Audio Engineering Society

Conference Paper 34

Presented at the AES International Conference on Machine
Learning and Artificial Intelligence for Audio
2025 September 8-10, London, UK

-

This paper was peer-reviewed as a complete manuscript for presentation at this conference. This paper is available in the AES
E-Library (http://www.aes.org/e-1lib), all rights reserved. Reproduction of this paper, or any portion thereof, is not permitted
without direct permission from the Journal of the Audio Engineering Society.

NablAFx: A Framework for Differentiable Black-box and
Gray-box Modeling of Audio Effects

Marco Comunitd!, Christian J. Steinmetz!, and Joshua D. Reiss!

I Centre for Digital Music, Queen Mary University of London, UK

Correspondence should be addressed to Marco Comunita (m. comunita@gmul.ac.uk)

ABSTRACT

We present NablAFx, an open-source framework developed to support research in differentiable black-box and
gray-box modeling of audio effects. Built in PyTorch, NablAFx offers a versatile ecosystem to configure, train,
evaluate, and compare various architectural approaches. It includes classes to manage model architectures,
datasets, and training, along with features to compute and log losses, metrics and media, and plotting functions to
facilitate detailed analysis. It incorporates implementations of established black-box architectures and conditioning
methods as well as differentiable DSP blocks and controllers, enabling the creation of both parametric and
non-parametric gray-box signal chains. Beside established conditioning methods like concatenation, feature-
wise linear modulation (FiLM) and temporal feature-wise linear modulation (TFiLM), we propose three further
methods: time-varying concatenation (TVCond), tiny TFiILM (TTFiLM) and time-varying FiLM (TVFIiLM), as
efficient implementations of time-varying conditioning similar to TFiILM. We also propose the Static Rational
Linearity as a flexible and efficient differentiable processor to learn nonlinear functions. The code is accessible at
https://github.com/mcomunita/nablafx.
1 Introduction Comparing modeling paradigms remains challenging
due to significant variations in training and evaluation

Audio effects are central for engineers and musicians to
shape timbre, dynamics, and spatialisation of sound [1].
Therefore, research related to audio effects, especially
with the success of deep learning and differentiable
digital signal processing (DDSP) [2], is a very active
field [3]. This includes applications such as classifica-
tion and identification [4], parameters estimation [5, 6],
modeling [7, 8], style transfer [9, 10], automatic mix-
ing [11, 12]. Audio effects modeling is one of the most
active applications of differentiable approaches, with
the majority of methods falling into black-box (i.e.,
neural networks) and gray-box (i.e., DDSP) paradigms.
While black-box models achieve state-of-the-art ac-
curacy [7, 13—15] there is interest in gray-box ones
[16-20] due to interpretability and potential for effi-
ciency.

methods. In addition, the lack of standardized im-
plementations for models and DDSP blocks further
impedes reproducibility and performance assessment.
There are a growing number of audio effect imple-
mentations available to researchers, however existing
options remain limited in a number of ways (see Ta-
ble 1).

While the Spotify Pedalboard! library offers
Python implementations of common audio effects and
allows to define signal chains, these are not differen-
tiable. DDSP, introduced in [2], provides some differ-
entiable blocks?, though they are neither common nor

lqithub .com/spotify/pedalboard
2qithub .com/magenta/ddsp

Comunita et al.

NablAFx

Black-box
Model

(i){

ﬁ

LSTM
Processor]

-
[Model

}

Trainer

Controller { [}

Gray-box
Model

Black-box || BB System
System w/ TBPTT

"

Processor {

Dataset]

4

Base
System
Loss

Gray-box || GB System
System w/ TBPTT

'

Datamodule}

_.[Parametric]

Dataset

Metri MAE, MSE, MAPE
etrics ESR, DC Loss, FAD
Logai Audio, Metrics, Frequency/Phase Response
g?g”_‘g Audio at Each Block,
" & Plotting Response and Params at Each Block

Fig. 1: Overview of the NablAFx framework for audio effects modeling

Table 1: Python libraries for processing/modeling ap-
plications. We show if: they include differ-
entiable (Diff.) implementations, neural net-
works (NN), DSP processors (Proc.) and con-
trollers (Contr.), they allow to define signal
chains and include analysis tools.

Library Diff. NN Proc. Contr. Chains Analysis
Pedalboard X X / X v X
DDSP v X v/ X X X
dasp " G4 X X X
diffmoog " G4 X v X
GRAFX v o x v/ X v X
pyneuralfx v vV X X X v
NablAFx v v/ v v v

easily reusable, since they are focused on specific ap-
plications within audio synthesis. dasp?[9] includes
differentiable implementations of common processing
and mixing blocks, and while useful when imported
into larger projects, the library in not meant to define
signal chains. Interconnections of processors can be
defined in di f fmoog*[21], although mainly focused
on FM synthesis and not suitable for effects model-
ing. Also GRAFX> [22] enables complex interconnec-
tions, but lacks external control, limiting parametric,
time-varying, and modulated signal chains for effects
modeling.

pyneural £x[23] is the only framework designed
for modeling and, while it includes state-of-the-art neu-
ral networks, it focuses only on black-box approaches
and does not include time-varying models [7]. Even
though it provides functions for inference-time analysis,
it lacks logging and plotting features during training
and testing. Also, experiment configurations are hard
to modularize and adapt to different datasets, models,

.com/csteinmetzl/dasp-pytorch
.com/aisynth/diffmoog
.com/sh-lee97/grafx
.com/ytsrt66589/pyneural fx

or training procedures, limiting repeatability and com-
parison.

To address these limitations and advance differentiable
audio effects modeling, we propose NablAFx, which
provides:

e Black-box architectures and condition methods:
concatenation, FiLM, TFiLM, TVCond, TTFiLM,
TVFILM

e Gray-box architectures composed of differen-
tiable processors, and differentiable controllers
for parametric/non-parametric models.

e Modules to manage datasets, training, and loss
functions.

e Tools to log metrics and media during training and
testing.

o Plotting functions for analysis throughout training.

2 Framework

NablAFx is a framework for audio effects modeling
that allows researchers to easily define, train, evalu-
ate and compare differentiable black-box and gray-
box models. As shown in Fig. 1, it integrates mod-
els, datasets, trainers, loss functions, metrics, and log-
ging/plotting tools. Built with PyTorch Lightning’, it
leverages Weights&Biases® to log results and media.

System — In NablAFx all necessary functionalities
are contained in an audio effects modeling system class.
The BaseSystem class handles the initialization of loss
functions, optimizers, learning rate scheduler, metrics,
and includes shared methods to compute and log loss,
metrics, audio and frequency/phase response. The
BaseSystem is divided into BlackBoxSystem and Gray-
BoxSystem, which initialize black-box and gray-box

7lightning. ai/pytorch-1lightning
8wandb.ai/site

AES International Conference on Machine Learning and Atrtificial Intelligence for Audio, London, UK
2025 September 8—10
Page 2 of 10

Comunita et al. NablAFx
1.00 1.00
30 >
0.75 0.75
20
0.50 1 0.50
~ 10 ————
— 0.25 .
g 5 5 0.25 o
- 3
£ 0 g 0.00 ’/ £ 0 0.00 8
L i Basdt A= A IS
G.10 \\f -0.25 / e BT -0.25
/ 0.50 o e -1 o
-0. -0.50
20
-0.75 -0.75
-2
30 -1.00 -1.00
10° 10t 102 10° 10* -4 -3 -2 0 1 2 3 4 0 50k 100k 150k 200k 0

Frequency (Hz)

(a) Parametric EQ: frequency response (b) Nonlinearity:
learned during training

pared with tanh (gray)

35|

3\
25 |

2\
1.5 \ A A \

1 Y W Y VN ¥ A W
05

0 20 40 60 80 100 120 140

Epoch

(d) Loss: L1 + MR-STFT

learned during training (blue) com-

Input Samples

amplitude response (¢) Time-varying DC offset: offset (blue)
as a function of time and the input
signal (gray)

60 80
Epoch

(e) Metrics: MAPE

Fig. 2: Examples of plotting features included in NablAFx

models, respectively, and implement train, validation,
and test steps. The GrayBoxSystem adds methods to log
audio output, plot/log frequency and time responses,
and parameters values for each stage of the signal chain.
Both systems are extended with WithTBPTT classes,
which implement truncated backpropagation through
time to enable faster training of recurrent networks[13].
Model — In our framework, black-box models can be
any neural network - with outputs defined as a function
of input and controls y = f(x,¢) - represented by the
Processor class in BlackBoxModel. Gray-box models
comprise interconnected differentiable blocks, forming
a function composition: y = (fj o f0...0 fy)(x,c),
and the Processor class defines a chain of processors.
A Controller class defines a chain of controllers, each
associated with a processor, allowing the definition of
parametric and time-varying models that are a function
of both input audio and controls.

Data — The DataModule class takes care of initial-
izing the dataset and dataloaders for train, validation
and testing. AudioEffectDataset and ParametricAu-
dioEffectDataset classes are used to manage data for
non-parametric and parametric models.

Metrics — Metrics are computed with: forchmetrics’
for mean absolute error (MAE), mean squared error
(MSE) and mean absolute percentage error (MAPE);
auraloss'°[24] for error-to-signal ratio (ESR) and DC
loss; and the frechet-audio-distance'! package for
Frechét Audio Distance (FAD) [25].

Plotting — In addition to logging losses, metrics and

9lightning.ai/docs/torchmetrics/stable/
lOgithub.com/csteinmetzl/auraloss
1lgithub.com/gudgud96/frechet7audiofdistance

audio examples, we provide methods to plot and log
frequency/phase response for the whole system, as well
as frequency/time response and parameters values for
each DDSP block in a gray-box system. We offer two
methods to compute the frequency and phase response:
one using an exponential sine sweep!? [26], suitable
for linear and mildly nonlinear systems, and a custom
method designed for nonlinear systems. The latter mea-
sures the system’s response in steps, using sinusoidal
inputs at exponentially spaced frequencies. To ensure
reliable measurements, each sinusoid lasts several sec-
onds for the system to reach steady state, with mag-
nitude/phase response computed only from the final
segment as a function of the minimum frequency.

x=x[=T-1f/i]]
y=y[=T-Lfs/fi]]

where T is the signal duration (e.g. 5 s), f; is the sam-
ple rate and f; is the minimum frequency of the stepped
sweep (e.g., 10 Hz). Fig. 2a shows the frequency re-
sponse of a Parametric EQ block, while Fig. 2b and 2¢
display examples of learned nonlinearity (vs. tanh,
light gray) and time-varying DC offset (vs. input signal,
light gray). In Fig. 2d and 2e we also show examples
of plots for loss (L1 + MR-STFT) and metrics (MAPE)
during training, while in Fig. 3 we show and example
of frequency and phase responses measured after train-
ing using our proposed method for highly nonlinear
effects.

12antfnovak.com/paqes/sss/

AES International Conference on Machine Learning and Atrtificial Intelligence for Audio, London, UK
2025 September 8—10
Page 3 of 10

Comunita et al.

NablAFx

Frequency Response

RNy

111111
uuuuuu
oooooo
sssss

A AR

102

108 104

Phase Response

\\

Phase (deg)
g o 8
/ \)
Y), /
I /

3 4
e
/|

@
S

-200

Frequency (Hz)

Fig. 3: Example of frequency and phase response measurement after training

2.1 Differentiable Black-box Models

This section provides an overview of state-of-the-art
neural network architectures and conditioning methods
included in NablAFx.

LSTM — The recurrent neural network architecture
we implement is widely adopted for nonlinear effects
(e.g., overdrive, distortion, guitar amps) [13, 27], non-
linear time-varying effects (e.g., fuzz, compressor)
[7, 14], and modulation effects (e.g., phaser, flanger)
[6, 28]. As shown in Fig. 4a, it consists of a single
LSTM layer, a linear layer, and a tanh activation. For
parametric models, a conditioning block processes con-
trol values and optionally the input sequence.

TCN — Temporal Convolution Networks (TCNs), in-
troduced in [29] and shown to outperform recurrent ar-
chitectures [30] on a variety of tasks, were proposed for
audio effects modeling [14, 31, 32] and applied to linear
(EQ, reverb) and nonlinear time-varying (compressor)
effects. The architecture (Fig. 4b) consists of a series
of residual blocks (Fig. 4c) made of 1-dimensional
convolutions with increasing dilation factors, option-
ally followed by batch normalization and conditioning
block, and an activation function (here tanh). A linear
layer matches the output channels to the input size.
GCN — Gated Convolution Networks (GCNs), intro-
duced in [33] as a feed-forward WaveNet, are a special
case of TCNs with gated convolutions. GCNs have
been used in [27, 34] for nonlinear audio effects (gui-
tar amp, overdrive, distortion) and in [7] for nonlinear
time-varying effects (compressor, fuzz). Beside the ac-
tivation function at each block (Fig.4e), a GCN (Fig.4d)
differs from a TCN in that its output is a linear combi-
nation of the activation features at each block.

S4 — Structured state space sequence models (S4)
were introduced in [35] as a general sequence modeling
architecture and shown to outperform recurrent, convo-

lutional and Transformer architectures on a variety of
tasks. An S4 layer is a differentiable implementation
of an infinite impulse response (IIR) system in state-
space form, with a theoretically infinite receptive field,
similar to recurrent networks. Based on these observa-
tions state-space models were adopted for non-linear
time-varying (compressor) effects modeling [36, 37].

The architecture in our framework, based on [36]
(Fig. 5a), consists of S4 blocks. Unlike standard con-
volutional ones, S4 layers are not combined or mixed
across data channels, this explains the use of a lin-
ear layer and activation function (tanh) at the input
of each S4 block (Fig. 5b) for affine transformations
along the channel dimension. These are followed by
an S4D layer [38], which uses diagonal matrices for
a parameter-efficient implementation, optional batch
normalization and conditioning block, followed by an
activation function (fanh in this case). Linear layers
are used at the start and end to adjust the channel count
to match the input data.

2.1.1 Conditioning for Black-box Models

Conditioning mechanisms for black-box models have
been explored for different purposes: to include para-
metric control [8, 14, 36], to capture long-range de-
pendencies [7] or for modulation in LFO-driven ef-
fects [6, 28]. While concatenation and feature-wise lin-
ear modulation (FiLM) [6, 8, 14, 36] remain the most
common methods, temporal FiLM (TFiLM) has been
adopted to capture time-varying behavior [7]. Beside
these established methods, in this work we also propose
three further conditioning methods: time-varying con-
catenation (TVCond), tiny TFiLM (TTFiLM) and time-
varying FiLM (TVFiLM), as efficient implementations
of time-varying conditioning similar to TFiLM. Con-
catenating control values (c¢) to the input sequence (Xy)

AES International Conference on Machine Learning and Atrtificial Intelligence for Audio, London, UK
2025 September 8—10
Page 4 of 10

Comunita et al.

NablAFx

Ck hy,

' | TCN Block
: |
1
: BatchNorm I1x1
MRS
Ly Cond ' | Crop
Linear tanh
y
tanh CD‘
v
Yn hy
(a) LSTM (b) TCN (¢) TCN block

along the channel dimension is a simple, parameter-
efficient conditioning method. It serves as a baseline
for recurrent networks and has been used for parametric
control in, e.g., compression [14] and overdrive [15].

Equally common is FiLM conditioning, mainly when
using TCN [14, 15], GCN [15] or S4 [36, 37] back-
bones, with works adopting it for compressors [8, 14,
37] and overdrive [8, 15] modeling. Introduced in [39]
as a general-purpose conditioning method, FiLM mod-
ulates a neural network’s intermediate features using
a conditioning vector c¢. It learns functions f and g
to generate scaling (¥%.. = f(c)) and bias (B = g(c))
parameters for each layer k and channel ¢, which are
used to modulate the activations at each layer hy ., via
a feature-wise affine transformation:

FiLM(hk,ca Yk,cvﬁk.,C) = Y- hk,c + ﬁk,c- (D

In practice, f and g are neural networks (Fig. 5c) that
learn a latent representation z of the conditioning vector
c; then, a linear layer uses the latent representation to
generate scaling and bias parameters for each block of
the main network (Fig. 5d).

TFiLM [40] enhances network expressivity by using
recurrent networks to modulate intermediate features
over time as a function of layer activations h; and op-
tionally a conditioning vector ¢ (Fig. 6a). Given a
sequence of activations hy from the k-th block of a net-
work, the sequence is split into 7" blocks of B samples
hy 5., along the sequence dimension. For each block
hy ;,, 1-dimensional max pooling downsamples the sig-
nal by a factor of B. To include the conditioning vector
¢, it is repeated 7' times and concatenated with the
downsampled activations. Then, an LSTM generates
scaling ¥, .6, and bias By p, .5, - parameters for each
channel ¢, which are used to modulate the activations
in each block via an affine transformation:

TFLM (hy ;57 e Yooy br.co Brbybroc) =
Yeby:byc - Miepybpc + Bpy by e

Ck B Gen Block

:
.

l

:

:

:

:

:

1

\

BatchNorm

Yk hyyy
(d) GCN
Fig. 4: Black-box architectures included in NablAFx

(e) GCN block

In its standard formulation, TFiLM conditioning adds
a recurrent network for each block in the main neural
network, which can lead to a significant increase in
parameters due to the number of blocks (typically 5-
10) and channels (typically 16-32).

To retain TFiILM’s expressivity while reducing parame-
ters and computational cost, we propose two methods:
TTFiLM and TVFiLM. TTFiLM (Fig.6b) is structurally
similar to TFiLM, and reduces the computational com-
plexity by using fewer channels in the recurrent net-
work, achieved through a linear layer before it. The
output is then scaled up to the required number of
scaling ¥.p,:»;,c and bias ﬁk,blzbr,c channels using a
small MLP. TVFILM is a time-varying extension of
FiLM conditioning. It replaces the MLP in the FiLM
controller (Fig. 5¢) with a recurrent network (Fig. 6c¢),
creating a time-dependent latent representation z,, p1.p,
shared across the main network’s blocks. Modulation
sequences are then generated at each block via a linear
layer (Fig.6d), similarly to standard FiLM (Fig.5d).

We also implement time-varying concatenation (TV-
Cond) for recurrent models by using a TVFiLM con-
troller to generate a time-dependent conditioning se-
quence, which is concatenated to the input for greater
expressivity compared to standard concatenation.

2.2 Differentiable Gray-box Models

As described in Sec. 2 we define a gray-box model
as a sequence of differentiable processors, each with
an associated controller which generates the control
parameters that dictate the behavior of the processor.

2.2.1 Differentiable Audio Processors

For our application, we define three types of audio pro-
cessors: basic (e.g., phase inversion, gain), filters (e.g.,
EQ, shelving), and nonlinearities (e.g., tanh, MLP).

AES International Conference on Machine Learning and Atrtificial Intelligence for Audio, London, UK
2025 September 8—10
Page 5 of 10

Comunita et al. NablAFx
c Xn [X
' | S4 Block c Xn
1 - -
R —
t Cond 0 Linear
PO !
' '
: ' lll. h
: Lincar ' it |||z||| ||||Ii|||
1 1
i ! — FiLM
' i Exj ctrl Linear BatchNorm
BatchNorm
- 4 Block)
: , L
[-» Cond ! Tk
4 NN Block
Linear (): ‘9
v v n FiLM mod oI
Yn Yk Yn hiig
(a) S4 (b) S4 block (¢) FiLM controller (d) FiLM modulator

Fig. 5: Black-box architectures and conditioning methods included in NablAFx

Most processors can be controlled by any of the con-
trollers in Sec. 2.2.2, enabling parametric and time-
varying configurations. All filters are implemented as
differentiable biquads [41], with the transfer function:

_bo+biz bz ?
ag+ajz ' +axz?’

H(z)

Biquad coefficients are calculated based on cen-
ter/cutoff frequency (Hz), gain (dB), and Q factor, fol-
lowing Robert Bristow-Johnson’s method!3. To imple-
ment N order filters (e.g., Parametric EQ) we follow
the common practice of using K cascaded second order
sections:

K
H(z) = [[Hi(2))
k=0

The frequency response is computed evaluating the
transfer function along the unit circle in the complex
plane and taking the magnitude:

[H ()] =

K .
[T Hi(e®)
k=0

For efficiency, during training we adopt the frequency
sampling method, which approximates a cascade of
second order IIR filters by computing the frequency
response as in Eq. 2, applying the convolution in the fre-
quency domain via multiplication and using the inverse
FFT to transform the signal back to the time domain:

Yin) = F[Y (/)] = FHX (/) H(e')].

In the following paragraph we describe each processor.
Generally, all processors’ parameters can depend on
the input x and/or controls c.

Phase Inversion — Invert the phase of the input.

13www.musicdsp .org/en/latest/Filters/

197-rbj-audio-eg-cookbook.html

Gain — Multiply input by a gain value in dB.

DC Offset — Add a constant value to the input.
Lowpass/Highpass — Second order lowpass/highpass
implemented as a single biquad section. Each filter is
defined by 2 parameters: cutoff frequency and Q factor.
Low/High Shelf — Second order low/high shelving
filter implemented as a single biquad section. Each
filter is defined by 3 parameters: gain, cutoff frequency,
Q factor.

Peak/Notch — Second order peak/notch filter imple-
mented as a single biquad section. Each filter is defined
by 3 parameters: gain, center frequency, Q factor.
Parametric EQ — We define a Parametric EQ as a
chain of 5 filters: low shelf, three peak/notch filters and
a high shelf. Each Parametric EQ has 15 parameters.
Shelving EQ — We define a Shelving EQ as a chain of
4 filters: highpass, low shelf, high shelf, lowpass. Each
Shelving EQ is defined by a total of 10 parameters.
Static FIR Filter — We define a Static FIR Filter
using a SIREN layer [42], which stores the tap values
of an N*"-order impulse response. The network can
be initialized with a pre-trained response (e.g., loud-
speaker) and its hyperparameters (hidden dimension
and layers count) to be customized.

Tanh Nonlinearity — Standard hyperbolic tangent.
Static MLP Nonlinearity — MLP Nonlinearity im-
plemented with SIREN layer, initialized by default with
a pre-trained model approximating a tanh.

Static Rational Nonlinearity — A Padé approximant
[43] is a rational function of order [m/n] that best ap-
proximates a function f(x) near a specific point, with
m>0andn > 1:

R(x) ap+aix—+ a4+ -+ aux"
X) =
1 +bix+byx® + -+ byx"

which agrees with f(x) to the highest possible order.
Learnable Padé approximants'# [44] enable flexible ra-

14qithub .com/ml-research/rational_activations

AES International Conference on Machine Learning and Atrtificial Intelligence for Audio, London, UK
2025 September 8—10
Page 6 of 10

Comunita et al. NablAFx
c hypiss
S
Rep@ c Xn,b1:63
c By s Linear
Zin b1:b3 hy p1:03
LSTM
T
MLP) Linear
LSTM ‘(I:'XFILM _’IEE;@]
v Vb
YVrp1:63 3 Vh,b1:b3 _’ﬁ’@ k,b1:b3
Y
Brp1:53 ‘9 Bi,p1:63 4@6; Brp1:b3 9
TFILM : Tiny TFiLM 2 TVFILM ?
e i j =
hy e hy s Ynb:b3 hyy1 183
(a) TFILM (b) TTFILM (¢) TVFIiLM controller (d) TVFiLM modulator

Fig. 6: Black-box architectures and conditioning methods included in NablAFx

tional activation functions with few weights (numerator
and denominator coefficients). We define a learnable
Static Rational Nonlinearity using a single rational ac-
tivation layer, initialized by default to a ranh approxi-
mation of order [6, 5].

2.2.2 Differentiable Controllers

We define five types of differentiable controllers (Fig. 7)
to generate control parameters for an audio processor.

Dummy — A Dummy controller is a placeholder for
processors that don’t require control parameters (e.g.,
Phase Inversion, Static FIR Filter, Static Nonlinearity).
Static — A Static controller is a tensor of trainable
controls b - one for each control parameter in the re-
spective processor - followed by a sigmoid function to
limit the output to the [0,1] range: g = o(b).

Static Conditional — A Static Conditional controller
uses an MLP with a sigmoid activation to adjust control
parameters based on audio effects controls (or some
other fixed values): g = f(c¢). Hyperparameters include
number of input controls and output control parameters,
number of layers, and hidden dimensions.

Dynamic — A Dynamic controller is used to adjust
control parameters over time based on another signal,
oftentimes the input audio: g[n] = f(x[n]). The control
signal is downsampled (default downsampling factor is
128), processed through an LSTM, a sigmoid activation,
and upsampled to output a control parameters sequence
g, at the original rate. Hyperparameters include block
size (i.e., downsampling factor) and number of recur-
rent layers, while the hidden size is set by the number
of control parameters for each processor.

Dynamic Conditional — A Dynamic Conditional con-
troller adjusts control parameters based on both fixed
values (typ., audio effect controls) and a time-varying
control (typ., input signal): g[n] = f(x[n],c). The sig-
nal is downsampled while the controls are upsampled
and concatenated, the sequence processed by an LSTM,
and after sigmoid activation and upsampling, the con-
trol parameters sequence g, is returned at the original
rate.

Although the control parameters sequences are at sam-
pling rate, the block size (i.e., downsampling rate) is
used internally in each processors to downsample the
sequence so that the coefficients are recomputed once
per block. This is not a limitation, as setting the block
size to 1 provides sequences at audio rate. No inter-
polation methods have been implemented for smooth
control sequences at the time of writing.

3 Audio Effects Modeling

To showcase our audio effects modeling framework
and evaluate the proposed conditioning methods we
train parametric black- and gray-box models of the
Multidrive Pedal Pro F-Fuzz—a digital emulation of
the Dallas Arbiter Fuzz Face—while for a complete
study on differentiable black-box and gray-box mod-
elling of audio effects that uses NablAFx, we point
the reader to [45]. Table 2 shows all models configu-
rations. We select TCN and S4 models and evaluate
all conditioning methods available (i.e., FiLM, TFiLM,
TTFiLM, TVFILM). The table shows how TTFiLM
and TVFIiLM enable implementation of time-varying
conditioning with a small overhead w.r.t. FiLM.

AES International Conference on Machine Learning and Atrtificial Intelligence for Audio, London, UK
2025 September 8—10
Page 7 of 10

Comunita et al.

NablAFx

Table 3: Test loss for parametric models trained on
Multidrive Pedal Pro F-Fuzz. Best model for
each architecture shown in bold.

Model Tot. L1 MR-STFT
TCN-F-45-S-16 0.7095 0.0217 0.6878
TCN-TF-45-S-16 0.4886 0.0077 0.4809
TCN-TTF-45-S-16 ~ 0.5324 0.0102 0.5223
TCN-TVF-45-S-16 0.5356 0.0115 0.5241
S4-F-S-16 0.7687 0.0243 0.7444
S4-TF-S-16 0.4034 0.0075 0.3959
S4-TTF-S-16 0.3816 0.0066 0.3749
S4-TVF-S-16 0.3354 0.0058 0.3296
GB-C-DIST-MLP 1.2104 0.0611 1.1492
GB-C-DIST-RNL 1.2531 0.0672 1.1858
GB-C-FUZZ-MLP 0.9303 0.0345 0.8958
GB-C-FUZZ-RNL 0.9395 0.0355 0.9040
Static Static Dynamic Dynamic
Controller Conditional Controller Conditional
Controller Controller
c Xn c Xn
b MLP [MaxPool] [Upsample] [MaxPool]

h o e

& g (o]
8n
b - trainable control params gn
X, - input g - control params

¢ - controls gn - control params sequence

Fig. 7: Controllers included in NablAFx

We propose two gray-box architectures (GB-DIST and
GB-FUZZ) that are extensions of the typical Weiner-
Hammerstein model [16] adopted for distortion mod-
eling, which includes a memoryless nonlinearity in
between pre-emphasis and de-emphasis linear time-
invariant filters. We test two nonlinearities: Static
MLP (MLP) and Static Rational Nonlinearity (RNL).
While GB-DIST models only use Static Conditional
controllers, in GB-FUZZ we opt for a Dynamic Con-
ditional controller for the Offset block, to capture the
characteristic dynamic bias shift of fuzz effects.

Models are trained for a maximum of 15k steps using a
weighted sum of L1 and MR-STFT [24] losses and the
results shown in Table 3. For TCN models, TTF and
TVF conditioning perform on par with TF; while for S4
models TTF and TVF outperform TE. For GB models,
regardless of the nonlinearity type, GB-FUZZ achieves
better results than GB-DIST, proving the Dynamic con-
troller useful. Also, RNL in shown to be an effective
and efficient alternative to the MLP nonlinearity.

4 Conclusion

In this work we presented NablAFx, an open-source
framework developed to support research in differen-

tiable black-box and gray-box audio effects modeling.
Its modular design enables easy configuration of exper-
iments with different architectures, datasets, training
settings, and loss functions. With logging, plotting, and
performance metrics, it simplifies experiment analysis
and comparison. We consider gray-box models as a
series connection of DDSP blocks, but this could be
generalized using a graph representation. While black-
box models are currently single networks, they could
be extended to interconnected networks. Hybrid mod-
els could be introduced to combine black- and gray-box
processors, allowing DDSP blocks with known func-
tions alongside neural networks for learning functions.
Moreover, community contributions could help expand
our framework in various ways, including new archi-
tectures, loss functions, metrics, and more.

5 Acknowledgments
Funded by UKRI and EPSRC - grant EP/S022694/1.

References

[1] Wilmering, T., Moffat, D., Milo, A., and San-
dler, M. B., “A history of audio effects,” Applied
Sciences, 10(3), 2020.

[2] Engel, J., Hantrakul, L., Gu, C., and Roberts, A.,
“DDSP: Differentiable digital signal processing,”
arXiv preprint arXiv:2001.04643, 2020.

[3] Comunita, M. and Reiss, J. D., “AFxResearch: a
repository and website of audio effects research,”
in DMRN+ 19: Digital Music Research Network
One-day Workshop 2024, 2024.

[4] Comunita, M., Stowell, D., and Reiss, J. D., “Gui-
tar Effects Recognition and Parameter Estimation
With Convolutional Neural Networks,” Journal
of the Audio Engineering Society, 69(7/8), 2021.

[5] Colonel, J. T., Steinmetz, C. J., Michelen, M.,
and Reiss, J. D., “Direct design of biquad fil-
ter cascades with deep learning by sampling ran-
dom polynomials,” in IEEE International Confer-

ence on Acoustics, Speech and Signal Processing
(ICASSP), 2022.

[6] Mitcheltree, C., Steinmetz, C. J., Comunita,
M., and Reiss, J. D., “Modulation extraction
for LFO-driven audio effects,” arXiv preprint
arXiv:2305.13262, 2023.

[7] Comunita, M., Steinmetz, C. J., Phan, H., and
Reiss, J. D., “Modelling black-box audio ef-
fects with time-varying feature modulation,” in
2023 IEEFE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP),
2023.

AES International Conference on Machine Learning and Atrtificial Intelligence for Audio, London, UK
2025 September 8—10
Page 8 of 10

Comunita et al.

NablAFx

Table 2: Parametric models included in the experiments. Cond. = conditioning method, R.F. = receptive field in
samples. PEQ = Parametric EQ, G = Gain, O = Offset, MLP = Multilayer Perceptron, RNL = Rational
Non Linearity. Controllers: .s = static, .d = dynamic, .sc = static conditional, .dc = dynamic conditional

Model Cond. R.F. Blocks Kernel Dilation Channels # Params FLOP/s MAC/s
TCN-F-45-S-16 FiLM 2047 5 7 4 16 15.0k 736.5M 364.3M
TCN-TF-45-S-16 TFLM 2047 5 7 4 16 42.0k 762.8M 364.2M
TCN-TTF-45-S-16 TTFiLM 2047 5 7 4 16 173k 744.0M 367.4M
TCN-TVF-45-S-16 TVFILM 2047 5 7 4 16 177k 7404M 366.2M
Model Cond. R.F. Blocks State Dimension Channels # Params FLOP/s MAC/s
S4-F-S-16 FiLM - 4 4 16 8.9k 135.2M 53.8M
S4-TF-S-16 TFiLM - 4 4 16 30.0k 155.6M 53.8M
S4-TTF-S-16 TTFLM - 4 4 16 10.2k 141.0M 56.3M
S4-TVF-S-16 TVFILM - 4 4 16 11.6k 138.9M 55.3M
Model Signal Chain #Params FLOP/s MAC/s
GB-C-DIST-MLP PEQ.sc — G.sc — O.sc — MLP — G.sc — PEQ.sc 45k 202.8M 101.4M
GB-C-DIST-RNL PEQ.sc — G.sc — O.sc — RNL — G.sc — PEQ.sc 2.3k 920.5k 4.3k
GB-C-FUZZ-MLP PEQ.sc — G.sc — O.dc —+ MLP — G.sc — PEQ.sc 42k 202.8M 101.4M
GB-C-FUZZ-RNL PEQ.sc — G.sc — O.dc — RNL — G.sc — PEQ.sc 2.0k 988.9k 3.6k

[8] Simionato, R. and Fasciani, S., “Comparative
Study of Recurrent Neural Networks for Virtual
Analog Audio Effects Modeling,” arXiv preprint
arXiv:2405.04124, 2024.

[9] Steinmetz, C. J., Bryan, N. J., and Reiss, J. D.,
“Style Transfer of Audio Effects with Differen-
tiable Signal Processing,” Journal of the Audio
Engineering Society, 70(9), 2022.

[10] Steinmetz, C. J., Singh, S., Comunita, M., Ib-
nyahya, L., Yuan, S., Benetos, E., and Reiss, J. D.,
“St-ito: Controlling audio effects for style transfer
with inference-time optimization,” arXiv preprint
arXiv:2410.21233, 2024.

[11] Steinmetz, C. J., Pons, J., Pascual, S., and Serra,
J., “Automatic multitrack mixing with a differ-
entiable mixing console of neural audio effects,”
in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2021.

[12] Sai Vanka, S., Safi, M., Rolland, J.-B., and
Fazekas, G., “Adoption of Al Technology in Mu-
sic Mixing Workflow: An Investigation,” in Audio
Engineering Society Convention 154, 2023.

[13] Wright, A., Damskigg, E.-P., and Viliméki, V.,
“Real-time black-box modelling with recurrent
neural networks,” in Proc. of the Int. Conf. on
Digital Audio Effects (DAFx-19), 2019.

[14] Steinmetz, C. J. and Reiss, J. D., “Efficient neural
networks for real-time modeling of analog dy-
namic range compression,” in Audio Engineering
Society Convention 152, 2022.

[15] Yeh, Y.-T., Hsiao, W.-Y., and Yang, Y.-H., “Hy-
per recurrent neural network: Condition mecha-
nisms for black-box audio effect modeling,” arXiv
preprint arXiv:2408.04829, 2024.

[16] Colonel, J. T., Comunita, M., and Reiss, J., “Re-
verse engineering memoryless distortion effects
with differentiable waveshapers,” in Audio Engi-
neering Society Convention 153, 2022.

[17] Wright, A. and Valimaki, V., “Grey-box mod-
elling of dynamic range compression,” in Proc.
of the Int. Conf. on Digital Audio Effects (DAFx-
20in22), 2022.

[18] Carson, A., King, S., Botinhao, C. V., and Bilbao,
S., “Differentiable grey-box modelling of phaser
effects using frame-based spectral processing,” in

Proceedings of the 26th International Conference
on Digital Audio Effects, 2023.

[19] Miklanek, S., Wright, A., Vilimiki, V., and
Schimmel, J., “Neural grey-box guitar amplifier
modelling with limited data,” in Proc. of the Int.
Conf. on Digital Audio Effects (DAFx-23), 2023.

[20] Yeh, Y.-T., Chen, Y.-H., Cheng, Y.-C., Wu, J.-
T., Fu, J.-J.,, Yeh, Y.-F.,, and Yang, Y.-H., “DDSP
Guitar Amp: Interpretable Guitar Amplifier Mod-
eling,” arXiv preprint arXiv:2408.11405, 2024.

[21] Uzrad, N., Barkan, O., Elharar, A., Shvartz-
man, S., Laufer, M., Wolf, L., and Koenigstein,
N., “DiffMoog: a Differentiable Modular Syn-
thesizer for Sound Matching,” arXiv preprint
arXiv:2401.12570, 2024.

[22] Lee, S., Martinez-Ramirez, M., Liao, W.-H.,
Uhlich, S., Fabbro, G., Lee, K., and Mitsufuji,

AES International Conference on Machine Learning and Atrtificial Intelligence for Audio, London, UK
2025 September 8—10
Page 9 of 10

Comunita et al.

NablAFx

Y., “GRAFX: an open-source library for audio
processing graphs in PyTorch,” arXiv preprint
arXiv:2408.03204, 2024.

[23] Yeh, Y.-T., Hsiao, W.-Y., and Yang, Y.-H.,
“PyNeuralFx: A Python Package for Neu-
ral Audio Effect Modeling,” arXiv preprint
arXiv:2408.06053, 2024.

[24] Steinmetz, C.J. and Reiss, J. D., “auraloss: Audio
focused loss functions in PyTorch,” in Digital mu-
sic research network one-day workshop (DMRN+
15),2020.

[25] Kilgour, K., Zuluaga, M., Roblek, D., and Shar-
ifi, M., “Fr\’echet audio distance: A metric for
evaluating music enhancement algorithms,” arXiv
preprint arXiv:1812.08466, 2018.

[26] Novak, A., Simon, L., Kadlec, F., and Lotton,
P., “Nonlinear system identification using expo-
nential swept-sine signal,” IEEE Transactions on
Instrumentation and Measurement, 59(8), 2009.

[27] Wright, A., Damskédgg, E.-P., Juvela, L., and
Viliméki, V., “Real-time guitar amplifier emula-
tion with deep learning,” Applied Sciences, 10(3),
2020.

[28] Wright, A. and Valimaki, V., “Neural modeling of
phaser and flanging effects,” Journal of the Audio
Engineering Society, 69(7/8), 2021.

[29] Lea, C., Vidal, R., Reiter, A., and Hager, G. D.,
“Temporal convolutional networks: A unified ap-
proach to action segmentation,” in Computer
Vision—ECCYV Workshops, Springer, 2016.

[30] Bai, S., Kolter, J. Z., and Koltun, V., “An empir-
ical evaluation of generic convolutional and re-
current networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[31] Steinmetz, C. J., “Learning to mix with neural
audio effects in the waveform domain,” MS thesis,
2020.

[32] Stein, M., AbeBer, J., Dittmar, C., and Schuller,
G., “Automatic detection of audio effects in gui-
tar and bass recordings,” in Audio Engineering
Society Convention 128, 2010.

[33] Rethage, D., Pons, J., and Serra, X., “A wavenet
for speech denoising,” in IEEE International Con-
ference on Acoustics, Speech and Signal Process-
ing (ICASSP), 2018.

[34] Damskédgg, E.-P., Juvela, L., and Viliméki, V.,
“Real-time modeling of audio distortion circuits
with deep learning,” in Sound and music comput-
ing conference, 2019.

[35] Gu, A., Goel, K., and Ré, C., “Efficiently model-
ing long sequences with structured state spaces,’
arXiv preprint arXiv:2111.00396, 2021.

[36] Yin, H., Cheng, G., Steinmetz, C. J., Yuan, R.,
Stern, R. M., and Dannenberg, R. B., “Modeling
Analog Dynamic Range Compressors using Deep
Learning and State-space Models,” arXiv preprint
arXiv:2403.16331, 2024.

[37] Simionato, R. and Fasciani, S., “Modeling Time-
Variant Responses of Optical Compressors with
Selective State Space Models,” 2024.

[38] Gupta, A., Gu, A., and Berant, J., “Diagonal state
spaces are as effective as structured state spaces,”

Advances in Neural Information Processing Sys-
tems, 35, 2022.

[39] Perez, E., Strub, F., De Vries, H., Dumoulin, V.,
and Courville, A., “Film: Visual reasoning with
a general conditioning layer,” in Proceedings of
the AAAI conference on artificial intelligence, vol-
ume 32, 2018.

[40] Birnbaum, S., Kuleshov, V., Enam, Z., Koh, P.
W. W., and Ermon, S., “Temporal FiLM: Cap-
turing long-range sequence dependencies with
feature-wise modulations.” Advances in Neural
Information Processing Systems, 32, 2019.

[41] Nercessian, S., “Neural parametric equalizer
matching using differentiable biquads,” 2020.

[42] Sitzmann, V., Martel, J., Bergman, A., Lindell,
D., and Wetzstein, G., “Implicit neural represen-
tations with periodic activation functions,” Ad-

vances in neural information processing systems,
33, 2020.

[43] Baker Jr, G. A. and Gammel, J. L., “The Padé
approximant,” Journal of Mathematical Analysis
and Applications, 2(1), 1961.

[44] Molina, A., Schramowski, P., and Kersting, K.,
“Padé activation units: End-to-end learning of flex-
ible activation functions in deep networks,” arXiv
preprint arXiv:1907.06732, 2019.

[45] Comunita, M., Steinmetz, C. J., and Reiss, J. D.,
“Differentiable black-box and gray-box model-
ing of nonlinear audio effects,” arXiv preprint
arXiv:2502.14405, 2025.

AES International Conference on Machine Learning and Atrtificial Intelligence for Audio, London, UK
2025 September 8—10
Page 10 of 10

