atsamples): A delayed version of the signal.

III. EXPERIMENT

A. Ground Truth

To evaluate the effectiveness of the system, we utilized
two datasets during the testing phase for performance com-
parison.

Speech: The audio stimulus was collected from the Lib-
riSpeech dataset [18] or extracted from multiple-speakers
video in YouTube. We designed three scenarios with different
speakers from 2 tracks, 3 tracks and 5 tracks. Each audio
clip is approximately 10 seconds long. Each scenario is
edited, with its corresponding soundtracks redesigned and
synchronized with the visuals. To align the audio with
the visual spatial information and provide a reference for
evaluation, we manually adjusted the audio panning using
the digital audio platform REAPER. This process ensures
that the audio accurately corresponds to the spatial positions
of visual elements.

Music: We utilized the FAIR-Play dataset [8], which contains
1,871 binaural audio and video clips of musical performances
totaling 5.2 hours, for comparative testing in our experi-
ments.



TABLE III: Objective evaluation results for speech metrics. The numbers in bold denote the best performance.

Method MOSNet Nb_PESQ PESQ STOI

Speaker Number 2 3 5 2 3 5 2 3 5 2 3 5
Mono2Binaural 2.814 3447 3.022 3706 3.634 3.078 3423 2215 2.089 0976 0912 0.898
PseudoBinaural 2954 2854 3.017 3719 0320 3.071 3.422 1.025 2068 0978 0.155 0.898
Our system (3D) 2902 3.182 2796 4.019 3.136 2957 4198 2835 1.789 0981 0913 0.868
Our system (HRTF) 2.797 3475 3.040 3856 3.718 3379 3960 2275 2558 0979 0921 0.912

B. Test process

We compare our proposed system with the following
baselines: Mono2 Binaural [8] and Pseudo Binaural [10].
During the evaluation, each test file was normalized to a
loudness level of -23 LUFS, resampled to 16 kHz, and
processed using STFT with a Hann window of 25 ms, a
hop length of 10 ms, and an FFT size of 512. The audio
files were stereo-channel with a bit depth of 16 bits.

C. Evaluation Metrics

To rigorously assess the performance of our proposed
system, we conducted a comprehensive evaluation using
multiple metrics that capture both perceptual and objective
aspects of audio quality. Each system’s output was compared
with the ground truth reference audio (IIT-A)), and the results
were subsequently analyzed across systems. Specifically,
we compared the audio predicted by our system (system-
generated) against reference audio samples (collected from
the dataset) to determine the fidelity and accuracy of our
audio processing algorithm. The test methods include:
STFT Distance: The Euclidean distance between the com-
plex spectrograms of the reference signal x and the predicted
signal x for the left and right channels:

Dsrer = || X5 — XE|o + | XF — X B, (7N
where XZ, X2 XL and X% denotes the complex-valued
spectrograms of x%, x®, %L and %', respectively.

Envelope (ENV) Distance: Quantifies the Euclidean dis-
tance between the envelopes of ground-truth and predicted

signals [19]. The envelope of the signal x(t) is represented
as Flz(t)].

Deny = || Elz" ()] - Bz"(1)]]l2

+|E[z" ()] — E[#7 )] 8)

PESQ (Perceptual Evaluation of Speech Quality): Assesses
perceptual audio quality, widely used in telecommunication
applications [20]. Nb stands for Narrowband, referring to a
frequency range of 300 Hz to 3400 Hz.

STOI (Short-Time Objective Intelligibility): Evaluates the
intelligibility of speech signals [21].

MOSNet: Predicts the Mean Opinion Score (MOS) to esti-
mate perceived audio quality [22].

IV. RESULT AND DISCUSSION

Table compares the performance of different systems
across various speech metrics (MOSNet, NbPESQ, PESQ,
and STOI) for 2, 3, and 5 audio tracks. Our proposed system
includes two variants: HRTF based and 3D algorithmic
approach. While the 3D approach achieves the highest scores
in simpler scenarios (e.g., 2Track, with PESQ = 4.198 and
NbPESQ = 4.019), the HRTF-based approach demonstrates
greater robustness in more complex scenarios. Notably, for
the 5Track setup, the HRTF-based approach outperforms the
3D approach in MOSNet (3.040 vs. 2.796) and STOI (0.912
vs. 0.868), highlighting its ability to maintain perceptual
quality and intelligibility under challenging multi-speaker
conditions.

Table [[V] compares the STFT and ENV distance metrics
for different systems in the Speech and Fair-Play datasets,
highlighting the performance distinctions. The baseline meth-
ods, Mono2 Binaural and Pseudo Binaural, achieve consis-
tent results with relatively low STFT and ENV distances,
but struggle to capture spatial cues effectively, as indicated
by higher STFT values. Pseudo Binaural slightly outperforms
Mono?2 Binaural in ENV distance on the Fair-Play dataset but
exhibits similar limitations on the Speech dataset. In contrast,
the proposed system using HRTF achieves competitive ENV
distances but the highest STFT values. This is due to the
HRTF convolution introducing phase delay, which results in
significant phase angle differences and consequently a large
STFT distance. Meanwhile, the 3D approach demonstrates
superior performance across all metrics and datasets, achiev-
ing the lowest STFT and ENV distances.

Furthermore, our system generally achieves lower STFT
and ENV distances on the Fair-Play dataset compared to the
Speech dataset. This discrepancy can be attributed to the

TABLE IV: Comparison of STFT and ENV distance metrics
for different systems on Speech and Fair-Play datasets.
Values in bold represent the best performance.

Speech Fair-Play
STFT ENV  STFT ENV
Mono2 Binaural 0.304 0.128 0.101  0.049
Pseudo Binaural 0.330 0.112  0.093  0.048
Our system (3D) 0.220 0.094 0.151 0.063
Our system (HRTF) 2.051 0.127 0.841 0.084




Fair-Play dataset being instrument-based rather than speaker-
based, whereas our system relies on object detection in
human faces. Additionally, the spatial positioning mismatch
between instruments and human faces in the visual com-
ponent introduces inaccuracies in spatial audio localization,
further impacting the performance on the Fair-Play dataset.

These results confirm the robustness and effectiveness
of our proposed system, particularly the 3D approach, in
achieving perceptually accurate and spatially consistent audio
synthesis across diverse datasets, underscoring its potential
for real-world applications in spatial audio processing.

V. LIMITATIONS AND FUTURE WORK

After the source separation stage, it is necessary to anno-
tate the speaker identity for each separated audio track. This
identity labeling facilitates alignment with visual information
to support subsequent spatialization. Specifically, the labeling
step addresses the problem of speaker diarization with visual
cues—i.e., determining which audio stream corresponds to
which visible speaker.

Speaker diarization is itself a complex task that warrants
dedicated investigation [23]. While prior studies have es-
tablished important foundations in this area [24] [25], the
focus of this work is not on speaker diarization, but rather
on leveraging visual cues to guide spatialization and enhance
audio quality.

The diarization challenge will be addressed in future work.
We aim to explore the integration of facial features (e.g.,
lip motion), spectral differences in audio, and synchronized
visual-audio onset detection, combined with a novel unsuper-
vised neural network. The goal is to achieve robust multi-
speaker spatial audio generation without requiring manual
annotations.

Furthermore, due to page limitations, we do not include
subjective listening tests in this paper; however, they will be
incorporated in future work to further deepen the analysis of
the objective experimental results.

VI. CONCLUSION

In this paper, we proposed a spatial audio generation sys-
tem based on visual cues. The system aimed at simplifying
the transformation of mono audio into binaural audio in
multi-speaker scenarios without relying on binaural dataset.
The system integrates object detection, depth estimation,
and audio spatialization. Extensive experimental evaluations
demonstrate that our system outperforms existing spatial
audio generation systems across various metrics. The results
highlight significant improvements in spatial consistency
between audio and visual components, enhanced speech
quality, and robust performance in complex multi-speaker
environments.
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