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This study explores optimisation techniques for refining articulatory parameters in the Pink Trombone, a simplified
physical speech synthesiser, to accurately emulate male and female vocal tract characteristics in non-speech sounds.
We employ black-box and grey-box approaches, leveraging a genetic optimiser and Mel-spectrogram representations
to infer articulatory configurations from human recordings via direct spectral comparison. Optimisation is performed
over time windows to ensure temporal coherence, introducing modifications to SOTA objective metrics. We integrate
grey-box strategies, incorporating pYIN for fundamental frequency estimation and a ResNet-based neural network

as a neural codebook to enhance the optimisation process. Our findings confirm the synthesiser’s ability to replicate
human vocalisations, achieving superior performance over existing techniques in subjective evaluations. We refined
the perceptual metric ViSQOL, providing a calibrated framework for future auditory assessments in physical speech
synthesis. These contributions establish a methodology for articulatory parameter estimation, improving synthesis
quality and expanding vocalisation modelling and analysis applications.

Keywords Analysis-by-synthesis, Acoustic-to-articulatory inversion, Articulatory copy synthesis, Pink Trombone,

1 Introduction

Articulatory synthesis simulates human vocal production
by computationally modelling the physiological com-
ponents of the vocal tract, such as the tongue, lips, and
vocal folds, to produce human vocalisations [1-3]. Artic-
ulatory synthesis is one of the fundamental approaches
to speech generation. It enhances realism and enables
the modelling of non-linguistic human sounds—such as
vowels, yawns, laughter, and growls—allowing their use
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as natural audio effects! produced by the human body.
These sounds are critical for applications like expressive
sound design, virtual avatars, and biomedical research,
where precise control over vocal tract dynamics is
essential [5, 6]. Unlike data-driven methods that learn
statistical mappings from large datasets, articulatory syn-
thesis provides explicit, interpretable control over articu-
latory parameters. It is uniquely suited for modelling the
nuanced mechanics of non-verbal vocalisations [7].

! Artistically speaking, the British Broadcasting Corporation defines Audio
Effects as any sound that is not speech or music [4]. Therefore, the human
vocal tract can also create Audio Effects.
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A central challenge in articulatory synthesis is obtain-
ing accurate articulatory data. Direct measurement tech-
niques like electromagnetic articulography (EMA) or
magnetic resonance imaging (MRI) are invasive, costly,
and typically restricted to speech-centric research in
controlled laboratory settings [3, 8—11]. While most
acoustic-to-articulatory inversion (AAI) systems focus
on speech and rely on EMA data to train speaker-specific
models, such approaches are ill-suited for synthesis-
ing non-linguistic sounds, which often involve extreme
vocal tract configurations. Instead, model inversion tech-
niques like analysis-by-synthesis (AbS) circumvent direct
physiological measurements by estimating articulatory
configurations directly from acoustic signals, effectively
reversing the speech production process [12, 13].

In our prior work [14], we implemented an AbS frame-
work using the Pink Trombone (PT) [15] synthesiser?, a
real-time physical model of the vocal tract. We selected
PT over alternatives like VocalTractLab [16], Maeda [17],
or Melmenstein [18] for three reasons: (1) its computa-
tional efficiency enables rapid exploration of extreme
articulatory configurations (e.g. exaggerated yawns,
tense growls), (2) its interactive graphical interface pro-
vides intuitive visual feedback for designing, refining
non-verbal sounds, akin to tuning audio effects, visualis-
ing the inferred settings, and (3) its open-source imple-
mentation facilitates reproducibility. Our earlier study
systematically evaluated an informed selection of opti-
misation algorithms (e.g. Genetic, Particle Swarm, Least
Squares...), acoustic features (e.g. Mel, Multiscale Fourier
Transforms, Cepstrum...), and cost functions to deter-
mine the most effective configuration for AAIL. While the
results confirmed the PT’s potential for parameter esti-
mation, synthesised non-speech sounds exhibited abrupt
transitions and lacked perceptual realism compared to
natural human vocalisations.

The present work builds upon these findings to refine
AbS, focusing on synthesising non-linguistic human
sounds. Figure 1 describes the process, from pre-pro-
cessing human and synthesised audio through spectral
analysis and parameter estimation (left) to optimisation
(centre) and final synthesis (right). Building on the best-
performing configurations identified in our previous
work, we aim to enhance temporal coherence and per-
ceptual realism, addressing key limitations observed:

«+ Limited vocal diversity: the default configuration of
the PT is optimised for a male vocal tract, restricting
its ability to model female or diverse vocal character-
istics. To overcome this, we modified the PT model
to dynamically adjust vocal tract length and formant

2 https://dood.al/pinktrombone/
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scaling ratios based on anatomical studies, allow-
ing for an accurate representation of both male and
female voices.

+ Post-processing dependency: prior approach
required post-processing filtering to artificially
smoothen discontinuities in synthesised outputs. We
refined the optimisation windowing strategy and cost
function to ensure smoother articulatory transitions,
eliminating the need for external filtering.

. Computational inefficiency and suboptimal con-
vergence: the previous optimisation process required
extensive iterations, leading to slow performance and
potentially suboptimal solutions. We addressed this
by integrating a ResNet-based neural network to pro-
vide a starting point for the optimisation of the articu-
latory parameters, functioning as a neural codebook.
Unlike traditional codebooks based on sampling,
such as the approach in [19], which rely on a prede-
fined discretised set of examples and require exten-
sive searches, our method leverages neural infer-
ence. This warming strategy significantly accelerates
convergence, reduces computational overhead, and
enhances parameter optimisation efficiency.

- Limitations in black-box and white-box
approaches: black-box optimisation lacked preci-
sion, while white-box methods were overly con-
strained by the PT model [14, 20], reducing gen-
eralisability. We implemented and tested a hybrid
grey-box optimisation strategy that balances flexibil-
ity and accuracy.

The remainder of this paper is organised as follows.
Section 2 outlines the literature review, focusing on
AAI with AbS and Articulatory synthesisers. Section 3
details our methodology for optimising parameters in
the Pink Trombone. Section 4 presents the experiments
and datasets used. Section 5 describes the results from
both objective and subjective evaluations. The paper con-
cludes with a discussion and conclusions in Sects. 6 and
7, respectively.

2 Literature review
2.1 Acoustic to articulatory inversion with analysis
by synthesis

AAI traditionally estimates vocal tract configurations
from speech signals using paired articulatory—acoustic
datasets [3, 8—11, 21]. However, AAI frameworks lev-
eraging AbS circumvent the dependency on invasive or
labour-intensive articulatory recordings (e.g. MRI, EMA)
by iteratively refining synthetic articulatory parameters
to match target acoustic signals. This approach inte-
grates articulatory synthesisers as forward models, ena-
bling physiologically plausible inversion while avoiding
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Fig. 1 Flowchart of the conducted tests. On the left, the inputs consist of audio records. Records undergo a fixed preprocessing, including spectral
decomposition and temporal segmentation, before being fed into the parameter optimisation models. The optimisation process is conducted
per window, minimising the defined cost function. Ultimately, the estimated parameters need to be interpolated to synthesise the final audio
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the speaker-dependent limitations of recorded data [22,
23]. For instance, Prom-on et al. [23, 24] optimised vowel
configurations in VocalTractLab [16] using stochas-
tic gradient descent, starting from neutral articulatory
positions to ensure biomechanical realism. Their work
demonstrated that synthesisers could replicate reference
formants and EMA trajectories with high precision, as
validated by acoustic metrics (e.g. spectral correlation)
and perceptual tests.

A critical advancement in AAI-ADbS lies in the adoption
of metaheuristic optimisation algorithms. Fairee et al.
[25] replaced gradient descent with Particle Swarm Opti-
misation (PSO) to accelerate parameter search for Thai
vowels, while Gao et al. [26] employed genetic algorithms
to estimate gestural scores for German words, optimising
both timing and stiffness parameters to model coarticula-
tion. Neural networks have further enhanced generalisa-
tion capabilities: Gao et al. [27] trained Long Short-Term
Memory (LSTM) models on VocalTractLab-generated
data, augmented with vocal tract length and pitch vari-
ations, achieving robust cross-linguistic performance.
Similarly, Sun and Wu [28] combined convolutional bidi-
rectional LSTMs with the Tube Resonance Model (TRM)
[29], iteratively refining mel-spectrograms through a self-
supervised learning framework.

The inherent non-uniqueness of the inversion prob-
lem—where multiple articulatory configurations can
produce similar acoustics—remains a central challenge.
Panchapagesan and Alwan [19] addressed this issue by
embedding regularisation terms into loss functions to
penalise deviations from neutral vocal tract positions.
Likewise, Dang and Honda [22] incorporated physiologi-
cal constraints, such as the relationship between formant
frequencies and tongue positioning, to guide the inver-
sion process. Other work by Aryal and Gutierrez-Osuna
[30] further demonstrated that statistical synthesisers
could resolve ambiguities through probabilistic mappings
of Mel-Frequency Cepstral Coefficients (MFCCs) to
articulatory parameters. Despite these advances, compu-
tational complexity remains a challenge—especially for a
sentence-level inversion—needing initialisation strategies
such as rule-based gestural scores [31] or adaptive regu-
larisation [26].

A recent innovation in this framework is the appli-
cation of gradient descent optimisation on the Pink
Trombone synthesiser—a real-time, browser-based tool
offering intuitive control over vocal tract parameters. A
previous contribution [14] already demonstrated how
to train deep learning structures and run optimisation
strategies for PT to match human speech sounds. On the
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same testbed, Stidholt et al. [20] demonstrated that gra-
dient descent can effectively refine articulatory configu-
rations on Pink Trombone, while Mo et al. [32] similarly
exploited this approach with improved objective results
using a JAX version of the PT. Both studies observed
that even subtle modifications in tract configurations
produce significant acoustic variations, emphasising the
tool’s capacity for rapid hypothesis testing and iterative
refinement.

2.2 Articulatory synthesis models

Modern articulatory synthesisers vary in complexity, ana-
tomical accuracy, and usability. The Maeda synthesiser
[17], parameterised by seven vocal tract variables (e.g. lip
aperture, tongue body position), has been widely used for
vowel and diphthong synthesis [19]. Its low-dimensional
parametrisation facilitates efficient control and inversion
but limits the phonetic detail that can be reproduced. In
contrast, VocalTractLab [16] offers high anatomical fidel-
ity by modelling up to 18 articulatory parameters (e.g.
jaw position, velum opening) to simulate dynamic ges-
tures and coarticulation [23, 27]. Although its rigorous
biomechanical framework supports precise replication of
EMA trajectories, this increased detail comes at the cost
of greater computational intensity.

(2025) 2025:27
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While less anatomically detailed than its counterparts,
the PT synthesiser [15] excels in accessibility and real-
time interaction. It is based on a Graphical User Interface
(GUI), which controls the tract shape and glottal source
characteristics. The graphical interface allows users to
adjust articulators while receiving instantaneous acous-
tic feedback. A snapshot of the GUI is shown in Fig. 2.
This simplicity makes Pink Trombone ideal for rapid
prototyping and educational applications, even though
it sacrifices some physiological granularity compared to
VocalTractLab or Maeda. Several recent works have lev-
eraged the agility of PT to optimise vocal tract configura-
tions, demonstrating its utility for exploratory AAI-AbS
studies [14, 32-34]. Collectively, these models under-
score a trade-off between computational complexity and
practical usability; with the Pink Trombone democratis-
ing articulatory synthesis, enabling broader experimenta-
tion without requiring extensive expertise.

3 Methodology

3.1 Vocal tract adaptation for increased diversity

Starting from the original implementation of the PT,
we introduced several changes and optimisations for
improved flexibility and accelerated processing.

Fig. 2 Interactive user interface of the PT synthesiser displaying the clickable vocal tract, allowing for real-time structure manipulation. Below
the tract, a control box is available to adjust pitch and voiceness. The screenshot was taken from Pink Trombone, under MIT license [15]
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3.1.1 The Pink Trombone

The PT is a real-time articulatory speech synthesiser
based on the Kelly-Lochbaum (KL) model [35], which
simulates one-dimensional wave propagation through the
vocal tract. Sound originates at the glottis and propagates
through cylindrical segments of varying cross-sectional
areas, where reflections and turbulence shape the output.
Excitation is implemented via Rosenberg’s model, simu-
lating airflow modulation by the vocal folds [36]. A rigor-
ous mathematical description of the PT can be found in
[20].

The synthesiser employs a two-layer control system.
The primary layer governs tongue position and diameter,
while the secondary layer introduces tract constrictions,
allowing for localised narrowing. Figure 3 shows a pic-
ture of the vocal tract and a schematic of its functional
parts, from the generation of the excitation (bottom) up
to the final sound produced (right), traversing the vocal
tract.

3.1.2 Modifications of the PT

Despite its flexibility, PT’s default configuration is tai-
lored for a male vocal tract, limiting its applicability for
diverse voice synthesis. The standard model assumes a
vocal tract length of approximately 16 cm, divided into
44 segments. To enable more inclusive synthesis, we

Middle vocal tract

(2025) 2025:27

Page 5 of 15

introduced a female-specific adaptation by shortening
the tract length to 14 cm and adjusting segment distri-
butions accordingly [37]. Table 1 details the modified
parameters, which ensure a physiologically plausible
vocal tract representation.

The proposed modifications broaden PT’s applicabil-
ity beyond its original male-oriented design, enabling
more representative modelling of vocal diversity while
maintaining computational efficiency. Other explora-
tions following this approach may be covered in future
contributions.

3.1.3 Node.js version of the PT

To facilitate structured parameter optimisation and
large-scale computational modelling, we transitioned PT
from its GUI to a Node.js-based environment. This adap-
tation allows direct programmatic control, batch pro-
cessing, and seamless integration with machine learning
techniques, avoiding the impracticalities of manual GUI-
based adjustments. The GUI remains valuable for qualita-
tive validation, demonstration, and educational purposes.

3.2 Eliminating post-processing dependency

Expanding from the insights originated from [14], we aim
to minimise the post-processing of the optimisation out-
puts. The goal is to serve the optimised values directly to
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Table 1 Pink Trombone parameters and their bounds
depending on the gender. The lip index is located in M=44 for
a male and M =38 for a female. The Throat index is located in
M=12 for both

Parameter Male bounds Female bounds
Pitch (Hz) 70-180 140-220
Voiceness 0.5-1 0.5-1

Tongue Index 12-29 8-25

Tongue Diam. (cm) 2.0-35 1.5-3.0

Lips Diam. (cm) 0.5-1.7 05-13

Constr. Index 20-40 14-34

Constr. Diam. (cm) 0.5-2.0 05-15

Throat Diam. (cm) 0.5-2.0 0.5-1.5

the synthesiser, using suitable analysis windows, focusing
on the relevant spectral information, and improving the
cost function for the optimisations.

3.2.1 Temporal windowing for parameter evolution

The optimisation process follows the pipeline illustrated
in Fig. 1. Input waveforms undergo spectral decomposi-
tion and segmentation into short time windows, where
suitable synthesiser parameters are inferred. These
parameters are iteratively optimised, with PT generating
new audio outputs that are compared against the original
input to minimise error.

A critical aspect of this process is the selection of an
appropriate window size. While longer windows (e.g. 100
ms) provide more stable estimates, they introduce arte-
facts by blending rapid articulatory changes, leading to
spurious vocalic transitions. Conversely, excessively short
windows may degrade spectral resolution and increase
computational complexity. To balance these factors, we
experimented with window sizes of 25 ms and 50 ms,
optimising the trade-off between temporal resolution and
spectral accuracy. We assume quasi-stationary behaviour
for the PT parameters within each segment, simplifying
the optimisation as a time-fixed process.

3.2.2 Low-pass spectral representation

To refine parameter estimation, we employed mel-spec-
trogram representations, which provided superior per-
formance over short-time Fourier transform (STFT) and
multiresolution spectrograms in early tests. Additionally,
we introduced a frequency cap at 8000 Hz for error com-
putation rather than using the full 24,000 Hz bandwidth
dictated by PT’s default sampling rate of 48 kHz. This
decision is motivated by the fact that frequencies beyond
8000 Hz contribute minimally to the perceptual quality
of speech and are not well-controlled by the PT synthe-
sis model [33, 38]. This spectral constraint improves the

(2025) 2025:27
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robustness of parameter estimation, particularly in real-
world conditions where input recordings may not be per-
fectly captured.

3.2.3 Cost function for smooth parameter transitions

A key limitation of previous methods was the reliance
on post-processing to artificially smooth parameter vari-
ations. To overcome this, we introduced a penalisation
term in the cost function that discourages abrupt changes
between consecutive analysis windows, similar to [19].
This penalisation ensures articulatory parameters evolve
naturally, maintaining speech continuity without requir-
ing external smoothing techniques.

The new cost function is defined as

N
E, Z% ;(Mel(&)[i]) — Mel(Ss[il)?, (1)
1 M
Br=o ,=Zo max*{|Pplj] = Pesiljll @, 0}, (2)
E=E, +8Ep, (3)

where N is the length of the Mel filterbank, S, is the
target signal, S; is the synthesised signal, M is the total
number of PT parameters, P, and P, are the articula-
tory parameters at consecutive windows, § is a weighting
hyperparameter, and « defines the threshold for penalisa-
tion. We fixed the value of o at 10% and optimised § to
achieve the best balance between spectral accuracy and
smooth articulatory transitions.

To initialise the optimisation windows, we employ a
neural network that provides an initial estimation of the
parameters, effectively acting as a codebook to guide the
optimisation process. Additionally, a consensus with the
previous window is used to ensure temporal coherence
and smooth parameter transitions.

This formulation ensures that minor parameter varia-
tions are tolerated, allowing organic speech modulation,
while large deviations are penalised to maintain consist-
ency. This advancement eliminates the need for post-pro-
cessing filtering.

As a result of these optimisations, the optimised PT
parameters shall provide better results and evolve con-
sistently over time. In Fig. 4, we illustrate how the differ-
ent improvements affect the computed parameters (only
tongue diameter illustrated), comparing the true articu-
lator trajectory (black) with estimations from different
methods. The Grey Box Optimisation (blue) follows the
ground truth closely with minimal deviations, while the
Old Method without filtering (green) exhibits higher var-
iability and transient inconsistencies. The NN Prediction
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(red), and the result with the previous method from [14] (green)

(red) shows erratic behaviour with significant deviations
from the expected trajectory, yet its fast inference makes
it a helpful initialisation strategy compared to an unin-
formed starting point.

3.3 Computational inefficiency and suboptimal
convergence

The optimisation process for the PT required many
iterations to converge, leading to increased compu-
tational cost and, in some cases, suboptimal solutions
due to uninformed initialisation. While effective, tradi-
tional black-box optimisation methods operate without
prior knowledge of the search space, making conver-
gence unpredictable and susceptible to local minima,
as reported in literature [19, 39]. To address this, we
introduce a deep learning-based initialisation strategy,
conceptualised as a neural codebook. This approach lev-
erages a trained model to provide an informed starting
point, accelerating convergence while improving opti-
misation reliability.

We implemented a deep neural network (DNN)
inspired by the ResNet architecture [40], incorporating
14 convolutional layers with residual connections every
two layers. ResNet architectures have demonstrated
strong performance in speech synthesis tasks [41],
making them a suitable choice for parameter estima-
tion in this context. The network operates on a single
mel-frequency spectrum instance, computed on the
low-passed input (restricted to 8 kHz and represented
as a 128-dimensional vector) and map it to the eight
articulatory parameters of PT (see Table 1). It employs
one-dimensional convolutions with a filter size of 16

and an initial filter count of 64, which doubles from the
third residual block onward.

To train the model, we used a dataset of one mil-
lion synthetic sounds using the PT, sampled at 48 kHz.
Two separate datasets were generated: one contain-
ing sounds synthesised using parameter ranges cor-
responding to male vocal tract characteristics and
another for female configurations (see Table 1). This
separation allows the model to specialise in each
vocal configuration, improving parameter estimation
accuracy.

To enhance training stability and prevent overfit-
ting, batch normalisation is applied at each layer, and a
dropout rate of 20% is incorporated. The training data-
set is split into 80% for training, 10% for testing, and 10%
for validation, with a batch size of 32. The Adam opti-
miser [42] is employed with a learning rate of 0.0001 to
ensure efficient gradient-based learning. Training contin-
ues until the validation loss stabilises, ensuring optimal
generalisation. The implementation was developed in
PyTorch 2.0.1.

3.4 Balancing exploration and control: a grey-box
evolutionary approach

Following our choice for the CMA-ES, we propose a

grey-box approach towards estimating and initialising

the optimisation process.

3.4.1 CMA-ES for robust articulatory parameter optimisation
The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [43] is employed to optimise PT parameters
by iteratively refining a multivariate normal distribution



Cémara et al. EURASIP Journal on Audio, Speech, and Music Processing

over candidate solutions. Unlike traditional black-box
techniques, CMA-ES adapts dynamically through:

o A maximum-likelihood update of the distribution
mean, favouring previously successful parameter
configurations.

+ An adaptive covariance matrix, which improves
search efficiency by prioritising promising directions
while controlling step sizes to avoid instability.

These mechanisms enable CMA-ES to effectively han-
dle PT optimisation’s non-linear and non-convex nature,
outperforming alternative heuristic and gradient-based
methods [44, 45]. We used a population size of 10 indi-
viduals for the CMA-ES optimiser.

While CMA-ES ensures robust search capabilities, rely-
ing solely on evolutionary optimisation can still result in
slow convergence or local minima trapping, particularly
without prior knowledge about the articulatory space. To
mitigate it, we introduce a grey-box initialisation scheme.

3.4.2 Grey-box approach: direct estimation and dynamic
initialisation

The grey-box approach precomputes certain parameters
using heuristic methods, ensuring direct correspondence
with PT’s internal controls and reducing the dimension-
ality of the optimisation process. Instead of treating all
parameters as free variables, we explicitly calculate those
that can be determined algorithmically:

+ Fundamental frequency via pYIN: the pYIN algo-
rithm [46] estimates f, from the waveform, segment-
ing it temporally to assign PT’s glottal frequency
parameter.

« Harmonic difference for voiceness estimation: the
spectral amplitude difference between the first and
second harmonic components of the glottal source,
denoted as H; — Hj, serves as an indicator of vocal
fold tension. This relationship, empirically estab-
lished in [47], follows a linear model:

Hy —Hy=-76+111-Ry, (4-)

where R is a glottal shape parameter. Since PT does
not expose Ry as a control parameter, but rather a
“tenseness” parameter T', the mapping is adjusted
using:

T=1-—— 5
: )

This transformation allows us to estimate voice-
ness in PT based on spectral characteristics directly
related to the phonation process.
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Beyond direct parameter estimation, we refine the opti-
misation process by integrating a dynamic initialisation
scheme within CMA-ES, balancing prior knowledge with
adaptive search strategies:

+ For each time window (except the first), the optimiser
is initialised based on a consensus between the best-
known parameters from the previous window and
the predictions from the neural network. This ensures
temporal consistency while leveraging the network’s
ability to infer plausible articulatory configurations.

+ For the first window, where no prior optimisation
results exist, parameters are initialised exclusively
using the neural network’s predictions, providing a
structured starting point.

By combining direct parameter estimation with
informed initialisation, this approach harmonises the
exploratory capabilities of CMA-ES with prior articula-
tory constraints, overcoming the limitations of purely
black-box or white-box methodologies. The integration
of prior information acknowledges the natural smooth-
ness of vocal tract transitions across consecutive win-
dows, reducing abrupt parameter shifts and improving
synthesis coherence.

4 Experiments
We conducted a series of experiments that analysed
objective and subjective quality metrics to determine
whether the new methodology improves the method
described in [14].

4.1 Datasets
We utilised a dataset comprising human-recorded
sounds, which included:

+ Records of the five vowels of Spanish sustained by
male and female speakers.

» Twenty vowel sequences, equally divided between
male and female voices. Including

+ Ten yawns of varying duration.

+ Two datasets, each containing one million samples
generated randomly using the PT, one for male and
another for female voices, exclusively for training
purposes of the DNN.

All recordings were sampled at 48 kHz, normalised,
and stored in mono format with 16-bit depth.

4.2 Optimisation procedures

Experiments compared optimisation techniques, initiali-
sation strategies, and the impact of hyperparameters. Key
analyses included:
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« Comparison of optimisation methods: evaluating our
proposed approach against the prior method [14].

o Initialisation strategies: comparison of black-box opti-
misation (without prior knowledge) against grey-box
methods, which incorporate an F, estimator, a voice-
ness estimator, and DNN-based initialisation. Addi-
tionally, evaluation of the DNN to assess its effective-
ness relative to the optimisation-based approaches.

« Penalisation factor (B): determining the optimal value
to balance smoothness and accuracy in parameter
estimation.

« Sound type: analysing performance across static vow-
els, vowel sequences, and yawns.

4.3 Objective evaluation

We employed Virtual Speech Quality Objective Listener
(ViSQOL) [48] as a perceptual-approximating metric
to quantify synthesised sound quality relative to human
recordings. This metric is used only for evaluation, as
the optimisation is computed only by direct spectral
difference. ViSQOL is a full-reference objective metric
designed to model human auditory perception by using
a modified similarity measure to compare spectro-tem-
poral patches between reference and test signals. It was
originally developed to evaluate telecommunication
speech quality and has been adapted for general speech
and audio quality assessment.

To enhance its applicability to PT synthesis, we fine-
tuned ViSQOL by retraining its support vector regres-
sor (SVR) using perceptual test data collected from our
experiments. This refinement aligns ViSQOL’s output
with subjective human judgments, improving its rel-
evance for assessing synthesised speech. The fine-tuning
process was systematically documented and follows the

Poor
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recipe the original ViSQOL developers proposed. This
ensures that the metric accurately captures the percep-
tual characteristics relevant to our synthesis framework.

Additionally, we evaluated the synthesised outputs
using another perceptual metric: Perceptual Evaluation of
Speech Quality (PESQ) [49]. However, its results did not
exhibit sufficient variability to be considered a reliable
measure for this type of evaluation.

4.4 Subjective evaluation

A perceptual study was conducted with 33 participants
(no reported hearing impairments) using the Go Listen
platform [50]. The survey included:

o Vowel intelligibility: participants identified synthe-
sised vowels without reference.

+ Vowel sequences: evaluated intelligibility across dif-
ferent g values.

o Similarity assessment: compared synthesised sounds
to human recordings, assessing articulatory fidelity.

Each participant evaluated 12 of 24 stimuli to mitigate
auditory fatigue, averaging 7.5 min per test. Results vali-
dated the optimisation framework and informed adjust-
ments to perceptual metrics for articulatory synthesis.

5 Results

This section presents the results obtained from objective and
subjective evaluations of the synthesised speech. The sub-
jective tests were conducted using the configurations that
achieved the highest performance in objective assessments.

5.1 SVR-adapted ViSQOL analysis
Figure 5 displays the distribution of ViISQOL MOS scores
(1 to 5 values) across all experiments. These scores follow

Good Excellent

3 4 5

ViSQOL MOS score

Fig. 5 Distribution of objective quality metrics across all experiments. ViSQOL MOS scores approximate a normal distribution
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a normal-like distribution, reflecting a balanced spread
of synthesis quality. This behaviour stems from the fine-
tuning of the ViSQOL mapper, which aligns objective
ViSQOL scores with subjective MOS ratings. The adjust-
ment process consists of mapping perceptual test results
to ViSQOL scores, ensuring consistency between the
two metrics. Given that our subjective evaluations were
designed to yield a normal distribution of MOS values,
the corresponding ViSQOL scores now follow a similar
pattern. This indicates that the mapper effectively cap-
tures perceptual differences, reinforcing ViSQOLSs reli-
ability as an objective assessment tool for synthesised
speech quality.

The evaluation of ViSQOL scores under different
experimental settings provides insights into system per-
formance. Figure 6 categorises results by experiment
type, distinguishing between black-box and grey-box
approaches, as well as the previous baseline [14]. An
ANOVA test revealed significant differences (p < 0.001),
indicating a clear distinction between methods. While
statistical significance confirms detectability, the actual
improvement is observed in the ViSQOL scores them-
selves, which consistently favour the proposed approach
over the baseline.

Figure 7 presents results grouped by initialisation
strategy. While both the black-box method and grey-
box reached similar performance levels across all sound
types, the primary distinction lies in convergence time.
The grey-box approach, leveraging the neural network
as a neural codebook, reduced optimisation time by 37%
on average. Although the black-box method eventually
reaches the same solution, the neural network initialisa-
tion mitigates the risk of local minima, facilitating a more
efficient search. However, the network alone does not
reach the optimal solution, particularly for vowels and
their sequences, likely due to its training being limited to

ViSQOL score

Grey box Old method
Experiment type

Fig. 6 ViSQOL score per approach, box type

Black box
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Pink Trombone-generated data, which may not fully gen-
eralise to human recordings.

The impact of the penalisation factor is illustrated in
Fig. 8. While an optimal S value is expected to lie between
1 and 2, the results do not show a statistically signifi-
cant distinction within this range. The observed perfor-
mance remains comparable across these values, making
it challenging to identify a precise sweet spot. Moderate
constraints on temporal variations may enhance sound
quality, but the optimal penalisation level cannot be con-
clusively determined.

Finally, Fig. 9 categorises ViSQOL scores by sound
class. Results indicate that vocal sounds are generally
better reconstructed than yawns, with vowel sequences
achieving higher scores than static vowels. This find-
ing suggests that ViSQOL computations may favor the
dynamics of vowel sequences over isolated vowels, which
is consistent with [51] due to the richness of the time-fre-
quency patterns of the former over the latter.
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Fig. 8 ViSQOL score by penalisation factor
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Fig. 10 MOS for vowel identification across different methods. Each
colour refers to an experiment variation: green to the New Method,
red to the Old Method. The suffix”_f"indicates the use of the female
model, while its absence corresponds to the male model

5.2 Subjective evaluation: perceptual tests
The perceptual evaluation assessed the technical accu-
racy and perceptual validity of the synthesised sounds.
Figure 10 shows the Mean Opinion Scores (MOS) for
vowel identification across different synthesis methods
collected in our perceptual tests. The new method con-
sistently outperformed the previous approach. Notably,
masculine [i] and [u] vowels were rated lower, likely due
to pronunciation biases affecting Spanish-speaking par-
ticipants. These nuances highlight the role of phonetic
perception and linguistic background in evaluation.
Figure 11 examines the effect of the penalisation factor
on vowel sequence perception. However, the observed
variations fall within the margin of error, making it diffi-
cult to determine any clear trend or optimal 8 value. The
differences between conditions are small, and no conclu-
sive advantage can be attributed to any specific penalisa-
tion level.
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Question 2: Identify Sequence
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Fig. 11 MOS values obtained for the different vowel sequences
recorded. The results are organised by penalisation factor, 8. The
suffix“_f"indicates the use of the female model, while its absence
corresponds to the male model

The comparison of synthesised versus human sound
samples is presented in Fig. 12. Grey-box initialisation
produced results perceptually similar to human refer-
ences, whereas neural network initialisation underper-
formed in most cases. Notably, while yawns were rated
lower overall, they maintained a distinct and identifiable
character, with informal feedback suggesting they elicited
contagious yawning responses.

Figure 13 examines the correlation between ViSQOL
and subjective MOS scores. A Pearson correlation of 69%
confirms that the trained ViSQOL model closely aligns
with perceptual evaluations, while the default ViSQOL
and PESQ correlations remained significantly lower (30%
and 20%, respectively). A Mann-Whitney test delivered
p = 0.7 supporting the equivalence of both distributions,
validating the trained ViSQOL SVR model.

Question 3: Compare with human recording
54 T -
8

n
O 3 -
=7 |

Method

21 1 No method
[ Neural network 4

| E pYIN I o

Vowels Sequénces Yawns
Sound class
Fig. 12 Comparison of synthesised and human sounds from records

on sustained vowels, vowel sequences, and yawns
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5.3 Ablation studies

To further validate our findings, ablation studies assessed
the accuracy of fundamental frequency (f;) and voice-
ness reconstruction compared to state-of-the-art (SOTA)
methods (pYIN and H1 — H2).

Figure 14 (left) shows that f, reconstruction was
not significantly affected by the choice of initialisa-
tion method. However, the grey-box method resulted in
near-optimal recovery, particularly for vowel sequences.
Despite minor discrepancies for static vowels, over
50% of cases remained within human perceptibility
thresholds.

Figure 15 demonstrates that penalisation factors
between 2 and 4 yield optimal temporal coherence. Our
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results support this statement with f, errors clustered
around zero, confirming accurate reconstruction. In con-
trast, voiceness errors exhibited a more uniform distribu-
tion, likely influenced by background noise compensation
and the non-linearity of the voiceness parameter.

5.4 Comparison with state-of-the-art

To benchmark our approach against existing SOTA
methods, we compared its performance with the Speech
Articulatory Coding (SAC) system presented in [52],
which represents one of the most recent advances in the
field of AAIL The SAC system employs a Transformer
architecture to estimate vocal tract articulator positions
from the speech waveform, subsequently enabling speech
resynthesis using a vocoder.

For this comparison, we generated a dataset compris-
ing 6000 unique English words synthesised using the
PT, leveraging available phonetic transcriptions and a
defined phoneme-to-articulator mapping. These synthe-
sised waveforms were then processed by the SAC system
to obtain its predicted articulator positions. To establish
a common ground for comparison, we trained a Ran-
dom Forest Regressor to map the SAC-derived articula-
tor positions to the corresponding PT parameter space
used by our method. This mapping allows us to evaluate
both systems based on their ability to reconstruct target
sounds represented within the PT framework, using the
same audio files employed in our subjective evaluations.
We focused the comparison on the final synthesised
output quality rather than directly comparing articula-
tor parameters, acknowledging that different articula-
tory configurations can produce perceptually equivalent

20.0
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Initialization method
Fig.

Initialization method

14 Ablation study of f, (left) and voiceness (right) grouped by initialisation method and focusing on the Mean Average Error (MAE)
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utterances. Furthermore, yawn sounds were excluded
from this specific comparison, as the SAC system was
primarily trained on speech data, making a direct com-
parison potentially unfair.

The results of this comparison are presented in Fig. 16,
which plots the ViSQOL scores obtained by our method
against those achieved by the SAC system for static and
dynamic vowels. Visually, the data points cluster around
the identity line y = x, indicating comparable perfor-
mance between the two methods across various sounds.

Quantitatively, our method achieved a mean ViSQOL
score of 3.7, slightly higher than SAC’s mean score of 3.6.
Analyzing individual data points, our method yielded
better or equal performance in approximately 80% of
cases (60% better, 20% equal), while SAC performed bet-
ter in the remaining 20% of cases. Despite these minor
differences, the overall performance distributions sug-
gest that the two methods are statistically equivalent in
terms of output quality for the evaluated speech sounds.
This equivalence validates our PT-based optimisation
approach relative to a contemporary data-driven SOTA
method. A key advantage of our methodology, however,
lies in its inherent flexibility; being based on a physi-
cal model (PT), it is not restricted to specific training
vocabularies and can potentially be applied to diverse
sound types, languages, or speaker characteristics with-
out retraining large neural models.

6 Discussion

This study refines optimisation techniques for articu-
latory synthesis using the PT, establishing a methodo-
logical framework for future research. Unlike purely
data-driven AAI approaches, our method operates within
a constrained physical model, requiring tailored opti-
misation strategies. Furthermore, our approach demon-
strated statistically equivalent performance to the SAC
SOTA system for vowel synthesis, validating its effective-
ness while offering greater flexibility beyond word-based
synthesis.

Key contributions include a gender-adaptive con-
figuration that enhances inclusivity in articulatory
synthesis, a fine-tuned ViSQOL metric for evaluating
PT-generated speech based on perceptual data, and a
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grey-box optimisation strategy that accelerates con-
vergence by 37%. While this approach significantly
improves dynamic speech sequences, neural net-
work initialisation remains constrained by the domain
gap between PT-generated and real human speech.
The successful comparison against SAC underscores
the viability of optimising physical models like PT to
achieve competitive results, particularly highlighting
our method’s advantage in not being inherently limited
by the scope of training data, thus potentially extending
to broader acoustic domains.

This work and prior studies establish a standardised
foundation for articulatory model optimisation. The
combination of perceptual validation, improved optimi-
sation, and tailored evaluation tools, and demonstrated
comparability with data-driven SOTA methods pro-
vides a robust basis for advancing physical-model-based
speech synthesis.

7 Conclusion

This study validates CMA-ES as an effective optimisation
method for articulatory synthesis using PT. Our solu-
tion successfully refined the parameters while maintain-
ing smooth transitions without post-filtering. Subjective
evaluations confirm that the optimised method produces
perceptually preferred results over previous approaches.
Objective comparisons further demonstrated that our
method achieves performance statistically equivalent
to the SAC SOTA system for vowel synthesis, lending
strong support to its validity.

Introducing a grey-box optimisation strategy accelerates
convergence and improves parameter stability, particu-
larly for dynamic speech sequences. Additionally, adapting
PT for gender-aware synthesis enhances its applicability,
addressing a key gap in articulatory modelling.

A neural codebook was introduced to structure the opti-
misation process, improving parameter estimation effi-
ciency. However, neural network initialisation remains
limited by the domain mismatch between PT-generated and
human speech. Fine-tuning ViSQOL as a PT-specific evalu-
ation metric bridges the gap between subjective and objec-
tive assessments, ensuring perceptually relevant evaluations.

These refinements establish a solid methodological
framework for future research in physical-model-based
articulatory synthesis. The validation against a contem-
porary SOTA system, coupled with the inherent flex-
ibility of the PT model, suggests promising avenues for
future work. Future work should explore extending these
techniques to more complex speech synthesis models
and non-verbal sound production, ensuring continued
advancements grounded in perceptual validation and lev-
eraging the adaptability of our physics-based approach.
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