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Abstract 

This study explores optimisation techniques for refining articulatory parameters in the Pink Trombone, a simplified 
physical speech synthesiser, to accurately emulate male and female vocal tract characteristics in non-speech sounds. 
We employ black-box and grey-box approaches, leveraging a genetic optimiser and Mel-spectrogram representations 
to infer articulatory configurations from human recordings via direct spectral comparison. Optimisation is performed 
over time windows to ensure temporal coherence, introducing modifications to SOTA objective metrics. We integrate 
grey-box strategies, incorporating pYIN for fundamental frequency estimation and a ResNet-based neural network 
as a neural codebook to enhance the optimisation process. Our findings confirm the synthesiser’s ability to replicate 
human vocalisations, achieving superior performance over existing techniques in subjective evaluations. We refined 
the perceptual metric ViSQOL, providing a calibrated framework for future auditory assessments in physical speech 
synthesis. These contributions establish a methodology for articulatory parameter estimation, improving synthesis 
quality and expanding vocalisation modelling and analysis applications.
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1  Introduction
Articulatory synthesis simulates human vocal production 
by computationally modelling the physiological com-
ponents of the vocal tract, such as the tongue, lips, and 
vocal folds, to produce human vocalisations [1–3]. Artic-
ulatory synthesis is one of the fundamental approaches 
to speech generation. It enhances realism and enables 
the modelling of non-linguistic human sounds—such as 
vowels, yawns, laughter, and growls—allowing their use 

as natural audio effects1 produced by the human body. 
These sounds are critical for applications like expressive 
sound design, virtual avatars, and biomedical research, 
where precise control over vocal tract dynamics is 
essential [5, 6]. Unlike data-driven methods that learn 
statistical mappings from large datasets, articulatory syn-
thesis provides explicit, interpretable control over articu-
latory parameters. It is uniquely suited for modelling the 
nuanced mechanics of non-verbal vocalisations [7].
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1  Artistically speaking, the British Broadcasting Corporation defines Audio 
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A central challenge in articulatory synthesis is obtain-
ing accurate articulatory data. Direct measurement tech-
niques like electromagnetic articulography (EMA) or 
magnetic resonance imaging (MRI) are invasive, costly, 
and typically restricted to speech-centric research in 
controlled laboratory settings [3, 8–11]. While most 
acoustic-to-articulatory inversion (AAI) systems focus 
on speech and rely on EMA data to train speaker-specific 
models, such approaches are ill-suited for synthesis-
ing non-linguistic sounds, which often involve extreme 
vocal tract configurations. Instead, model inversion tech-
niques like analysis-by-synthesis (AbS) circumvent direct 
physiological measurements by estimating articulatory 
configurations directly from acoustic signals, effectively 
reversing the speech production process [12, 13].

In our prior work [14], we implemented an AbS frame-
work using the Pink Trombone (PT) [15] synthesiser2, a 
real-time physical model of the vocal tract. We selected 
PT over alternatives like VocalTractLab [16], Maeda [17], 
or Melmenstein [18] for three reasons: (1) its computa-
tional efficiency enables rapid exploration of extreme 
articulatory configurations (e.g. exaggerated yawns, 
tense growls), (2) its interactive graphical interface pro-
vides intuitive visual feedback for designing, refining 
non-verbal sounds, akin to tuning audio effects, visualis-
ing the inferred settings, and (3) its open-source imple-
mentation facilitates reproducibility. Our earlier study 
systematically evaluated an informed selection of opti-
misation algorithms (e.g. Genetic, Particle Swarm, Least 
Squares...), acoustic features (e.g. Mel, Multiscale Fourier 
Transforms, Cepstrum...), and cost functions to deter-
mine the most effective configuration for AAI. While the 
results confirmed the PT’s potential for parameter esti-
mation, synthesised non-speech sounds exhibited abrupt 
transitions and lacked perceptual realism compared to 
natural human vocalisations.

The present work builds upon these findings to refine 
AbS, focusing on synthesising non-linguistic human 
sounds. Figure  1 describes the process, from pre-pro-
cessing human and synthesised audio through spectral 
analysis and parameter estimation (left) to optimisation 
(centre) and final synthesis (right). Building on the best-
performing configurations identified in our previous 
work, we aim to enhance temporal coherence and per-
ceptual realism, addressing key limitations observed:

•	 Limited vocal diversity: the default configuration of 
the PT is optimised for a male vocal tract, restricting 
its ability to model female or diverse vocal character-
istics. To overcome this, we modified the PT model 
to dynamically adjust vocal tract length and formant 

scaling ratios based on anatomical studies, allow-
ing for an accurate representation of both male and 
female voices.

•	 Post-processing dependency:  prior approach 
required post-processing filtering to artificially 
smoothen discontinuities in synthesised outputs. We 
refined the optimisation windowing strategy and cost 
function to ensure smoother articulatory transitions, 
eliminating the need for external filtering.

•	 Computational inefficiency and suboptimal con-
vergence: the previous optimisation process required 
extensive iterations, leading to slow performance and 
potentially suboptimal solutions. We addressed this 
by integrating a ResNet-based neural network to pro-
vide a starting point for the optimisation of the articu-
latory parameters, functioning as a neural codebook. 
Unlike traditional codebooks based on sampling, 
such as the approach in [19], which rely on a prede-
fined discretised set of examples and require exten-
sive searches, our method leverages neural infer-
ence. This warming strategy significantly accelerates 
convergence, reduces computational overhead, and 
enhances parameter optimisation efficiency.

•	 Limitations in black-box and white-box 
approaches:  black-box optimisation lacked preci-
sion, while white-box methods were overly con-
strained by the PT model [14, 20], reducing gen-
eralisability. We implemented and tested a hybrid 
grey-box optimisation strategy that balances flexibil-
ity and accuracy.

The remainder of this paper is organised as follows. 
Section  2 outlines the literature review, focusing on 
AAI with AbS and Articulatory synthesisers. Section  3 
details our methodology for optimising parameters in 
the Pink Trombone. Section 4 presents the experiments 
and datasets used. Section  5 describes the results from 
both objective and subjective evaluations. The paper con-
cludes with a discussion and conclusions in Sects. 6 and 
7, respectively.

2 � Literature review
2.1 � Acoustic to articulatory inversion with analysis 

by synthesis
AAI traditionally estimates vocal tract configurations 
from speech signals using paired articulatory–acoustic 
datasets [3, 8–11, 21]. However, AAI frameworks lev-
eraging AbS circumvent the dependency on invasive or 
labour-intensive articulatory recordings (e.g. MRI, EMA) 
by iteratively refining synthetic articulatory parameters 
to match target acoustic signals. This approach inte-
grates articulatory synthesisers as forward models, ena-
bling physiologically plausible inversion while avoiding 2  https://​dood.​al/​pinkt​rombo​ne/

https://dood.al/pinktrombone/


Page 3 of 15Cámara et al. EURASIP Journal on Audio, Speech, and Music Processing         (2025) 2025:27 	

the speaker-dependent limitations of recorded data [22, 
23]. For instance, Prom-on et al. [23, 24] optimised vowel 
configurations in VocalTractLab [16] using stochas-
tic gradient descent, starting from neutral articulatory 
positions to ensure biomechanical realism. Their work 
demonstrated that synthesisers could replicate reference 
formants and EMA trajectories with high precision, as 
validated by acoustic metrics (e.g. spectral correlation) 
and perceptual tests.

A critical advancement in AAI-AbS lies in the adoption 
of metaheuristic optimisation algorithms. Fairee et  al. 
[25] replaced gradient descent with Particle Swarm Opti-
misation (PSO) to accelerate parameter search for Thai 
vowels, while Gao et al. [26] employed genetic algorithms 
to estimate gestural scores for German words, optimising 
both timing and stiffness parameters to model coarticula-
tion. Neural networks have further enhanced generalisa-
tion capabilities: Gao et al. [27] trained Long Short-Term 
Memory (LSTM) models on VocalTractLab-generated 
data, augmented with vocal tract length and pitch vari-
ations, achieving robust cross-linguistic performance. 
Similarly, Sun and Wu [28] combined convolutional bidi-
rectional LSTMs with the Tube Resonance Model (TRM) 
[29], iteratively refining mel-spectrograms through a self-
supervised learning framework.

The inherent non-uniqueness of the inversion prob-
lem—where multiple articulatory configurations can 
produce similar acoustics—remains a central challenge. 
Panchapagesan and Alwan [19] addressed this issue by 
embedding regularisation terms into loss functions to 
penalise deviations from neutral vocal tract positions. 
Likewise, Dang and Honda [22] incorporated physiologi-
cal constraints, such as the relationship between formant 
frequencies and tongue positioning, to guide the inver-
sion process. Other work by Aryal and Gutierrez-Osuna 
[30] further demonstrated that statistical synthesisers 
could resolve ambiguities through probabilistic mappings 
of Mel-Frequency Cepstral Coefficients (MFCCs) to 
articulatory parameters. Despite these advances, compu-
tational complexity remains a challenge—especially for a 
sentence-level inversion—needing initialisation strategies 
such as rule-based gestural scores [31] or adaptive regu-
larisation [26].

A recent innovation in this framework is the appli-
cation of gradient descent optimisation on the Pink 
Trombone synthesiser—a real-time, browser-based tool 
offering intuitive control over vocal tract parameters. A 
previous contribution [14] already demonstrated how 
to train deep learning structures and run optimisation 
strategies for PT to match human speech sounds. On the 

Fig. 1  Flowchart of the conducted tests. On the left, the inputs consist of audio records. Records undergo a fixed preprocessing, including spectral 
decomposition and temporal segmentation, before being fed into the parameter optimisation models. The optimisation process is conducted 
per window, minimising the defined cost function. Ultimately, the estimated parameters need to be interpolated to synthesise the final audio 
output
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same testbed, Südholt et al. [20] demonstrated that gra-
dient descent can effectively refine articulatory configu-
rations on Pink Trombone, while Mo et al. [32] similarly 
exploited this approach with improved objective results 
using a JAX version of the PT. Both studies observed 
that even subtle modifications in tract configurations 
produce significant acoustic variations, emphasising the 
tool’s capacity for rapid hypothesis testing and iterative 
refinement.

2.2 � Articulatory synthesis models
Modern articulatory synthesisers vary in complexity, ana-
tomical accuracy, and usability. The Maeda synthesiser 
[17], parameterised by seven vocal tract variables (e.g. lip 
aperture, tongue body position), has been widely used for 
vowel and diphthong synthesis [19]. Its low-dimensional 
parametrisation facilitates efficient control and inversion 
but limits the phonetic detail that can be reproduced. In 
contrast, VocalTractLab [16] offers high anatomical fidel-
ity by modelling up to 18 articulatory parameters (e.g. 
jaw position, velum opening) to simulate dynamic ges-
tures and coarticulation [23, 27]. Although its rigorous 
biomechanical framework supports precise replication of 
EMA trajectories, this increased detail comes at the cost 
of greater computational intensity.

While less anatomically detailed than its counterparts, 
the PT synthesiser [15] excels in accessibility and real-
time interaction. It is based on a Graphical User Interface 
(GUI), which controls the tract shape and glottal source 
characteristics. The graphical interface allows users to 
adjust articulators while receiving instantaneous acous-
tic feedback. A snapshot of the GUI is shown in Fig.  2. 
This simplicity makes Pink Trombone ideal for rapid 
prototyping and educational applications, even though 
it sacrifices some physiological granularity compared to 
VocalTractLab or Maeda. Several recent works have lev-
eraged the agility of PT to optimise vocal tract configura-
tions, demonstrating its utility for exploratory AAI-AbS 
studies [14, 32–34]. Collectively, these models under-
score a trade-off between computational complexity and 
practical usability; with the Pink Trombone democratis-
ing articulatory synthesis, enabling broader experimenta-
tion without requiring extensive expertise.

3 � Methodology
3.1 � Vocal tract adaptation for increased diversity
Starting from the original implementation of the PT, 
we introduced several changes and optimisations for 
improved flexibility and accelerated processing.

Fig. 2  Interactive user interface of the PT synthesiser displaying the clickable vocal tract, allowing for real-time structure manipulation. Below 
the tract, a control box is available to adjust pitch and voiceness. The screenshot was taken from Pink Trombone, under MIT license [15]
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3.1.1 � The Pink Trombone
The PT is a real-time articulatory speech synthesiser 
based on the Kelly-Lochbaum (KL) model [35], which 
simulates one-dimensional wave propagation through the 
vocal tract. Sound originates at the glottis and propagates 
through cylindrical segments of varying cross-sectional 
areas, where reflections and turbulence shape the output. 
Excitation is implemented via Rosenberg’s model, simu-
lating airflow modulation by the vocal folds [36]. A rigor-
ous mathematical description of the PT can be found in 
[20].

The synthesiser employs a two-layer control system. 
The primary layer governs tongue position and diameter, 
while the secondary layer introduces tract constrictions, 
allowing for localised narrowing. Figure  3 shows a pic-
ture of the vocal tract and a schematic of its functional 
parts, from the generation of the excitation (bottom) up 
to the final sound produced (right), traversing the vocal 
tract.

3.1.2 � Modifications of the PT
Despite its flexibility, PT’s default configuration is tai-
lored for a male vocal tract, limiting its applicability for 
diverse voice synthesis. The standard model assumes a 
vocal tract length of approximately 16 cm, divided into 
44 segments. To enable more inclusive synthesis, we 

introduced a female-specific adaptation by shortening 
the tract length to 14 cm and adjusting segment distri-
butions accordingly [37]. Table  1 details the modified 
parameters, which ensure a physiologically plausible 
vocal tract representation.

The proposed modifications broaden PT’s applicabil-
ity beyond its original male-oriented design, enabling 
more representative modelling of vocal diversity while 
maintaining computational efficiency. Other explora-
tions following this approach may be covered in future 
contributions.

3.1.3 � Node.js version of the PT
To facilitate structured parameter optimisation and 
large-scale computational modelling, we transitioned PT 
from its GUI to a Node.js-based environment. This adap-
tation allows direct programmatic control, batch pro-
cessing, and seamless integration with machine learning 
techniques, avoiding the impracticalities of manual GUI-
based adjustments. The GUI remains valuable for qualita-
tive validation, demonstration, and educational purposes.

3.2 � Eliminating post‑processing dependency
Expanding from the insights originated from [14], we aim 
to minimise the post-processing of the optimisation out-
puts. The goal is to serve the optimised values directly to 

Fig. 3  Flowchart of the PT vocal synthesis structure, indicating the sequential flow from the glottis to the mouth; including nasal cavity. Dotted 
boxes represent optional features within the synthesiser
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the synthesiser, using suitable analysis windows, focusing 
on the relevant spectral information, and improving the 
cost function for the optimisations.

3.2.1 � Temporal windowing for parameter evolution
The optimisation process follows the pipeline illustrated 
in Fig. 1. Input waveforms undergo spectral decomposi-
tion and segmentation into short time windows, where 
suitable synthesiser parameters are inferred. These 
parameters are iteratively optimised, with PT generating 
new audio outputs that are compared against the original 
input to minimise error.

A critical aspect of this process is the selection of an 
appropriate window size. While longer windows (e.g. 100 
ms) provide more stable estimates, they introduce arte-
facts by blending rapid articulatory changes, leading to 
spurious vocalic transitions. Conversely, excessively short 
windows may degrade spectral resolution and increase 
computational complexity. To balance these factors, we 
experimented with window sizes of 25 ms and 50 ms, 
optimising the trade-off between temporal resolution and 
spectral accuracy. We assume quasi-stationary behaviour 
for the PT parameters within each segment, simplifying 
the optimisation as a time-fixed process.

3.2.2 � Low‑pass spectral representation
To refine parameter estimation, we employed mel-spec-
trogram representations, which provided superior per-
formance over short-time Fourier transform (STFT) and 
multiresolution spectrograms in early tests. Additionally, 
we introduced a frequency cap at 8000 Hz for error com-
putation rather than using the full 24,000 Hz bandwidth 
dictated by PT’s default sampling rate of 48 kHz. This 
decision is motivated by the fact that frequencies beyond 
8000 Hz contribute minimally to the perceptual quality 
of speech and are not well-controlled by the PT synthe-
sis model [33, 38]. This spectral constraint improves the 

robustness of parameter estimation, particularly in real-
world conditions where input recordings may not be per-
fectly captured.

3.2.3 � Cost function for smooth parameter transitions
A key limitation of previous methods was the reliance 
on post-processing to artificially smooth parameter vari-
ations. To overcome this, we introduced a penalisation 
term in the cost function that discourages abrupt changes 
between consecutive analysis windows, similar to [19]. 
This penalisation ensures articulatory parameters evolve 
naturally, maintaining speech continuity without requir-
ing external smoothing techniques.

The new cost function is defined as

where N is the length of the Mel filterbank, So is the 
target signal, Ss is the synthesised signal, M is the total 
number of PT parameters, Pp and Pp+1 are the articula-
tory parameters at consecutive windows, β is a weighting 
hyperparameter, and α defines the threshold for penalisa-
tion. We fixed the value of α at 10% and optimised β to 
achieve the best balance between spectral accuracy and 
smooth articulatory transitions.

To initialise the optimisation windows, we employ a 
neural network that provides an initial estimation of the 
parameters, effectively acting as a codebook to guide the 
optimisation process. Additionally, a consensus with the 
previous window is used to ensure temporal coherence 
and smooth parameter transitions.

This formulation ensures that minor parameter varia-
tions are tolerated, allowing organic speech modulation, 
while large deviations are penalised to maintain consist-
ency. This advancement eliminates the need for post-pro-
cessing filtering.

As a result of these optimisations, the optimised PT 
parameters shall provide better results and evolve con-
sistently over time. In Fig. 4, we illustrate how the differ-
ent improvements affect the computed parameters (only 
tongue diameter illustrated), comparing the true articu-
lator trajectory (black) with estimations from different 
methods. The Grey Box Optimisation (blue) follows the 
ground truth closely with minimal deviations, while the 
Old Method without filtering (green) exhibits higher var-
iability and transient inconsistencies. The NN Prediction 

(1)E1 =
1

N

N

i=0

(Mel(So[i])−Mel(Ss[i]))
2,

(2)E2 =
1

M

M
∑

j=0

max2
{

|Pp[j] − Pc+1[j]| − α, 0
}

,

(3)E =E1 + β · E2,

Table 1  Pink Trombone parameters and their bounds 
depending on the gender. The lip index is located in M = 44 for 
a male and M = 38 for a female. The Throat index is located in 
M = 12 for both

Parameter Male bounds Female bounds

Pitch (Hz) 70–180 140–220

Voiceness 0.5–1 0.5–1

Tongue Index 12–29 8–25

Tongue Diam. (cm) 2.0–3.5 1.5–3.0

Lips Diam. (cm) 0.5–1.7 0.5-1.3

Constr. Index 20–40 14–34

Constr. Diam. (cm) 0.5–2.0 0.5–1.5

Throat Diam. (cm) 0.5–2.0 0.5–1.5
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(red) shows erratic behaviour with significant deviations 
from the expected trajectory, yet its fast inference makes 
it a helpful initialisation strategy compared to an unin-
formed starting point.

3.3 � Computational inefficiency and suboptimal 
convergence

The optimisation process for the PT required many 
iterations to converge, leading to increased compu-
tational cost and, in some cases, suboptimal solutions 
due to uninformed initialisation. While effective, tradi-
tional black-box optimisation methods operate without 
prior knowledge of the search space, making conver-
gence unpredictable and susceptible to local minima, 
as reported in literature [19, 39]. To address this, we 
introduce a deep learning-based initialisation strategy, 
conceptualised as a neural codebook. This approach lev-
erages a trained model to provide an informed starting 
point, accelerating convergence while improving opti-
misation reliability.

We implemented a deep neural network (DNN) 
inspired by the ResNet architecture [40], incorporating 
14 convolutional layers with residual connections every 
two layers. ResNet architectures have demonstrated 
strong performance in speech synthesis tasks  [41], 
making them a suitable choice for parameter estima-
tion in this context. The network operates on a single 
mel-frequency spectrum instance, computed on the 
low-passed input (restricted to 8 kHz and represented 
as a 128-dimensional vector) and map it to the eight 
articulatory parameters of PT (see Table 1). It employs 
one-dimensional convolutions with a filter size of 16 

and an initial filter count of 64, which doubles from the 
third residual block onward.

To train the model, we used a dataset of one mil-
lion synthetic sounds using the PT, sampled at 48 kHz. 
Two separate datasets were generated: one contain-
ing sounds synthesised using parameter ranges cor-
responding to male vocal tract characteristics and 
another for female configurations (see Table  1). This 
separation allows the model to specialise in each 
vocal configuration, improving parameter estimation 
accuracy.

To enhance training stability and prevent overfit-
ting, batch normalisation is applied at each layer, and a 
dropout rate of 20% is incorporated. The training data-
set is split into 80% for training, 10% for testing, and 10% 
for validation, with a batch size of 32. The Adam opti-
miser  [42] is employed with a learning rate of 0.0001 to 
ensure efficient gradient-based learning. Training contin-
ues until the validation loss stabilises, ensuring optimal 
generalisation. The implementation was developed in 
PyTorch 2.0.1.

3.4 � Balancing exploration and control: a grey‑box 
evolutionary approach

Following our choice for the CMA-ES, we propose a 
grey-box approach towards estimating and initialising 
the optimisation process.

3.4.1 � CMA‑ES for robust articulatory parameter optimisation
The Covariance Matrix Adaptation Evolution Strategy 
(CMA-ES) [43] is employed to optimise PT parameters 
by iteratively refining a multivariate normal distribution 

Fig. 4  Articulator trajectory over time, comparing the ground truth (black) with estimations from Grey Box Optimisation (blue), the NN Prediction 
(red), and the result with the previous method from [14] (green)
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over candidate solutions. Unlike traditional black-box 
techniques, CMA-ES adapts dynamically through:

•	 A maximum-likelihood update of the distribution 
mean, favouring previously successful parameter 
configurations.

•	 An adaptive covariance matrix, which improves 
search efficiency by prioritising promising directions 
while controlling step sizes to avoid instability.

These mechanisms enable CMA-ES to effectively han-
dle PT optimisation’s non-linear and non-convex nature, 
outperforming alternative heuristic and gradient-based 
methods [44, 45]. We used a population size of 10 indi-
viduals for the CMA-ES optimiser.

While CMA-ES ensures robust search capabilities, rely-
ing solely on evolutionary optimisation can still result in 
slow convergence or local minima trapping, particularly 
without prior knowledge about the articulatory space. To 
mitigate it, we introduce a grey-box initialisation scheme.

3.4.2 � Grey‑box approach: direct estimation and dynamic 
initialisation

The grey-box approach precomputes certain parameters 
using heuristic methods, ensuring direct correspondence 
with PT’s internal controls and reducing the dimension-
ality of the optimisation process. Instead of treating all 
parameters as free variables, we explicitly calculate those 
that can be determined algorithmically:

•	 Fundamental frequency via pYIN:  the pYIN algo-
rithm [46] estimates fo from the waveform, segment-
ing it temporally to assign PT’s glottal frequency 
parameter.

•	 Harmonic difference for voiceness estimation:  the 
spectral amplitude difference between the first and 
second harmonic components of the glottal source, 
denoted as H1 −H2 , serves as an indicator of vocal 
fold tension. This relationship, empirically estab-
lished in [47], follows a linear model: 

 where Rd is a glottal shape parameter. Since PT does 
not expose Rd as a control parameter, but rather a 
“tenseness” parameter T  , the mapping is adjusted 
using: 

 This transformation allows us to estimate voice-
ness in PT based on spectral characteristics directly 
related to the phonation process.

(4)H1 −H2 = −7.6+ 11.1 · Rd

(5)T = 1−
Rd

3

Beyond direct parameter estimation, we refine the opti-
misation process by integrating a dynamic initialisation 
scheme within CMA-ES, balancing prior knowledge with 
adaptive search strategies:

•	 For each time window (except the first), the optimiser 
is initialised based on a consensus between the best-
known parameters from the previous window and 
the predictions from the neural network. This ensures 
temporal consistency while leveraging the network’s 
ability to infer plausible articulatory configurations.

•	 For the first window, where no prior optimisation 
results exist, parameters are initialised exclusively 
using the neural network’s predictions, providing a 
structured starting point.

By combining direct parameter estimation with 
informed initialisation, this approach harmonises the 
exploratory capabilities of CMA-ES with prior articula-
tory constraints, overcoming the limitations of purely 
black-box or white-box methodologies. The integration 
of prior information acknowledges the natural smooth-
ness of vocal tract transitions across consecutive win-
dows, reducing abrupt parameter shifts and improving 
synthesis coherence.

4 � Experiments
We conducted a series of experiments that analysed 
objective and subjective quality metrics to determine 
whether the new methodology improves the method 
described in [14].

4.1 � Datasets
We utilised a dataset comprising human-recorded 
sounds, which included:

•	 Records of the five vowels of Spanish sustained by 
male and female speakers.

•	 Twenty vowel sequences, equally divided between 
male and female voices. Including

•	 Ten yawns of varying duration.
•	 Two datasets, each containing one million samples 

generated randomly using the PT, one for male and 
another for female voices, exclusively for training 
purposes of the DNN.

All recordings were sampled at 48 kHz, normalised, 
and stored in mono format with 16-bit depth.

4.2 � Optimisation procedures
Experiments compared optimisation techniques, initiali-
sation strategies, and the impact of hyperparameters. Key 
analyses included:
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•	 Comparison of optimisation methods: evaluating our 
proposed approach against the prior method [14].

•	 Initialisation strategies: comparison of black-box opti-
misation (without prior knowledge) against grey-box 
methods, which incorporate an Fo estimator, a voice-
ness estimator, and DNN-based initialisation. Addi-
tionally, evaluation of the DNN to assess its effective-
ness relative to the optimisation-based approaches.

•	 Penalisation factor (β): determining the optimal value 
to balance smoothness and accuracy in parameter 
estimation.

•	 Sound type: analysing performance across static vow-
els, vowel sequences, and yawns.

4.3 � Objective evaluation
We employed Virtual Speech Quality Objective Listener 
(ViSQOL) [48] as a perceptual-approximating metric 
to quantify synthesised sound quality relative to human 
recordings. This metric is used only for evaluation, as 
the optimisation is computed only by direct spectral 
difference. ViSQOL is a full-reference objective metric 
designed to model human auditory perception by using 
a modified similarity measure to compare spectro-tem-
poral patches between reference and test signals. It was 
originally developed to evaluate telecommunication 
speech quality and has been adapted for general speech 
and audio quality assessment.

To enhance its applicability to PT synthesis, we fine-
tuned ViSQOL by retraining its support vector regres-
sor (SVR) using perceptual test data collected from our 
experiments. This refinement aligns ViSQOL’s output 
with subjective human judgments, improving its rel-
evance for assessing synthesised speech. The fine-tuning 
process was systematically documented and follows the 

recipe the original ViSQOL developers proposed. This 
ensures that the metric accurately captures the percep-
tual characteristics relevant to our synthesis framework.

Additionally, we evaluated the synthesised outputs 
using another perceptual metric: Perceptual Evaluation of 
Speech Quality (PESQ) [49]. However, its results did not 
exhibit sufficient variability to be considered a reliable 
measure for this type of evaluation.

4.4 � Subjective evaluation
A perceptual study was conducted with 33 participants 
(no reported hearing impairments) using the Go Listen 
platform [50]. The survey included:

•	 Vowel intelligibility:  participants identified synthe-
sised vowels without reference.

•	 Vowel sequences:  evaluated intelligibility across dif-
ferent β values.

•	 Similarity assessment: compared synthesised sounds 
to human recordings, assessing articulatory fidelity.

Each participant evaluated 12 of 24 stimuli to mitigate 
auditory fatigue, averaging 7.5 min per test. Results vali-
dated the optimisation framework and informed adjust-
ments to perceptual metrics for articulatory synthesis.

5 � Results
This section presents the results obtained from objective and 
subjective evaluations of the synthesised speech. The sub-
jective tests were conducted using the configurations that 
achieved the highest performance in objective assessments.

5.1 � SVR‑adapted ViSQOL analysis
Figure 5 displays the distribution of ViSQOL MOS scores 
(1 to 5 values) across all experiments. These scores follow 

Fig. 5  Distribution of objective quality metrics across all experiments. ViSQOL MOS scores approximate a normal distribution
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a normal-like distribution, reflecting a balanced spread 
of synthesis quality. This behaviour stems from the fine-
tuning of the ViSQOL mapper, which aligns objective 
ViSQOL scores with subjective MOS ratings. The adjust-
ment process consists of mapping perceptual test results 
to ViSQOL scores, ensuring consistency between the 
two metrics. Given that our subjective evaluations were 
designed to yield a normal distribution of MOS values, 
the corresponding ViSQOL scores now follow a similar 
pattern. This indicates that the mapper effectively cap-
tures perceptual differences, reinforcing ViSQOL’s reli-
ability as an objective assessment tool for synthesised 
speech quality.

The evaluation of ViSQOL scores under different 
experimental settings provides insights into system per-
formance. Figure  6 categorises results by experiment 
type, distinguishing between black-box and grey-box 
approaches, as well as the previous baseline  [14]. An 
ANOVA test revealed significant differences ( p < 0.001 ), 
indicating a clear distinction between methods. While 
statistical significance confirms detectability, the actual 
improvement is observed in the ViSQOL scores them-
selves, which consistently favour the proposed approach 
over the baseline.

Figure  7 presents results grouped by initialisation 
strategy. While both the black-box method and grey-
box reached similar performance levels across all sound 
types, the primary distinction lies in convergence time. 
The grey-box approach, leveraging the neural network 
as a neural codebook, reduced optimisation time by 37% 
on average. Although the black-box method eventually 
reaches the same solution, the neural network initialisa-
tion mitigates the risk of local minima, facilitating a more 
efficient search. However, the network alone does not 
reach the optimal solution, particularly for vowels and 
their sequences, likely due to its training being limited to 

Pink Trombone-generated data, which may not fully gen-
eralise to human recordings.

The impact of the penalisation factor is illustrated in 
Fig. 8. While an optimal β value is expected to lie between 
1 and 2, the results do not show a statistically signifi-
cant distinction within this range. The observed perfor-
mance remains comparable across these values, making 
it challenging to identify a precise sweet spot. Moderate 
constraints on temporal variations may enhance sound 
quality, but the optimal penalisation level cannot be con-
clusively determined.

Finally, Fig.  9 categorises ViSQOL scores by sound 
class. Results indicate that vocal sounds are generally 
better reconstructed than yawns, with vowel sequences 
achieving higher scores than static vowels. This find-
ing suggests that ViSQOL computations may favor the 
dynamics of vowel sequences over isolated vowels, which 
is consistent with [51] due to the richness of the time-fre-
quency patterns of the former over the latter.

Fig. 6  ViSQOL score per approach, box type

Fig. 7  ViSQOL score by method and DNN 

Fig. 8  ViSQOL score by penalisation factor 
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5.2 � Subjective evaluation: perceptual tests
The perceptual evaluation assessed the technical accu-
racy and perceptual validity of the synthesised sounds.

Figure 10 shows the Mean Opinion Scores (MOS) for 
vowel identification across different synthesis methods 
collected in our perceptual tests. The new method con-
sistently outperformed the previous approach. Notably, 
masculine [i] and [u] vowels were rated lower, likely due 
to pronunciation biases affecting Spanish-speaking par-
ticipants. These nuances highlight the role of phonetic 
perception and linguistic background in evaluation.

Figure 11 examines the effect of the penalisation factor 
on vowel sequence perception. However, the observed 
variations fall within the margin of error, making it diffi-
cult to determine any clear trend or optimal β value. The 
differences between conditions are small, and no conclu-
sive advantage can be attributed to any specific penalisa-
tion level.

The comparison of synthesised versus human sound 
samples is presented in Fig.  12. Grey-box initialisation 
produced results perceptually similar to human refer-
ences, whereas neural network initialisation underper-
formed in most cases. Notably, while yawns were rated 
lower overall, they maintained a distinct and identifiable 
character, with informal feedback suggesting they elicited 
contagious yawning responses.

Figure  13 examines the correlation between ViSQOL 
and subjective MOS scores. A Pearson correlation of 69% 
confirms that the trained ViSQOL model closely aligns 
with perceptual evaluations, while the default ViSQOL 
and PESQ correlations remained significantly lower (30% 
and 20%, respectively). A Mann-Whitney test delivered 
p = 0.7 supporting the equivalence of both distributions, 
validating the trained ViSQOL SVR model.

Fig. 9  ViSQOL score by sound class 

Fig. 10  MOS for vowel identification across different methods. Each 
colour refers to an experiment variation: green to the New Method, 
red to the Old Method. The suffix “_f” indicates the use of the female 
model, while its absence corresponds to the male model

Fig. 11  MOS values obtained for the different vowel sequences 
recorded. The results are organised by penalisation factor, β . The 
suffix “_f” indicates the use of the female model, while its absence 
corresponds to the male model

Fig. 12  Comparison of synthesised and human sounds from records 
on sustained vowels, vowel sequences, and yawns
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5.3 � Ablation studies
To further validate our findings, ablation studies assessed 
the accuracy of fundamental frequency ( fo ) and voice-
ness reconstruction compared to state-of-the-art (SOTA) 
methods (pYIN and H1−H2).

Figure  14 (left) shows that fo reconstruction was 
not significantly affected by the choice of initialisa-
tion method. However, the grey-box method resulted in 
near-optimal recovery, particularly for vowel sequences. 
Despite minor discrepancies for static vowels, over 
50% of cases remained within human perceptibility 
thresholds.

Figure  15 demonstrates that penalisation factors 
between 2 and 4 yield optimal temporal coherence. Our 

results support this statement with fo errors clustered 
around zero, confirming accurate reconstruction. In con-
trast, voiceness errors exhibited a more uniform distribu-
tion, likely influenced by background noise compensation 
and the non-linearity of the voiceness parameter.

5.4 � Comparison with state‑of‑the‑art
To benchmark our approach against existing SOTA 
methods, we compared its performance with the Speech 
Articulatory Coding (SAC) system presented in  [52], 
which represents one of the most recent advances in the 
field of AAI. The SAC system employs a Transformer 
architecture to estimate vocal tract articulator positions 
from the speech waveform, subsequently enabling speech 
resynthesis using a vocoder.

For this comparison, we generated a dataset compris-
ing 6000 unique English words synthesised using the 
PT, leveraging available phonetic transcriptions and a 
defined phoneme-to-articulator mapping. These synthe-
sised waveforms were then processed by the SAC system 
to obtain its predicted articulator positions. To establish 
a common ground for comparison, we trained a Ran-
dom Forest Regressor to map the SAC-derived articula-
tor positions to the corresponding PT parameter space 
used by our method. This mapping allows us to evaluate 
both systems based on their ability to reconstruct target 
sounds represented within the PT framework, using the 
same audio files employed in our subjective evaluations. 
We focused the comparison on the final synthesised 
output quality rather than directly comparing articula-
tor parameters, acknowledging that different articula-
tory configurations can produce perceptually equivalent 

Fig. 13  Correlation between ViSQOL and MOS scores, 
including the correspondences between the two (dots) 
and a tendency line (line)

Fig. 14  Ablation study of fo (left) and voiceness (right) grouped by initialisation method and focusing on the Mean Average Error (MAE)
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utterances. Furthermore, yawn sounds were excluded 
from this specific comparison, as the SAC system was 
primarily trained on speech data, making a direct com-
parison potentially unfair.

The results of this comparison are presented in Fig. 16, 
which plots the ViSQOL scores obtained by our method 
against those achieved by the SAC system for static and 
dynamic vowels. Visually, the data points cluster around 
the identity line y = x , indicating comparable perfor-
mance between the two methods across various sounds.

Quantitatively, our method achieved a mean ViSQOL 
score of 3.7, slightly higher than SAC’s mean score of 3.6. 
Analyzing individual data points, our method yielded 
better or equal performance in approximately 80% of 
cases (60% better, 20% equal), while SAC performed bet-
ter in the remaining 20% of cases. Despite these minor 
differences, the overall performance distributions sug-
gest that the two methods are statistically equivalent in 
terms of output quality for the evaluated speech sounds. 
This equivalence validates our PT-based optimisation 
approach relative to a contemporary data-driven SOTA 
method. A key advantage of our methodology, however, 
lies in its inherent flexibility; being based on a physi-
cal model (PT), it is not restricted to specific training 
vocabularies and can potentially be applied to diverse 
sound types, languages, or speaker characteristics with-
out retraining large neural models.

6 � Discussion
This study refines optimisation techniques for articu-
latory synthesis using the PT, establishing a methodo-
logical framework for future research. Unlike purely 
data-driven AAI approaches, our method operates within 
a constrained physical model, requiring tailored opti-
misation strategies. Furthermore, our approach demon-
strated statistically equivalent performance to the SAC 
SOTA system for vowel synthesis, validating its effective-
ness while offering greater flexibility beyond word-based 
synthesis.

Key contributions include a gender-adaptive con-
figuration that enhances inclusivity in articulatory 
synthesis, a fine-tuned ViSQOL metric for evaluating 
PT-generated speech based on perceptual data, and a 

Fig. 15  Ablation study of fo (left) and voiceness (right) grouped by penalisation factor and focusing on the Mean Average Error (MAE)

Fig. 16  Comparison of ViSQOL scores between our proposed 
method and the SAC SOTA system for static (red crosses) 
and dynamic (red circles) vowels. The dashed line represents identity 
y = x
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grey-box optimisation strategy that accelerates con-
vergence by 37%. While this approach significantly 
improves dynamic speech sequences, neural net-
work initialisation remains constrained by the domain 
gap between PT-generated and real human speech. 
The successful comparison against SAC underscores 
the viability of optimising physical models like PT to 
achieve competitive results, particularly highlighting 
our method’s advantage in not being inherently limited 
by the scope of training data, thus potentially extending 
to broader acoustic domains.

This work and prior studies establish a standardised 
foundation for articulatory model optimisation. The 
combination of perceptual validation, improved optimi-
sation, and tailored evaluation tools, and demonstrated 
comparability with data-driven SOTA methods pro-
vides a robust basis for advancing physical-model-based 
speech synthesis.

7 � Conclusion
This study validates CMA-ES as an effective optimisation 
method for articulatory synthesis using PT. Our solu-
tion successfully refined the parameters while maintain-
ing smooth transitions without post-filtering. Subjective 
evaluations confirm that the optimised method produces 
perceptually preferred results over previous approaches. 
Objective comparisons further demonstrated that our 
method achieves performance statistically equivalent 
to the SAC SOTA system for vowel synthesis, lending 
strong support to its validity.

Introducing a grey-box optimisation strategy accelerates 
convergence and improves parameter stability, particu-
larly for dynamic speech sequences. Additionally, adapting 
PT for gender-aware synthesis enhances its applicability, 
addressing a key gap in articulatory modelling.

A neural codebook was introduced to structure the opti-
misation process, improving parameter estimation effi-
ciency. However, neural network initialisation remains 
limited by the domain mismatch between PT-generated and 
human speech. Fine-tuning ViSQOL as a PT-specific evalu-
ation metric bridges the gap between subjective and objec-
tive assessments, ensuring perceptually relevant evaluations.

These refinements establish a solid methodological 
framework for future research in physical-model-based 
articulatory synthesis. The validation against a contem-
porary SOTA system, coupled with the inherent flex-
ibility of the PT model, suggests promising avenues for 
future work. Future work should explore extending these 
techniques to more complex speech synthesis models 
and non-verbal sound production, ensuring continued 
advancements grounded in perceptual validation and lev-
eraging the adaptability of our physics-based approach.
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