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Introduction

Binaural audio is needed for headphone reproduction in
virtual reality applications. A common way to gener-
ate binaural audio is to use head-related impulse re-
sponses (HRIRs), known as head-related transfer func-
tions (HRTFs) in the frequency domain, to add spatial
cues, and use room impulse responses (RIRs) to add
room reverberation to the audio. Binaural room impulse
responses (BRIRs) are the combination of HRIRs and
RIRs, which contain both reflections in RIRs and the
head and pinnae’s effects in HRIRs. For dynamic appli-
cations, BRIRs at different positions are needed, which
are usually synthesized and may not sound authentic.
Additionally, accurate BRIRs at different positions are
needed for loudspeaker reproduction applications. How-
ever, measurements at different positions can be chal-
lenging. This calls for the need to interpolate BRIRs to
more positions from a small set of measurements.

Traditional DSP methods for BRIRs interpolation use
Dynamic Time Warping to find corresponding reflection
peaks of two adjacent BRIRs, then do linear time in-
terpolation of the onset times of two peaks, and linear
magnitude interpolation of the shapes of two peaks [1].
However, the onset time and magnitude of the reflection
peaks may not change linearly, and modeling the non-
linear composition is necessary.

Recently, deep learning has been applied to impulse
response interpolation, for both RIRs interpolation
and HRIRs interpolation, including generation models,
HRTF field [2], and implicit neural representation [3],
in both the time domain [4], the time-frequency domain
[5], and the combination of the two domains [6]. [7] es-
timates HRTFs using implicit neural representation in
the frequency domain. [8] applies implicit neural rep-
resentation to BRIRs interpolation. Other works add
physics constraints in the loss function to enforce the
representation to conform to the wave equation, for both
RIRs interpolation [9, 10] and HRIRs interpolation [11].
These methods are called physics-informed neural net-
works (PINNSs).

BRIRs interpolation is more challenging than HRIRs in-
terpolation in that we need to consider longer reflections
in the room. BRIRs interpolation is more challenging
than RIRs interpolation because the head at different
positions might change the room acoustics, and it is dif-
ficult to explicitly model the head diffraction effects and
incorporate them into the loss function. However, [12]
shows even if the physics information is incomplete, the
network is still able to learn the implicit physical equa-
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tion based on the training data.

Also, current PINN implementations focus on 1D and 2D
datasets [9, 10] due to memory consumption problems.
However, in this case, the sound propagation from the
third direction is not included in the wave equation, thus
might affect the results.

In this work, we apply PINNs to BRIRs interpolation to
evaluate the effectiveness of PINN when all the physics
information is not explicitly given. We also extend the
implementation to three dimensions and compare the
performance using 1D, 2D and 3D datasets to see if train-
ing the network in 3D can improve the performance.

Method

Problem formulation Our goal is to estimate BRIRs
of N time samples at M spatial positions from measure-
ments of BRIRs of N time samples at M spatial positions
using a neural network. The ground truth BRIR is repre-
sented as h(n,r), and the estimated BRIR is represented
as iL(?’L, r), where 7 is the spatial position of the measure-
ment microphone in the room, and n is the time instance
in the impulse response. r = (z,y, 2z) when the dataset
is in 3D, 7 = (x,y) when the dataset is in 2D, and r = x
when the dataset is in 1D. The network input is (n,r),
and the network output is i(n, 7). This is shown in Fig-
ure 1 and Figure 2.
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Figure 1: Network architecture when the dataset is in 3D.
The input of the network is (n, z,vy, z), and the output of the
network is A. The input is n, x when the dataset is in 1D and
the input is n, x,y when the dataset is in 2D.

We use sinusoidal representation networks for BRIRs in-
terpolation and add physics constraints to improve the
performance of the model.

Sinusoidal representation networks Implicit neural
representations are neural networks that represent a dis-
crete signal as a continuous function. It can intrinsically
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Figure 2: An example of the network input and output in

2D of the BRIR at position (2m, 2m). h(0.02,2,2) = —0.22
is the amplitude at 0.02s in this BRIR.

perform interpolation of a spatially discrete signal and
less memory is needed for data storage. By inputting the
coordinate in the signal, the network outputs the value at
that coordinate. The sine function is used as the activa-
tion function, as it can maintain the second derivatives
when calculating partial differential equations (PDEs).
The network architecture is denoted as sinusoidal repre-
sentation network (SIREN) [3]:

h(n,r) = Wi(¢n-10¢n—20...0¢0)(n,T) + by,
¢i(x;) = sin(wo(Wizi + b;)),

(1)

where ¢; is the i*" layer of the network, o is the func-
tion composition symbol, x; is the input to the i*" layer,
W, and b; are weight matrices and bias vectors. wy is
a hyperparameter that controls the frequency scaling of
the sinusoidal activation functions. Specifically, it deter-
mines the range of frequencies the network can represent,
influencing its ability to model signals with varying levels
of detail.

Physics informed neural networks The sound propa-
gation in the room follows the wave equation [13], defined
as
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where p = p(t,r) is the sound pressure at time index ¢
and spatial position r, ¢ is the sound propagation speed.
The wave equation can be understood as the acceleration
of the change of the sound field at a time spatial point
is proportional to the curvation of the sound field in the
spatial space.

PINNSs ensure the network not only learns the measure-
ment data, but also obeys the wave equation, so that the
neural network is more robust to noise and can learn the
data representation using less amount of data. The loss
function L of PINNs includes data loss Lgq¢e, which is
the distance between the output and the ground truth,
and PDE loss Lppg, which is the distance between the
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output and the wave equation:

L = Lgaia + aLppE,
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where A is the Laplacian operator, Ng = M x N is the
number of points for data loss calculation, Ny = M x N
is the number of points for PDE loss calculation. « is
a hyperparameter that controls the balance between the
data loss and PDE loss.

Experiment

Dataset The BRIRs dataset is created using RAZR sim-
ulator [14]. RAZR is a MATLAB toolbox that calculates
spatial room impulse responses (SRIRs) by ray tracing
acoustic simulation method, then convolves HRIRs from
different directions with SRIRs to synthesize BRIRs. We
choose the small KEMAR head’s HRIRs from the CIPIC
dataset [15] for BRIRs synthesis and only BRIRs of the
left ear are considered. The head rotation is not con-
sidered, and only the head position is considered, so the
directions of the head are always towards the right. The
room is a shoebox room with the size of 5x4x3 m?3. The
loudspeaker is placed at (3m, 1m, 1m). The sampling
rate is 44100 Hz and the time length of the BRIR is 1000
instances, which is 22.7 ms.

1D, 2D and 3D datasets are created. For the 1D dataset,
M= 10, the measurement microphones cover a 1 m line,
from (1m, 1m, 1m) to (2m, 1m, 1m). The line is sepa-
rated into 9 equal parts and two adjacent microphones’
distance is % m. M = 20, the evaluation microphones
cover a lm line, from (1m, lm, 1m) to (2m, 1m, 1lm).
The 1m line is separated into 19 equal parts (so that
there are two microphones on the two endpoints) and
the two adjacent microphones’ distance is % m. The 2D
and 3D datasets are defined similarly in Figure 3.

Training The network architecture is a 3-layer multi-
layer perceptron (MLP) with 128 neurons in each layer.
The loss weight parameter o is 5 x 1070, The acti-
vation function initialization parameter wg is 30. The
network weights initialization scheme is the same as [3].
The inputs are first normalized to [0, 1] before inputting
to the network. During the wave equation calculation,
the inputs are scaled in order to maintain their physical
dimension relationship. That is to say, the spatial input
is scaled so that its unit is meter and the time input is
scaled so that its unit is second. Pytorch autograd is
used to calculate the derivatives of fL(n, r) with respect
to time and space.

To reduce the memory consumption by the network, we
input only one time index and one spatial position to
the network during training. This resolves the memory
consumption problem, but on the other hand, it makes
the network difficult to converge because the batch size
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Figure 3: Visualization of the loudspeaker and microphone positions for dataset generation. The gray dots are the microphones
and the black dot is the loudspeaker. Left: 1D dataset, M = 10, M = 20; Middle: 2D dataset, M = 10 x 10, M = 20 x 20;

Right: 3D dataset, =10 x 10 x 10, M = 20 x 20 x 20.

is too small. Therefore, we use a batch size of B, which
means B time instances are randomly chosen from the
BRIR at one spatial position. Also, a smaller learning
rate should be used compared to large-size data according
to the linear scaling rule. After careful parameter tuning,
the network can correctly work in 3D.

The training process is conducted on a single NVIDIA
A5000 GPU. For 1D and 2D datasets, B = 4, the learning
rate is 10~%. The network is trained for 2000 epochs,
which takes a few minutes. For the 3D dataset, B =
1000, and the learning rate is 5 x 107%. The network is
trained for 40000 epochs, which takes 4 hours.

Metrics Normalized mean squared error (NMSE) is used
to measure the difference between the estimated BRIRs
and the ground truth BRIRs when we are comparing the
results of three datasets. This is defined by
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NMSE = 10log;; — Z“ IIh - (4)

By normalizing the BRIR error at one spatial position by
the signal energy of the BRIR, different signal energies
at different spatial positions will be considered so that
NMSE will not be dominated by the high-energy signal.
This is especially useful when the datasets for compari-
son have different energy scales. To better compare the
models trained on three datasets, all of them are evalu-
ated using the 1D dataset and NMSEs are calculated in
one dimension. So here M = 20, which is the evaluation
data size of the 1D dataset.

Three methods for BRIRs interpolation are compared:
PINN, SIREN (only data loss is used, no PDE loss in
the loss function) and bilinear interpolation.

Results

NMSEs of models trained with 1D, 2D and 3D datasets
are shown in Table 1. For all three datasets, PINN
performs better than SIREN and bilinear interpolation.
This shows that PINN is able to model BRIRs correctly
in all three dimensions. SIREN performs the worst for
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Table 1: NMSE (dB) of the three methods when 1D, 2D and
3D datasets are used.

1D 2D 3D
Bilinear 1.89 1.89 1.89
SIREN 3.93 -0.18 -2.86
PINN 0.04 -3.42 -4.20

the 1D case, but performs better than bilinear interpo-
lation in 2D and 3D. PINN performs much better than
SIREN in 1D and 2D, but PINN and SIREN’s perfor-
mances become more similar in 3D. This demonstrates
PINN’s ability to do the interpolation with a smaller data
size. However, PINN’s performance still improves from
1D to 2D to 3D, because PINN struggles to learn the
data distribution if the data size is too small. The truth
that PINN can work in 1D and 2D shows the ability of
PINN to learn the physical properties from the data even
if the PDE equation is not explicitly given.

To better explain the experiment results, we visualize the
first 400 time instances of the estimated BRIRs, which is
9 ms, in the z — t domain, as shown in Figure 4. In each
BRIR’s visualization, the two lines represent the direct
sound and the first reflection in the BRIR. By compar-
ing PINN and SIREN in 1D and 2D, we can see the
BRIRs estimated by PINN contain fewer artifacts than
SIREN, which indicates the effectiveness of incorporat-
ing the PDE loss. This shows SIREN generates a large
amount of noise when the data amount is small. For
1D PINN, the network is unable to learn the continu-
ous change of the first reflection, which might be due to
the small data size. By comparing the results of three
datasets for both PINN and SIREN, we can see the arti-
facts in both methods become fewer, and SIREN is also
able to learn noise-free estimation for the 3D case when
the data amount is large enough.

Conclusion

In this work, we use PINNs to interpolate simulated
BRIRs. The results show PINNs perform better than
baseline methods SIREN and bilinear interpolation. This
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Figure 4: 2D z —t plane visualization of the first 400 time
instances of BRIRs estimated using SIREN and PINNs using

1D,

2D and 3D training datasets.

proves that PINNs can learn the head effects in BRIRs.

By

comparing the performances in 1D, 2D, and 3D, we

find that PINNs can learn the reflections from all three
dimensions even if the wave equation is only defined in
1D or 2D. These all prove that PINNs can learn the phys-
ical information from the training data even if it is not
explicitly given in the PDE loss. Future work includes
using a large dataset for training to learn data features
across different rooms to make PINNs generalize to dif-
ferent acoustic environments.
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