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The simultaneous presence of multiple audio signals can lead to information loss due to audi-
tory masking and interference, often resulting in diminished signal clarity. The authors propose
a speech enhancement system designed to present multiple tracks of speech information with
reduced auditory masking, thereby enabling more effective discernment of multiple simulta-
neous talkers. The system evaluates auditory masking using the ITU-R BS.1387 Perceptual
Evaluation of Audio Quality model along with ideal mask ratio metrics. To achieve optimal re-
sults, a combined iterative Harmony Search algorithm and integer optimization are employed,
applying audio effects such as level balancing, equalization, dynamic range compression, and
spatialization, aimed at minimizing masking. Objective and subjective listening tests demon-
strate that the proposed system performs competitively against mixes created by professional
sound engineers and surpasses existing automixing systems. This system is applicable in vari-
ous communication scenarios, including teleconferencing, in-game voice communication, and
live streaming.

0 INTRODUCTION

In multiple audio processing systems, information loss
is a critical issue, particularly when multiple sources trans-
mit simultaneously, leading to difficulties in comprehen-
sion. In the early 1950s, air traffic controllers encountered
significant challenges when managing communication [1].
Controllers had to listen to multiple pilots speaking over a
single loudspeaker in the control tower, making it difficult
to distinguish between the various voices and messages.
This challenge is closely related to the phenomenon known
as the “cocktail party effect.”

Cherry reported the cocktail party effect in 1953 [2]. This
phenomenon describes the human ability to focus on a spe-
cific sound or conversation while filtering out other sounds
in a noisy environment, such as a restaurant or reception.
Studies on auditory attention and selective hearing have
deepened the understanding of the cocktail party effect and
revealed how the brain distinguishes sound sources by ana-
lyzing the spatial localization and frequency characteristics
of sounds [2]. Advances in neuroscience research have fur-
ther allowed researchers to explore the brain’s processing
of multiple sound source environments. These studies have
shown that the auditory cortex exhibits a high degree of

*To whom correspondence should be addressed, email: xiao-
jing.liu@qmul.ac.uk.

dissociation and adaptability when processing information
from multiple sound sources, helping to explain human au-
ditory performance in complex acoustic environments like
cocktail parties.

Researchers have explored the application of the cocktail
party effect to address challenges such as source separa-
tion [3, 4], voice enhancement [5], and hearing loss [6, 7].
Some voice enhancement methods aim to extract a target
speaker in a multispeaker environment1 and reduce un-
wanted sources, environmental noise, or reverberation [8].
However, when the target speech signal involves multiple
speakers, performance can be adversely affected by varia-
tions in speaker characteristics. Moreover, the majority of
voice enhancement work focused on extracting target voice
and ignoring other tracks that might include important in-
formation, thereby leading to information loss.

The goal of this paper is to develop a system capable of
presenting multiple tracks of speech information, allowing
users to concentrate on one particular track while seam-
lessly shifting their attention to another track as needed.
This system leverages advanced signal processing algo-
rithms to enhance the naturalness and intuitiveness of mul-
tisource speech interactions. By addressing the existing
challenges related to information loss and attention man-

1In this paper, “speaker” refers to a human talker.
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agement, this system aims to provide a more coherent and
efficient auditory experience in complex acoustic environ-
ments.

This study proposes a lightweight system that leverages
the Perceptual Evaluation of Audio Quality (PEAQ) model
[9] to simulate human auditory perception and utilize adap-
tive ideal ratio masking metrics to assess auditory masking.
The system effectively addresses both frequency and loud-
ness masking, while also incorporating phase information.
An iterative Harmony Search algorithm [10] is employed
to optimize parameters related to audio effects, including
equalization (EQ), dynamic range compression (DRC), spa-
tialization (SPA), and level balancing. The range of these
parameters are set according to established audio engineer-
ing practices. A web-based implementation of the system
will be provided. Performance will be assessed through
objective tests, and subjective evaluations will compare
the proposed system against mixes created by professional
sound engineers and existing automixing systems [11].

The rest of this research paper is organized as follows:
SEC. 1 provides a brief overview of multiple speech en-
hancement techniques. SEC. 2 introduces the proposed
method in detail, followed by SEC. 3, which discusses both
the subjective and objective evaluations. Finally, SEC. 4
presents the conclusions of the paper.

1 BACKGROUND

1.1 Overview Of Speech Enhancement
Speech enhancement techniques can be mainly di-

vided into single-channel (monophonic) and multichan-
nel (stereophonic or multichannel) categories [12]. Single-
channel speech enhancement techniques deal with audio
signals captured by a single microphone. Multichannel
speech enhancement involves deriving a clear speech es-
timate from multiple channels of mixed recordings [13].
Single-channel enhancement can be broadly categorized
into three types: time-domain methods, frequency-domain
methods, and time frequency-domain methods [14].

Multitrack enhancement involves a variety of audio pro-
cessing techniques, which can mainly be divided into blind
source separation (BSS) and beamforming approaches [15].
Beamforming is a technique that includes two main ap-
proaches: adaptive beamforming and directional beam-
forming [16]. Adaptive beamforming adjusts the weights
of multiple microphone array channels to enhance signals
coming from a specific direction while suppressing inter-
ference from other directions. In contrast, directional beam-
forming collects signals from a fixed direction, making it
suitable for scenarios where the source direction is known
[17].

Another multichannel speech enhancement technique is
BSS. In BSS, Independent Component Analysis assumes
that the sources are statistically independent and uses
statistical methods to separate individual sources, while
frequency-domain BSS processes signals in the frequency
domain to improve computational efficiency and separation
performance [18]. Furthermore, a successful method called

neural beamforming combines supervised single-channel
techniques with unsupervised beamforming for multiple
speech enhancement [19, 20]. A neural network estimates
the second-order statistics of speech and noise using time–
frequency masks, and then a beamformer is used to linearly
combine the multichannel mixture to produce clean speech.
Besides beamforming and BSS, some researchers utilize
spatial information of sound sources to improve the quality
and clarity of speech signals.

1.2 Spatial Audio in Speech Enhancement
In the research of [21], researchers found that increasing

the spatial separation between the signal and the masker
enhanced the ability to reduce sound source or message un-
certainty. Similarly, in multiple voice scenarios, Skowronek
and Raake [22] investigated the impact of bandwidth, spa-
tial audio reproduction, and communication complexity
on user experience in multiparty conferencing. They con-
ducted a subjective listening test using narrowband nonspa-
tial (300–3,400 Hz), full-bandwidth nonspatial, and full-
bandwidth spatial audio. The listening test results showed
that the full-bandwidth spatial audio provided a statistically
significant improvement over other conditions in terms of
voice intelligibility, audio quality, attention, and user sat-
isfaction. Notably, the spatial audio exhibited at least a
50% increase in these metrics compared to the narrowband
nonspatial condition and a 25% increase compared to the
full-band nonspatial condition. These findings highlight the
benefits of spatialized audio in reducing cognitive load and
enhancing perceived audio quality.

In multichannel surround sound systems, such as those
used in television program mixing, dialogue is typically
positioned at the front of the sound field to enhance promi-
nence over other sound sources. Roginska and Geluso [23]
explored the relationship between sound source positioning
and audio clarity. Rothbucher et al. [24] further researched
a teleconferencing system combining head-related transfer
function with voice over Internet protocol, enabling on-
line sound localization, separation, speaker detection, and
channel allocation in conference call scenarios. The afore-
mentioned works [21–24] demonstrated the value of spatial
audio in enhancing user experience, particularly in telecon-
ferencing applications. However, they did not address the
issue of masking, such as how spatial audio could be used
to reduce masking effects in complex audio scenes.

The work of [25] considered the microphone arrange-
ment through spatial filtering. Their methods exploited
time–frequency masking from multiple microphones in
space and time to distinguish different sound sources,
thereby improving the accuracy and effectiveness of speech
enhancement. However, the research required extensive
computing resources for training and inference. Further-
more, the speech signal was dynamic and spatial filtering
would result in masking of other tracks. The system should
consider changes in masking caused by changes in sound
source location and how to deal with this change. The work
of [11] suggested an automatic mixing system for audio
clarity. The system uses a force-directed model to perform
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SPA. In addition, loudness balancing and EQ are applied
to ensure equal average perceptual loudness for each track
across frequency bands. However, the equal average per-
ceptual loudness in each frequency band might result in
even more frequency masking.

While spatial audio techniques have shown promise in
improving clarity and localization, they often fail to address
masking effects caused by overlapping sound sources in
multisource environments. To tackle this challenge, several
researchers have employed masking techniques in speech
enhancement.

1.3 Auditory Masking in Speech Enhancement
In the work of Heymann et al. [26], they considered

a spectrum mask method based on the expectation max-
imization algorithm and the parameters of the Watson
mixture model [27]. Jiang et al. [28] evaluated ideal bi-
nary masks in computational auditory scene analysis. They
found that ideal binary masks had optimal performance in
time–frequency units. Pfeifenberger et al. [29] suggested
Eigennet architecture for estimating a gain mask metric.
The system utilized spatial and amplitude information from
power spectral density. Using a binary mask involves mak-
ing a hard decision by either fully retaining or completely
removing parts of the signal. However, this method can lead
to the removal of background noise in time–frequency units
where the speech is not prominent, which may ultimately
reduce the overall hearing quality [30].

According to the aforementioned drawbacks, researchers
have suggested replacing the ideal binary mask with the
ideal ratio mask in [31], as it offers better noise suppres-
sion in challenging acoustic environments. In [32], it is
posited that intertrack masking can significantly affect the
overall clarity of the audio signal. As mentioned in [33], a
cross-adaptive filter is able to handle input data from differ-
ent sources or with varying characteristics, enhancing the
model’s robustness to various types of data.

One study [34] proposed an ideal ratio mask method,
which utilized cross-adaptive masking metrics based on
the Layer II metrics of the Moving Picture Experts Group
(MPEG) [35] to reduce masking in multiple tracks. How-
ever, this work only considered frequency masking and ig-
nored the masking of spatial position. Additionally, Hu et al.
[36] implemented a basic masking threshold and compared
the PEAQ [9] masking threshold curve with the MPEG
Model II. They found that the PEAQ model more accu-
rately characterized the auditory properties of the human
ear while the MPEG Model II was more sensitive to the
distribution of spectral energy.

In summary, spatial audio techniques have effectively im-
proved clarity and localization, while masking-based meth-
ods like ideal binary masks excel in reducing frequency
masking. However, few studies simultaneously consider
the interactions between spatial and frequency masking,
and evaluate in multispeaker environments.

To bridge this gap, the authors propose a novel system
that systematically optimizes audio effects parameters to
minimize unwanted masking and enhance overall clarity.

Fig. 1. The workflow of the proposed system. First, the level
balance will adjust the loudness of each track. Next, the PEAQ
model quantifies the masking metrics, which are subsequently
incorporated into the objective function. This optimization pro-
cess, driven by the Harmony Search algorithm, iteratively adjusts
the parameters of the applied audio effects, including EQ, DRC,
and SPA. The system continuously refines these parameters by
reevaluating the computed masking values to optimize auditory
clarity.

The following section outlines the workflow and compo-
nents of the proposed method, designed to effectively ad-
dress these challenges.

2 METHOD

Given multiple audio inputs (SEC. 2.1), the goal is to
apply audio effects with optimized parameters to minimize
the unwanted auditory masking. The workflow of the whole
system2 is shown in Fig. 1. The first step of the system is
level balance (SEC. 2.2). After that, the PEAQ model (SEC.
2.3) and masking metrics (SEC. 2.4) will be used to measure
auditory masking in the system. To minimize the masking,
an objective function (SEC. 2.5) combined with harmony
searching is used to (SEC. 2.6) optimize the parameters of

2https://github.com/xl2591/AutoMix.
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Fig. 2. The workflow of the PEAQ psychoacoustic model.

applied audio effects (Sec 2.7) including EQ, DRC, and
SPA.

2.1 Audio Input
This study is applicable to multispeaker scenarios. In the

following sections, a track refers to an individual speaker. In
general speech scenarios, it serves as input for communica-
tion systems, whereas in this study, it specifically represents
a recording of a single speaker. Detailed information about
the experimental stimuli is provided in Sec 3.2.

2.2 Level Balance
In the work of [11], the authors compared different audio

effects across multiple scenarios and found that achieving
equal level balance has the most significant impact on re-
ducing auditory masking in multispeaker environments. In
achieving level balance, the present authors use Loudness
Units Full-Scale (LUFS) as a standardized measure for eval-
uating sound loudness. LUFS is a measure that accounts for
both human perception and electrical signal strength. Ac-
cording to the EBU Recommendation 128 guidelines [37],
the recommended loudness level for radio programs is set at
–23 LUFS. In practice, the loudness of each track is calcu-
lated and adjusted using the method described by [38]. This
process ensures a consistent and optimal loudness experi-
ence across various tracks, adhering to industry standards
for broadcasting, music production, streaming, podcasts,
and other forms of loudness management.

2.3 PEAQ Model
To quantify the masking effect and optimize audio qual-

ity, obtaining the masking threshold is crucial. According
to Hu et al. [36], PEAQ [9] offers a more accurate repre-
sentation of human auditory perception compared to other
psychoacoustic models for estimating masking thresholds.
The PEAQ model simulates aspects of human hearing to
estimate thresholds for masking of audio signals. Fig. 2 de-
scribes the workflow of the PEAQ model in the proposed
system.

• Frequency domain transformation: The input sig-
nal is transformed into the frequency domain using
the fast Fourier transform with a Hann window.

• Loudness correction: The spectrum energy loud-
ness is corrected using a weighting function to sim-
ulate the human ear’s sensitivity curve, considering
the outer/mid ear function. This adjustment accounts

for how sound pressure level affects perceptual qual-
ity.

• Frequency grouping: The transformed audio signal
is divided into 109 frequency bands according to the
Bark scale, as defined in the basic version of the
PEAQ model [9].

• Internal noise simulation: The internal noise com-
ponent simulates the noise produced by blood flow
in the inner ear, as described in [9].

• Frequency spreading: This step simulates the
smearing effect of wide auditory filters, reflecting
how auditory filters spread energy across frequen-
cies.

• Estimation of masking threshold: Eq. (1) gives the
masking threshold for the kth frequency band on the
Bark scale [36].

Emask(k) = E f (k) − m(k),

m(k) =
{

3 z ≤ zL + 12,

0.25(z − zL ) z > zL + 12,

(1)

where Emask(k) is the masking threshold, Ef (k) is the
energy response, m(k) adjusts the amplitude of the kth
frequency band, all in decibel units, z is the central
frequency of each band (provided by PEAQ with 109
bands), converted to the Bark scale, and zL is equal
to 0.8594 [36].

All the above steps pertain to processing a single frame,
while the time spreading part works on multiple frames.
With these values computed, the final masker-to-signal ratio
(MSR) in each frequency band (fb) is defined as, according
to [34],

M S R( f b) = 10 log10

(
Emask( f b)

E f ( f b)

)
. (2)

2.4 Masking Metrics
In the multiple speaker scenario, to quantify the masking

value for each track and to estimate how much a track is
masked by other tracks, Parker and Fenton’s approach [32]
is used in Eq. (3).

T ′
n( f b) = H

⎛
⎜⎝

N∑
i=1
i �=n

Si

⎞
⎟⎠ . (3)

In this equation, N is the total number of tracks, Si is the
signal from the ith track, n is the track being masked by
all other tracks, T ′

n( f b) represents the masking threshold of
track n, which is influenced by the sum of accompanying
tracks, and H represents all the mathematical operations
in the MPEG psychoacoustic model used to calculate the
masking threshold.

In Eq. (4), the Ef ,n(fb) is the energy of track n computed
in each frequency band as described in Eq. (1). T ′

n( f b)
replaces the Emask(fb) in Eq. (2). The final MSR in each
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frequency band, how much track n is masked by other
tracks in each frequency band is defined as

M S Rn( f b) = 10 log10

(
T ′

n( f b)

E f,n( f b)

)
. (4)

The range maximum amount of masking distance value,
Tmax, is set to 20 dB [32]. Then Mn, the cross-adaptive
multitrack masking measurement for track n, is given by

Mn =
∑

f b⊂E f,n<T ′
n ( f b)

M S Rn( f b)

Tmax
. (5)

2.5 Objective Function
The aim of the objective function is to decrease audi-

tory masking through parameter optimization. Each track’s
parameter should be computed until the masking value is
reduced to minimum or the system reaches the maximum it-
erations’ number. xC is the function of all tracks’ parameter
control. The value of masking metrics is given by Mi(xC),
which is the masking value for i tracks comparing with
other sum tracks. The total amount of masking is MT (xC),
which consists of the sum of M2

i (xC) for i = 1 to N,

MT (xC) =
N∑

i=1

M2
i (xC). (6)

The objective of Eq. (6) is to minimize the sum of the
masking across tracks and so can be used as the first part
of the objective function. The second objective is that the
masking is balanced. This means no difference between
masking levels and a maximum masking difference is given
by

Md (xC) = max
i, j∈{1,...,N },i �= j

(
∥∥Mi (xC) − M j (xC)

∥∥). (7)

From the parameter changes, the value of xC will influ-
ence not only the masking effect on the track itself but also
the masking effects on all other tracks. The optimal x∗

C is
finally defined as

x∗
C = min

xC
[MT (xC) + Md (xC)]. (8)

2.6 Iteration
In the iteration section, the Harmony Search optimization

algorithm is used for this system. The Harmony Search
algorithm is a music-inspired metaheuristic optimization
method [10] that uses mutation and selection to gradually
improve the existing solution by continuously adjusting
and combining the candidate solutions until the optimal
solution is found. The process of running the algorithm is
similar to the harmonization process in a band performance:
each musical instrument represents a decision variable, a
musical note corresponds to a variable value, and a harmony
represents a solution vector. By continuously coordinating
and adjusting the performance of each musician, one hopes
to find an optimal performance combination.

To enhance the convergence speed and computational
efficiency of the algorithm, Harmony Search is integrated
with integer optimization [39]. This integration facilitates
an efficient exploration of the solution space, enabling the

Table 1. The value range of audio effects (EQ, DRC, and SPA)
parameters.

Audio Effects Min Value Max Value Step

EQ gain bands 1–8 –15 dB 15 dB 3
DRC ratio 1 5 1
DRC threshold –15 dB 0 dB 3
DRC attack 0.01 s 0.5 s 0.001
DRC release 0.05 s 1 s 0.01
SPA x-axis –3 3 0.5
SPA y-axis –3 3 0.5
SPA z-axis –3 3 0.5

identification of the optimal solution. Recalling Eq. (8), the
ith component of xc resets during the iteration following
Eq. (9):

x∗
C =

(⌊
U · (maxV − minV)

step

⌋
+ 1

)
· step + minV. (9)

In Eq. (9), the step determines the magnitude of change
applied to each parameter, influencing the optimization
convergence and the ability to fine-tune the effects. The
maxV and minV is the maximum and minimum value in
the value range of audio effect parameters (as shown in
Table 1). U is a random variable uniformly distributed over
the interval [0, 1].

2.7 Audio Effects
The Harmony Search algorithm will randomly select dif-

ferent parameters with different effects in EQ, DRC, and
SPA through the Web Audio API [40]. In the EQ stage, each
input signal undergoes gain modification using second-
order infinite impulse response filters within a filter bank
comprising eight frequency bands. The center frequencies
of the equalizers were set at 60; 100; 200; 400; 800; 1,600;
2,500; and 7,500 Hz, covering the typical frequency range
of human speech [41]. These frequency bands are approx-
imately distributed in octave intervals, aligning with the
long-term average speech spectrum [42]. This design en-
sures that key speech components are adequately captured
and enhanced.

The SPA employs Cartesian coordinates (x, y, z-axis) for
source positioning, using vectors for location and a 3D di-
rectional cone for orientation. To establish the parameter
range, consultations were conducted, followed by iterative
testing until optimal results were achieved. The audio engi-
neers involved in this process included three professionals,
two female and one male, with an average age of 28. The pa-
rameter ranges for each audio effect are presented in Table
1.

3 EVALUATION

Each scenario is edited, with its corresponding sound-
tracks redesigned and synchronized with the visuals. The
soundtracks will serve as stimuli for the listening tests.
Each scenario has a distinct number of tracks: three tracks
for teleconferencing, four tracks for gaming, and six tracks
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Table 2. The loudness results for the objective test 1. The
LUFS comparison of the voice tracks before and after level

balancing in teleconferencing scenarios.

File Name Loudness Before Loudness After

Total Track –12.172 –14.940
Track1 –27.279 –19.882
Track2 –12.655 –21.751
Track3 –44.064 –20.343

for live streaming. These files have a sample rate of 48 kHz,
are single-channel, and have a bit depth of 16 bits.

3.1 Objective Test 1
Three objective tests were conducted to analyze the re-

sults concerning loudness, long-term average spectrum, and
spatial positions for various tracks. Due to page limita-
tions, the analysis is illustrated using the stimulus from the
teleconferencing scenario as an example, to compare the
output from Unmix (unprocessed audio) and Automix (the
proposed system).

3.1.1 Loudness Analysis
Table 2 presents the loudness levels of each track before

and after automatic mixing. The system successfully bal-
anced the loudness levels according to the LUFS standard,
ensuring a consistent and well-balanced audio foundation
for subsequent mixing processes. By adjusting the loudness
levels, the system ensures that no single track dominates:
each speaker is clearly audible without overshadowing oth-
ers.

3.2 Stimuli
To simulate multiple speaker scenes, the audio stimulus

was collected from the LibriSpeech dataset [43] or extracted
from multiple-speakers video in YouTube. Three scenarios
were designed: teleconferencing, gaming, and live stream-
ing, as shown in Fig. 3.

3.2.1 Spatial Analysis
Fig. 4 illustrates the spatial locations of the tracks follow-

ing the automixing process. Before automixing, the tracks
were centered, resulting in overlapping sounds with similar
frequency components. This overlap may cause interfer-
ence or masking of certain frequencies, making them indis-
tinct to the human ear. After the process, their spatial po-
sitions became more distinctly separated. This separation
enhances the clarity and discernibility of each individual
track within the audio scene.

3.2.2 Frequency Analysis
Fig. 5 shows that the “Unmix” figure indicates that Track

2 might dominate the frequency range from 150 to 10,000
Hz, potentially overshadowing other sounds. This domi-
nance could lead to Track 2 becoming the primary focus,
with other sounds being masked or subdued. In contrast,
the “After Mix” plot demonstrates the effectiveness of this

Fig. 3. Three scenarios of stimuli: three speakers in a teleconfer-
encing scenario, four speakers in a gaming environment, and six
speakers in a live-streaming debate setting.

Fig. 4. The spatial results for the objective test 1. Red points rep-
resent the spatial locations before automixing, while blue points
represent the locations after automixing.
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Fig. 5. The spectrum results for the objective test 1.

speech enhancement system, where the frequency distribu-
tion is well-balanced across the left and right channels.

The mixed system achieves a more cohesive spatial ar-
rangement, ensuring that no single track overwhelms the
others. This balance not only allows all elements of the au-
dio to be clearly perceptible but also supports the system’s

Table 3. The score of STI and MOSNet in different scenarios,
higher value indicating better speech quality. The highest
objective test value for each scene is highlighted in bold.

Scene File Name MOSNet STI

Gaming Automatic 2.92 0.51
Manual 3.01 0.61
Unmix 2.76 0.44
Existing Mix 2.58 0.73

Teleconferencing Automatic 3.25 0.60
Manual 3.14 0.55
Unmix 3.04 0.51
Existing Mix 3.22 0.55

Live streaming Automatic 3.01 0.75
Manual 3.04 0.63
Unmix 3.03 0.51
Existing Mix 3.00 0.60

goal of minimizing auditory masking. This system enables
listeners to easily focus on or shift their attention between
multiple simultaneous speakers, especially in complex sce-
narios such as teleconferencing, which often involves mul-
tiple speakers.

3.3 Objective Test 2
To further evaluate the effectiveness of the system,

two speech metrics were considered: Speech Transmis-
sion Index (STI) [44] and Mean Opinion Score Network
(MOSNet) [45] to assess the intelligibility of the results.
The materials for the objective test included the output from
the proposed automatic mixing system, the output from an
existing automatic mixing system [11], a manual mix out-
put by an expert audio engineer, and an unmixed version of
the content.

The STI ranges from 0 to 1, with higher values indicat-
ing better transmission conditions. It reflects the potential
intelligibility of speech conveyed through a system. Tra-
ditionally, STI is evaluated by transmitting specially mod-
ulated test signals through the system. Subsequently, the
received output is analyzed to assess potential speech in-
telligibility. However, some systems are not suitable for
playing or recording the test signals. To address this limita-
tion, previous research [46–48] has proposed using speech
signals as probe stimuli instead of these special modulated
signals, mitigating certain constraints of the traditional STI
approach with varying degrees of success. Based on this
idea, this study directly utilizes speech stimuli in the STI
model to assess speech clarity.

The MOSNet value ranges from 1 to 5, with higher scores
representing better speech quality. The result of the test
stimuli as shown in Table 3.

In Table 3, the objective evaluation results (STI and
MOSNet) are presented under four mixing conditions for
each scenario. “Automatic” refers to the proposed system,
“Unmix” denotes the unprocessed input, “Existing Mix”
represents the existing automatic mixing system’s output
from [11], and “Manual” corresponds to the human mix
created by a professional engineer. The results show that:

654 J. Audio Eng. Soc., Vol. 73, No. 10, 2025 Oct.
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• Game scenario: The Automatic mixing method
achieved an STI score of 0.51, which, although lower
than Manual (0.61) and Existing Mix (0.73), was no-
tably higher than Unmix (0.44). This indicates that
the Automatic method did not achieve high intelli-
gibility in this context. The MOSNet score for Au-
tomatic mixing was 2.92, ranking second only to
Manual (3.01), and considerably higher than Exist-
ing Mix (2.58). These results suggest that the Auto-
matic method maintained a relatively high percep-
tual quality even though its intelligibility was limited
in fast-paced, interaction-heavy scenarios like gam-
ing.

• Teleconferencing scenario: The Automatic method
excelled in this context, outperforming both the
Manual and Unmix methods. It provided the best
balance between audio quality and intelligibility,
making it particularly effective for teleconferencing,
where clear communication is essential.

• Live-streaming scenario: The Automatic mixing
method again achieved the highest STI score of
0.75, clearly outperforming other systems. Although
the MOSNet scores across all methods were close
(around 3.00), the Automatic method demonstrated
a clear advantage in intelligibility.

In both the teleconferencing and live-streaming scenar-
ios, the Automatic method stated strong performance in
terms of intelligibility. While the predicted audio quality in
the live-streaming scenario was slightly lower than that of
the Manual method, the high STI score highlights the Auto-
matic system’s strength in enhancing intelligibility. These
results suggest that the Automatic system is often a reliable
solution that can reduce the need for manual adjustments.
In contrast, the Unmix method showed the weakest intelli-
gibility performance across scenarios.

3.4 Subjective Test
In the subjective listening test, the Go Listen platform

[49] was used to conduct a blind comparison test. The ma-
terials of the subjective listening test included the current
automatic mixing system’s output, the previous automatic
mixing system’s output from [11], manual mix output by an
expert audio engineer, one from the unmixed content, and
two hidden anchor versions of the unmixed content (3.5-
kHz and 7-kHz low-pass filters) were used to calibrate par-
ticipants’ rating scales and enable indirect screening based
on their ratings [50].

3.4.1 Tester
A total of 18 participants took part in the test and were

instructed to conduct the evaluation in a quiet environment.
Data from two participants were considered invalid and
excluded from the analysis due to noncompliance with the
experimental requirements. In total, the subjective listening
test involved 16 participants, with nine males and seven
females included after excluding noncompliant data. All
participants had normal hearing, confirmed by a hearing

Fig. 6. The multistimulus test results, with 95% confidence inter-
vals.

Table 4. ANOVA results for different scenarios. Bold values
indicate statistical significance (p < 0.05).

Scene F Value p Value

Teleconferencing 37.01 <0.001
Gaming 7.93 <0.001
Live streaming 5.00 <0.001

test question that ensured no significant hearing loss. The
participants had an audio or musical background ranging
from 3 to 15 years.

The test was conducted in a quiet, soundproof room to
minimize environmental interference, and all participants
used monitor headphones, such as the AKG K702, dur-
ing the test. During the listening test, participants were
informed about the specific scenario, including the number
of speakers. They were then asked to assess audio clarity
by determining whether they could clearly perceive and
distinguish each speaker within the given context.

Results are presented in Fig. 6. The Automix has con-
sistent ratings around 75 and outperforms the Unmix, An-
chors, and Existing Automatic system in each scenario.
In the teleconferencing scenario, the manual mix gets the
highest average score. However, the average score of the
manual mix is below the Automix in both gaming and live-
streaming scenarios. A potential reason for this is the added
complexity when attempting to manually process a larger
number of tracks.

The Kolmogorov-Smirnov test [51] indicates that the
current data follow a normal distribution. For the next step
of analysis, a one-way analysis of variance (ANOVA) was
conducted to analyze the variations among the files within
three groups of experimental scenes. Table 4 indicated sta-
tistically significant differences within each group.

To further analyze the results, Tukey’s Honestly Signifi-
cant Difference post hoc test was applied to calculate the p
values for pairwise comparisons, specifically assessing the
significant differences between files and the proposed sys-
tem (Automix) across three scenarios. As shown in Table 5,
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Table 5. Post hoc analysis of mean differences and p values between files and the proposed system across three scenarios. Bold
values indicate statistical significance (p < 0.05).

Teleconferencing Gaming Live Streaming

File Name Mean Difference p Value Mean Difference p Value Mean Difference p Value

Anchor low –54.5625 <0.001 –39.3125 <0.001 –40.8125 <0.001
Anchor mid –48.0000 <0.001 –31.4375 <0.001 –21.2500 0.2263
Unmix –44.6875 <0.001 –20.3750 0.2099 –12.0625 0.8106
Existing mix –14.3065 0.2683 –11.6875 0.6587 –18.2500 0.3081
Manual mix 14.3125 0.2683 –1.0625 1.0000 –3.3750 0.9999

the average score difference was included to highlight the
variations.

As expected, Anchor Low and Anchor Mid received sig-
nificantly lower scores compared to the tested systems.
Moreover, the proposed system consistently outperformed
the Existing Mix across all three scenarios and achieved
performance closely approaching that of the Manual mix.
The Unmix system demonstrated consistent underperfor-
mance relative to the proposed system, particularly in the
teleconferencing and gaming scenarios.

3.4.2 ANOVA Significance Analysis
Notably, in the livestreaming scenario, a significant dif-

ference was observed in only one group. This reveals that
the results are affected by the stimuli scenarios. This can be
attributed to differences in the number of speakers across
the scenarios: six speakers in the livestreaming scenario,
four in the gaming scenario, and three in the teleconfer-
encing scenario. It can be inferred that participants’ com-
prehension declined accordingly with the increase in the
number of speakers.

Overall, this Automix system has shown good adapt-
ability across these application scenarios, outperforming
other automatic mixing technologies. Although Automix
has surpassed manual mixing in gaming and live-streaming
scenarios, there remains room for optimization to achieve
or exceed the performance of Manual mixing in all scenar-
ios. Future improvements might focus on better handling
of complex audio environments, such as those involving
a large number of tracks, to further improve the overall
performance of the system.

4 CONCLUSION

The authors have developed a novel automatic speech
enhancement system tailored for scenarios involving mul-
tiple speakers. This system is capable of presenting multiple
tracks of speech information, allowing users to focus on a
specific track while seamlessly shifting their attention to an-
other as needed. This system integrates three key aspects:
spatial, frequency, and loudness processing to minimize
auditory masking between tracks. Building on previous re-
search and adhering to industry standards for broadcasting,
this system can automatically adjust the loudness of each
track. Additionally, by leveraging adaptive masking met-
rics derived from PEAQ, the system applies three audio

effects: EQ, DRC, and SPA, along with Harmony Search
and integer optimization, to optimize parameter settings.

Objective tests were conducted using two speech met-
rics: MOSNet and STI. Furthermore, 16 professional audio
experts participated in subjective evaluations, comparing
the audio clarity produced by this system against exist-
ing automix solutions and manual mixing in multispeaker
scenarios. The results demonstrate that this system is com-
petitive with both the existing solution and manual mixing.
This study provides valuable insights into a lightweight au-
tomatic multispeaker mixing system. For future work, it
is essential to enhance the algorithm’s robustness for real-
time implementation and to develop effective strategies for
adapting parameter adjustments to dynamic changes in the
audio environment.
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Pernkopf, “Eigenvector-Based Speech Mask Esti-
mation for Multi-Channel Speech Enhancement,”
IEEE/ACM Trans. Audio Speech Lang. Process.,
vol. 27, no. 12, pp. 2162–2172 (2019 Dec.).
https://doi.org/10.1109/TASLP.2019.2941592.

[16] R. J. M. van Hoesel and G. M. Clark, “Evalua-
tion of a Portable Two-Microphone Adaptive Beamform-
ing Speech Processor With Cochlear Implant Patients,” J.
Acoust. Soc. Am., vol. 97, no. 4, pp. 2498–2503 (1995 Apr.).
https://doi.org/10.1121/1.411970.

[17] Y. Geng, T. Zhang, M. S. Yaw, and H. Wang,
“A Speech Enhancement Method Based on the Combi-
nation of Microphone Array and Parabolic Reflector,” J.
Audio Eng. Soc., vol. 70, no. 1/2, pp. 5–23 (2022 Feb.).
https://doi.org/10.17743/jaes.2021.0047.

[18] S. Choi, A. Cichocki, H.-M. Park, and S.-Y. Lee,
“Blind Source Separation and Independent Component
Analysis: A Review,” Neural Inf. Process. Lett. Rev., vol.
6, no. 1, pp. 1–57 (2005 Jan.).

[19] H. Erdogan, J. R. Hershey, S. Watanabe, M. I. Man-
del, and J. Le Roux, “Improved MVDR Beamforming Us-
ing Single-Channel Mask Prediction Networks.” in Pro-
ceedings of INTERSPEECH, pp. 1981–1985 (San Fran-
cisco, CA) (2016 Sep.).

[20] J. Heymann, L. Drude, and R. Haeb-Umbach, “Neu-
ral Network Based Spectral Mask Estimation for Acoustic
Beamforming,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 196–200 (Shanghai, China) (2016 May).
https://doi.org/10.1109/ICASSP.2016.7471664.

[21] , C. R. Mason, T. L. Rohtla, and P. S. Deliwal, “Re-
lease From Masking Due to Spatial Separation of Sources
in the Identification of Nonspeech Auditory Patterns,”
J. Acoust. Soc. Am., vol. 104, pp. 422–431 (1998 Jul.).
https://doi.org/10.1121/1.423246.

[22 ] J. Skowronek and A. Raake, “Assessment
of Cognitive Load, Speech Communication Qual-
ity and Quality of Experience for Spatial and
Non-Spatial Audio-Conferencing Calls,” Speech
Commun., vol. 66, pp. 154–175 (2015 Feb.).
https://doi.org/10.1016/j.specom.2014.10.003.

[23] A. Roginska and P. Geluso, Immersive Sound: The
Art and Science of Binaural and Multi-Channel Audio
(Routledge, New York, NY, 2018), 1st ed.

[24] M. Rothbucher, M. Kaufmann, J. Feldmaier, et al.,
“3D Audio Conference System With Backward Compati-
ble Conference Server Using HRTF Synthesis,” J. Multim.
Process. Technol., vol. 2, no. 4, pp. 159–175 (2011 Dec.).

[25] Z.-Q. Wang and D. Wang, “All-Neural Multi-
Channel Speech Enhancement,” in Proceedings of INTER-
SPEECH, pp. 3234–3238 (Hyderabad, India) (2018 Sep.).
https://doi.org/10.21437/Interspeech.2018-1664.

[26] J. Heymann, L. Drude, and R. Haeb-Umbach, “Neu-
ral Network Based Spectral Mask Estimation for Acoustic
Beamforming,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 196–200 (Shanghai, China) (2016 May).
https://doi.org/10.1109/ICASSP.2016.7471664.

[27] N. Ito, S. Araki, and T. Nakatani, “Permutation-
Free Convolutive Blind Source Separation via Full-Band
Clustering Based on Frequency-Independent Source Pres-
ence Priors,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), pp. 3238–3242 (Vancouver, Canada) (2013
Oct.). https://doi.org/10.1109/ICASSP.2013.6638256.

[28] Y. Jiang, H. Zhou, and Z. Feng, “Performance Anal-
ysis of Ideal Binary Masks in Speech Enhancement,” in
Proceedings of 4th International Congress on Image and
Signal Processing, vol. 5, pp. 2422–2425 (Shanghai, China)
(2011 Apr.). https://doi.org/10.1109/CISP.2011.6100732.

[29] L. Pfeifenberger, M. Zöhrer, and F.
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