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Abstract—Neural Audio Synthesis is dedicated to generating
sound through generative neural networks. Sound effects are
defined as auditory elements that complement a specific scene
(in cinema, fiction, or videogames), support a storyline, enhance
a fictional environment, or improve the perceived plausibility
and presence (including Virtual Reality) without being music
or dialog. This manuscript presents a quantitative literature
review of the literature that intersects these two domains: the
neural generation of sound effects. By leveraging large language
models, we performed an extensive and systematic survey of
the major scientific repositories, filtering the most relevant
articles to ensure a thorough analysis. Our study examines
various generation paradigms employed in sound synthesis, the
specific types of sound effects created, the datasets used, and
the evaluation metrics considered. Furthermore, we provide a
forward-looking discussion on the evolution of this field towards
multimodal approaches, where sound generation might integrate
with other sensory modalities. All supporting materials and code
are available online.

Index Terms—Neural Audio Synthesis, Sound Effects, Foley
Effects, Audio Signal Processing, SFX, Generative synthesis.

I. INTRODUCTION

Neural Audio Synthesis (NAS) refers to generating sound
using advanced deep learning algorithms, particularly those
involving neural networks [1]. These techniques enable the
synthesis of high-quality audio by learning from data; often
large corpora of audio samples, but also, in some settings,
from very small datasets or even a single example.

NAS has remarkable applications across multiple domains.
In music synthesis, it allows generating novel sounds and
compositions [2], [3]. In virtual reality, to enhance immersive
experiences by providing plausible soundscapes [4]. In inter-
active media, to produce more engaging and dynamic audio
content and complement other modalities [5], [6].

Overall, generative capabilities in NAS represent a signifi-
cant leap forward in audio synthesis. To avoid ambiguity on
neural models structure and training, we distinguish the gen-
erative paradigm from the backbone. The generative paradigm
is the learning principle that determines the objective and
the sampling rule used to model the data distribution. The
backbone is the parametric architecture that instantiates that
principle, supplying capacity and inductive bias. Conditioning
signals (text, vision, audio, control) are orthogonal and can
be attached to either choice [7], as a form to control the
generation process.
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Compared with pre-NAS methods, NAS learns generative
priors from data and supports flexible conditioning, improv-
ing scalability, diversity, and controllability. Such capabilities
complement rather than replace interpretable Digital Signal
Processing (DSP) approaches, including classical methods [8],
[9] and more recent Differentiable DSP (DDSP) techniques
[3], providing an extended framework for audio practitioners.

The field of NAS is vast. In this study, we narrow our
focus specifically to the synthesis of sound effects. In doing
so, one should disambiguate two closely related but distinct
concepts: “audio effects” and “sound effects.” Audio effects
typically refer to processing techniques applied to existing au-
dio signals to alter their characteristics for aesthetic or stylistic
purposes. Common examples include reverberation, vibrato,
echo, or distortion, which modify certain acoustic properties
while preserving the fundamental nature of the original sound
[10]. On the other hand, sound effects denote audio elements
designed to enhance plausibility or contribute artistically to a
scene, without being musical or spoken in nature [11]. Typical
examples are footsteps, door creaks, or ambient noises, usually
crafted by Foley artists. Foley, a specialized practice within
the audio industry, involves recreating these sound effects by
employing everyday objects to match visual content in films,
television, and other multimedia productions. This second
category—sound effects—is the primary focus of our research.

In this context, NAS has demonstrated significant potential
in synthesizing “sound effects.” Neural networks, trained on
extensive datasets of audio samples, can produce high-quality
and highly plausible sounds that align closely with the detailed
requirements of Foley synthesis. Unlike traditional methods
used in Foley studios, which involve manually recreating
sounds to match visuals, NAS allows for the rapid generation
of diverse sound variations with minimal effort. This not only
enhances plausibility but also drastically reduces the time and
labor needed for sound design. Additionally, NAS provides the
flexibility to generate sound effects that are difficult or even
impossible to create manually, thereby expanding the creative
possibilities in audio synthesis.

Despite the promising capabilities of NAS in generating
plausible sound effects, one of the main challenges lies in
controlling and fine-tuning these systems. While NAS offers
significant advantages, its complexity—primarily on the devel-
oper side—can be a barrier, requiring specialized knowledge to
operate effectively. This complexity may limit its accessibility.
“Procedural audio,” on the other hand, refers to the real-time
generation and manipulation of sound through algorithms and
rule-based systems, allowing dynamic adaptation to changing
conditions [12]. Although NAS can generate sounds dynam-
ically, its current limitations in intuitive real-time control
prevent it from fully aligning with procedural audio principles.
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Fig. 1. Conceptual framework of the analysis (from left to right): train for Neural Audio Synthesis (paradigm, datasets, conditioning), synthesize Synthetic
Sound Effects (taxonomy), assess output Quality (objective/subjective). Icons mark design, output, and validation.

Thus, achieving real-time adaptability remains a future goal for
NAS, representing a benchmark that the technology is gradu-
ally approaching but has yet to fulfill. Expanding the real-time
capabilities of NAS could pave the way for broader adoption
and integration into various creative industries. Closing the
control-and-latency gap would turn NAS from an offline black
box into an authorable, real-time instrument for interactive
pipelines (games, extended reality, or live performance).

In this paper, we provide an overview of the state of the
art in the synthesis of sound effects using neural generative
models. We discuss the types of generated sound effects, the
metrics used to validate them, the datasets used for training,
the specific generative paradigms employed, and whether they
incorporate any form of multimodality. Figure 1 presents a
conceptual framework for the proposed analysis represented as
a left-to-right pipeline. First, NAS covers the design choices
of the system: generative paradigm, training datasets, and
conditioning (image, text, video). These choices produce a
Synthetic Sound Effect, organized by a sound effect taxonomy.
Finally, Quality Evaluation evaluates results using objective
and subjective methods.

To enhance the quality and scope of our overview paper,
we designed a pipeline utilizing web scraping and Large
Language Models (LLMs) to evaluate as many documents
as possible preliminarily. Subsequently, the evaluations and
conclusions of the review were conducted personally. Along
with this document, we provide the code and the prompts that
implement our procedure to ensure reproducibility. These align
with the EU guidelines on the responsible use of generative
AI in research [13] and preserve the core principles behind
the PRISMA framework [14].

The remainder of the paper is as follows: Section II is about
the background of the area, Section III exposes the research
methodology, Section IV describes the sound taxonomy fol-
lowed, Section V describes the neural synthesis techniques,
Section VI presents the two main tables about the neural sound
effects synthesis, Section VII discusses the multimodality in
NAS, Section VIII describes the evaluation methods, Section
IX discusses the whole quantitate literature review, and Section
X concludes the document.

II. BACKGROUND

Classic audio synthesis is a well-explored topic with numer-
ous significant references that are widely used. Fundamental
references are often found in books that serve as cornerstones
in the field.

For instance, in Designing Sound, [8] Andy Farnell provides
a practical guide on constructing sound effects and offers
a comprehensive taxonomy of sound synthesis techniques.
His book is invaluable for understanding the principles of
procedural audio and how to implement various sound effects
using computer algorithms. Farnell’s work emphasizes the
importance of understanding the underlying physics of sound
to create more plausible and engaging sound effects.

The Sounding Object, edited by Davide Rocchesso [15],
is a significant reference in sound engineering and music
synthesis. The book comprehensively explores physical sound
synthesis, a key methodology for generating plausible sound
effects, and discusses the fundamental principles underlying
sound generation from physical models. It includes multiple
case studies and practical examples illustrating how material
properties and structural forms influence acoustic character-
istics. This resource offers valuable theoretical insights and
practical guidance relevant to research and application in the
field.

Similarly, Ric Viers’ The Sound Effects Bible [16] is a
guide to sound design, detailing the operational mechanisms
of various sound effects commonly produced in Foley studios.
The book systematically addresses the methodologies for
recording and processing these effects, highlighting widely
adopted industry techniques and equipment. Viers’ work pro-
vides practical knowledge essential for sound designers and
Foley artists, effectively bridging theoretical concepts and real-
world applications.

Perry Cook’s Real Sound Synthesis for Interactive Applica-
tions [9] is another foundational text, particularly relevant for
understanding the principles and techniques underlying sound
synthesis in interactive environments. Cook’s book thoroughly
addresses algorithmic approaches for generating sounds that
react dynamically to user interactions and real-time inputs. It
emphasizes the importance of perceptually informed synthesis
methods, offering both theoretical discussions and practical
implementations that support interactive audio applications.

These references provide a solid theoretical foundation for
working with sound effects in general without delving into the
specifics of neural or machine learning-based sound synthesis.
They cover a broad range of topics, from the physics of sound
and procedural audio to practical Foley techniques, equipping
readers with the knowledge needed to create high-quality
sound effects. Next, we explore NAS foundamental references:

Moffat and colleagues, in their work Sound Effect Synthesis,
[17] review techniques for sound effect synthesis used in
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creative media, without delving into neural synthesis details.
However, they offer a thorough overview of sound effects,
aligning with the definition of sound effects we use in our
work. Their review is a key reference on the methods and
uses of sound-effect synthesis in media.

For the generation of variability and new sound effects, the
fundamentals of generative models are central. An accessi-
ble review is provided by David Foster’s Generative Deep
Learning, [18], which also includes references on working
with sound. This book provides an overview of the principles
behind generative models and their applications, including
sound synthesis. More specific to the field of NAS, the
reference [19] provides a full understanding of how to use
generative models in audio.

Combining knowledge from both sound effects and neural
synthesis is critical. A relevant work in this area is by Natsiou
et al. [20], who review generative models typically used in
NAS without focusing exclusively on any specific type of
sound. Their work also includes an evaluation of the methods
used to assess these systems, providing a comprehensive
overview of the current state of generative models in sound
synthesis. Another interesting review about deep models for
audio synthesis, yet even more recent, can be found in [21].

Additionally, the authors of The State of the Art in Pro-
cedural Audio [22] present a recent review on procedural
synthesis, highlighting relevant aspects of NAS. Although they
currently do not classify NAS as procedural audio due to
its inherent limitations regarding controllability, their insights
underscore the ongoing advancements bringing NAS closer to
fulfilling the key criteria of procedural audio. This suggests
that NAS is rapidly approaching the necessary conditions for
full integration into the procedural audio domain.

The reviews in [23], [24] touch upon NAS-based techniques
applied to music and speech, areas that diverge from our
primary focus. However, they are still relevant due to the
significant overlap between these disciplines and our field
of interest. They provide a comprehensive analysis of sound
synthesis using neural networks, which is valuable for under-
standing the broader capabilities and limitations of NAS.

In Evaluating Generative Audio Systems and Their Metrics,
[25] by Vinay et al., the authors review objective quality
metrics for generative sound synthesis. However, these metrics
are highly relevant and have been used to categorize the works
discussed here. Additionally, the paper mentions subjective
metrics evaluated through listening tests, providing a compre-
hensive framework for assessing generative sound quality.

The author of the doctoral thesis Deep Learning for the
Synthesis of Audio Effects [26] conducts an in-depth study
on how to work with generative models in this context.
The thesis focuses on using DDSP and the generation of
percussive effects. The author explores how DDSP can create
high-fidelity sound effects by leveraging neural networks to
model traditional signal processing components. This approach
allows for the seamless integration of deep learning techniques
with classic audio processing methods, offering a powerful
toolkit for sound designers.

Together, these references offer a solid theoretical and
practical foundation for understanding both traditional and

neural-based sound synthesis techniques. They cover a range
of topics from the fundamentals of generative models and
procedural audio to the practical applications and evaluation
methods of sound effect synthesis, equipping readers with a
comprehensive understanding of the field.

While the aforementioned literature provides crucial con-
text—spanning foundational synthesis principles, general gen-
erative models, and related audio domains—a notable gap
remains. Specifically, a comprehensive review dedicated exclu-
sively to the field of Neural Sound Effect Synthesis is currently
lacking. Existing surveys often address broader scopes like
general audio synthesis [20], [21], focus on distinct domains
such as music or speech [23], [24], cover traditional sound
effects techniques devoid of deep learning [17], or examine
tangential aspects like procedural audio definitions [22] and
evaluation metrics [25]. This fragmentation highlights the
necessity for the present work, which aims to consolidate
the state-of-the-art, identify key methodologies, challenges,
and future directions specifically within sound effects. Such
a focused overview is essential for advancing research and
application in this rapidly evolving subfield.

III. RESEARCH METHODOLOGY

A. Definition and Scope

We build on the line opened by WaveNet [27] and Sam-
pleRNN [28], which showed that neural models can learn long-
range temporal structure directly from raw audio. Magenta’s
NSynth [2] then helped translate these ideas into creator-facing
tools and widely used benchmarks. Together, these works
established a practical path for data-driven generation across
speech, music, and effects in creative and production settings.

Since then, the application of neural networks in sound
synthesis has grown remarkably. As our research focuses
specifically on sound effects, (defined in the introduction),
this review excludes all sound synthesis strategies outside the
categories documented by the BBC1 [11]. Therefore, music
and speech are not considered in our study. Although “music
as a sound effect” appears in that taxonomy, we do not include
it here because it retains its musical nature.

A notable focus in NAS is on percussive sound synthesis.
This stems both from interest in the class and from the fact
that phase inaccuracies in percussive sounds are less percep-
tible to listeners. Hence, evaluations more directly reflect a
model’s generative ability rather than algorithmic-dependent
phase reconstruction. For this reason, we also include systems
that synthesize acoustic drum sounds, emphasizing transient
energy over pitched content—even though drums are musical
instruments.

We restrict our scope to generative methods, excluding tra-
ditional non-generative workflows. We emphasize studies that
address the core challenges of Foley: the synthesis of comple-
mentary sound layers (such as footsteps, cloth, or props) and
audio-visual synchronization. Throughout this paper, we refer
to this temporal synchronization as alignment—specifically,

1BBC (1931) distinguishes six primary genres of sound effect: Realistic,
confirmatory; Realistic, evocative; Symbolic, evocative; Conventionalised;
Impressionistic; Music as an effect.
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the frame-accurate matching of audio onsets to visual actions.
It is important to note that alignment is independent of the
conditioning modality. It can be achieved through both audio-
only controls or multimodal (video) conditioning (e.g., [29]).

Conditioning is also a critical factor, with many models
steered by image, text, or video. While we acknowledge the
rapid growth of multimodality and explicitly catalogue these
conditioning signals in our analysis, this review is organized
by generative paradigm rather than input modality. Therefore,
we discuss audio-only and multimodal methods side-by-side
within their corresponding architectural families.

From a modelling standpoint, text-to-audio (TTA) systems
form a superset of neural sound-effects synthesis: a TTA model
that generates generic environmental audio can produce sound
effects as a subset of its outputs. In this review we restrict
ourselves to TTA works that explicitly target sound effects,
either through their datasets, prompts, or evaluation protocols,
and we do not attempt an exhaustive survey of general-purpose
TTA models.

B. Identification and Selection of the State of the Art

Because relevant work may appear under heterogeneous
labels (e.g., Foley/sound effects, audio effects, VTA, TTA), a
narrow query such as “neural audio synthesis” AND “sound
effects” risks omitting pertinent studies. We therefore delib-
erately broadened queries and venues to minimize omissions,
and used a Large Language Model (LLM) for the first-pass
triage (title/abstract understanding) and metadata extraction.
Final inclusion and detailed annotations were performed man-
ually, and are described below. This design prioritizes breadth
of topic coverage rather than a SOTA ranking while keeping
the process reproducible.

This approach allowed a massive survey of the literature,
being the most independent to the search keyword, and relying
mostly on the understanding of the title and abstract. It is
proven that LLMs are proficient at handling non-structured
data, as it is represented in a human-readable text [30],
that results may vary between LLMs, and that these models
indeed incorporate their own limitations [31]. Nevertheless, the
authors used it as an assistant for their work to find relevant
studies, not as a definitive procedure.

To capture the full range of relevant literature, we conducted
a comprehensive search in titles and abstracts using the query:

(deep OR neural OR generative model)
AND (audio OR sound OR effects)
AND (synthesis OR generation)

This approach aimed to encompass all potential relevant
studies. The search terms are interchangeable and can appear
together or separately in the title or abstract.

We stored all titles and abstracts, cross-checked them to
eliminate duplicates, and applied an initial filter using a
LLAMA-3 model2. Our screening tools are developed in
Python 3.10, and the model runs on a NVIDIA A100 GPU.
The model outputs structured fields that are schema-validated

2https://ai.meta.com/blog/meta-llama-3/

and human-verified (with temperature at value zero and fixed
prompt version). This model was characterized to determine:

• Whether the topic is related to neural audio synthesis.
• The type of signal it addresses: music, speech, or sound

effect.
• The specific generative paradigm employed (details given

in Section V): Generative Adversarial Networks (GANs),
Variational AutoEncoding (VAE), Vector Quantize-VAE
(VQ-VAE)3, Normalizing Flows, Diffusion, Autoregres-
sion, Neural Codec modification, and DDSP.

This filtering allowed us to exclude a substantial number
of irrelevant documents based on our criteria. We only kept
those that were related to neural audio synthesis and sound
effects and employed a neural architecture (a sound effect
produced by any other kind of procedure would be removed
at this point).

Fig. 2 provides a flowchart of the pipeline that was covered.
The actions taken were as follows:

• Use the query in Scopus, Arxiv, and Web of Science in
the title, keywords, and abstract. These databases were
chosen due to their recognized scientific credibility and
extensive indexing of pertinent conference proceedings
and peer-reviewed literature, ensuring broad coverage of
high-impact research. We did not use Google Scholar
search at this stage as it might not be replicable, being a
search engine rather than a curated database, which limits
its search depth (e.g., to 1000 results). The queries gener-
ated lists of 12628, 1601, and 8480 articles, respectively.

• Consolidate the titles, eliminate errors, and remove du-
plicates, remaining a total of 12562.

• Do a LLAMA-3 screening based on title and abstract.
Tagged all entries within three different categories: re-
lated to NAS, type of generated signal, type of generation
architecture. This process took around 17 hours, about 5
seconds per entry.

• Filter based on first tag, whether it is related to NAS. A
total of 6383 documents remained.

• Filter based on second tag, whether it is sound effects
related. A total of 137 documents remained. Based on the
neural architecture, the third filter was unnecessary as it
did not filter out any entry: the first filter was enough to
acknowledge if it is neurally powered.

• Check all articles based on a full reading. At this point,
we discarded ten articles. A total of 129 were valid at
this point.

• Perform forward check (scanning reference lists of in-
cluded papers) and backward check (using “Cited by”
tool for each included paper) in Google Scholar. We
manually included ten documents that were missing.

• The final number of scientific articles is 139.
Fig. 3 illustrates the number of papers published on neural

audio synthesis up to December 2024. There is a clear upward
trend, particularly pronounced in 2023. It is expected to
double the number of articles by the end of 2024 (up to 60).

3VQ-VAE is fundamentally different from a standard VAE, being
dictionary-based quantization that replaces the VAE posterior and permits
sequence priors).
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Fig. 2. Flowchart of the actions taken to find relevant scientific publications.
In red are steps where an algorithm was used; in yellow, where an AI was
used; and in green, where manual steps were taken.

The increase in papers began in 2018, coinciding with the
introduction and maduration of enabling technologies such as
WaveNet (2016). In [22], it is noted that procedural audio
research (not NAS) peaked in 2017 but subsequently declined.
Authors argue that this decline could be attributed to the rise
of NAS. Our investigation supports this hypothesis, as NAS
has experienced significant growth starting from 2018.

Fig. 3. Number of articles published since 2016 until 2024.

Fig. 4 illustrates the evolution of generative paradigms
adoption from 2017 onwards, highlighting a significant trend
shift. Initially, the field was dominated by GANs. This trend
persisted until around 2022, when diffusion models, initially
popularized for image generation, were increasingly adapted
for audio synthesis. The growing use of these models marked
a new phase in generative techniques. By this time, diffusion
systems became the leading tools for creating sound effects,
alongside traditional methods like GANs and VAEs.

IV. SOUND TAXONOMY

The taxonomy used in this study adheres strictly to the one
defined in the Practicals section of Farnell’s book [8]. We are
aware that other taxonomies, such as hierarchical ones, might
offer advantages in defining interaction types, materials, states
of matter, or fundamental details of sound physiology. Despite
these potential benefits, we opted for a compact, flat taxonomy
similar to that proposed in [22]. Our taxonomy is composed
of seven groups:

Fig. 4. Neural generative paradigms used to synthesize sound effects per year.
A single article may use more than one paradigm.

• Artificial: This group consists of human-made elements
that are not naturally occurring. It includes various types
of electronics, buttons, and alarms. Importantly, machin-
ery is not included here, as it has a dedicated category.

• Idiophonics: This category covers the interaction of ev-
eryday objects that maintain their structure after impact.
This includes unspecified material collisions like crush-
ing, rubbing, scraping, and bouncing. Acoustic drums are
also classified here since they do not change shape after
being struck.

• Nature: This includes sounds that occur naturally, corre-
sponding to the elements of earth, water, air, and fire, as
well as the states of matter: solid, liquid, gas, and plasma.
Examples are fire crackling, burning wood, flowing water,
rain, and thunder.

• Machinery: Sounds produced by the operation of ma-
chinery, often due to imperfections, fall into this category.
This includes the sounds of machines operating, data
being transferred through a modem, pneumatics, and
relays.

• Lifeforms: Any sound generated by the activity of living
beings, excluding speech, belongs to this category. This
includes footsteps, sounds from terrestrial or marine
animals, insects, barking, and snake hissing.

• Mayhem: Sounds associated with destruction, aggres-
sion, and death are included here. This category covers
weapon sounds, explosions, rocketry, and even some
sounds that do not exist in reality, such as the exaggerated
sound of a gun being pointed in movies.

• Sci-Fi: This category encompasses hyper-realistic sounds
that extend beyond known real-world phenomena. While
some of these sounds might fit into other categories,
such as alien machinery, they often lack a real-world
reference. Examples include lightsabers, R2D2’s sounds,
and teleportation effects.

A substantial number of the analyzed studies do not ex-
plicitly specify the type of sound effect they generate but do
detail the datasets utilized. Therefore, there will be a second
categorization based on the datasets used while details on the
sound category are not included.

This dual approach allows readers to analyze works based
on sound type, which is more practical for application pur-
poses, and based on the dataset, which is more suited for

This article has been accepted for publication in IEEE Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLPRO.2025.3646080

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 6

engineering and technical use. One can assume that if no sound
effect is mentioned in their document while a massive dataset
is mentioned, all types of recordings were used for training.

V. NEURAL GENERATION PARADIGMS

A. Preliminaries

We denote the observed audio by x (either waveform or a
time–frequency representation) and the latent paremeters by
z. Most models learn two components: an inference map that
converts x into a compact representation z (when applicable),
and a generator that maps z back to audio. Latents can be
continuous (real vectors) or discrete (indices or “tokens”).
Discrete latents typically arise from a learned codebook. The
resulting token sequence can then be modeled by a separate
prior and decoded back to audio. We use prior to denote both
the latent prior p(z) in continuous models and the sequence
prior over discrete tokens in vector-quantized/neural-codec
systems. GANs and Diffusion do not learn an explicit p(z)
beyond the base noise.

Training objectives across the literature fall into a few
simple families. Likelihood-based models directly optimize the
data likelihood. This is exact in autoregressive models and in
normalizing flows, and it is optimized through a variational
lower bound in VAEs. Implicit-likelihood models, such as
GANs, match the data distribution via an adversarial game
rather than a tractable likelihood. Diffusion models are trained
via denoising or score-matching losses, which connect to
likelihood through the score function ∇x log pt(x).

It is often useful to adopt a transport view. Let pϵ be a
simple base noise distribution and pdata the data distribution.
Transport-based methods learn a map Tθ (or a velocity field
vθ(x, t)) such that Tθ#pϵ ≈ pdata, where # denotes the
push-forward [32]. Normalizing flows realize this transport
with invertible maps and provide exact likelihoods. Diffusion
models learn a time-dependent transport that inverts a noise
process. In what follows, we use likelihood to refer to either
a tractable pθ(x) (exact in autoregressive models and flows)
or its variational lower bound (in VAEs). GANs are implicit-
likelihood models, and diffusion models are trained with de-
noising / score-matching objectives. Optimization is stochastic
and gradient-based (SGD/Adam) in all cases. Quantizers rely
on straight-through estimators. Likelihood models maximize∑

log pθ(x), diffusion models minimize denoising losses, and
GANs optimize adversarial objectives.

Conditioning turns an underdetermined generation task into
a controllable one: it aligns the output with user intent, context,
and timing. A conditioning variable c (e.g., text or video) can
steer generation across paradigms, but it enters the model at
different points. It can be fed to the encoder/decoder or to a
conditional prior (VAE, neural-codec+prior), to the prior over
discrete tokens (VQ-VAE), as side information in the generator
and/or discriminator (GAN), as features or cross-attention
inputs in denoisers (diffusion), as additional context in next-
step predictors (autoregressive models), or as parameters of
base distributions and coupling layers (flows). At sampling
time, a single scalar control (e.g., temperature, top-k or top-
p sampling) typically trades fidelity for diversity [33]. A

related mechanism is style conditioning, where a mapping
network produces per-layer scales and shifts that modulate
activations [34]. We treat style as one more conditioning
mechanism, not as a separate generative paradigm.

The backbones are the neural function classes that im-
plement the components of a paradigm (encoder, decoder,
prior, denoiser, discriminator). They determine key properties
such as receptive field, multi-scale paths, context length, and
latency. The mapping between paradigms and backbones is
many-to-many: the same backbone can instantiate different
paradigms, and a single paradigm can be implemented with
different backbones. In the next section, we pair each paradigm
with typical backbones and highlight the trade-offs that result.

For notation, expectations are E[·] and the Kullback–Leibler
divergence is DKL(·∥·). We introduce any additional symbols
locally in each subsection as needed.

In the next subsections, we survey the generative paradigms
considered for sound-effects NAS. For each generative princi-
ple we outline: (1) the core learning principle; (2) how con-
ditioning enters; (3) typical backbones; and (4) how sampling
and use work in practice. This structure keeps the comparisons
compact while emphasizing the control and timing require-
ments that are specific to sound effects.

B. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [35] learn a gen-
erator Gθ that maps noise z∼p(z) to samples x̂ = Gθ(z, c),
while a discriminator Dψ attempts to distinguish real x from
generated x̂. The original minimax objective,

min
θ

max
ψ

Ex∼pdata

[
logDψ(x)

]
+Ez∼p(z)

[
log

(
1−Dψ(Gθ(z))

)]
,

optimizes a Jensen–Shannon divergence surrogate. In practice,
the non-saturating generator loss minθ Ez[− logDψ(Gθ(z))]
improves gradients [35].

1) Conditioning and Priors: Conditioning variables c can
be integrated into the generator G either by concatenating them
with the latent vector z or with intermediate feature maps
(e.g., [36]). Alternatively, feature modulation can be achieved
through style-based or FiLM-like normalization layers that
scale and shift activations according to c [37], [38]. On the
discriminator side, conditioning is typically enforced via pro-
jection or auxiliary heads, allowing D to assess the consistency
between the generated signal x and its conditioning input
c (e.g., [39]). The latent prior usually follows z ∼ N (0, I).
Style-based GANs introduce an additional mapping network
that reparameterizes z into a style space, thereby enabling
truncation control at inference time [40]. Alternatively, one
may learn an implicit conditional prior p(z | c) to better align
the sampled latents with c without modifying the adversarial
objective [41].

2) Backbones: Most adversarial audio architectures adopt
convolutional or ResNet-based generators paired with patch
or multi-scale discriminators. This design ensures scalable
training and stable gradients [36], [39], [42]–[44]. Style-based
variants add a mapping network to modulate feature statistics
across layers, enabling fine-grained control over timbre and
dynamics [38], [40]. Architectures inspired by SinGAN exploit
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multi-scale pyramids to capture hierarchical sound structures
and facilitate controllable variations [45]. For transient- or
impact-dominated signals (e.g., drums), 1D convolutional
stacks with multi-scale receptive fields are commonly used
[42], [46].

3) Sampling and Use: Inference consists of a single for-
ward pass: sample z ∼ p(z) (or p(z | c)) and compute
x̂ = Gθ(z, c). Diversity–quality trade-offs at generation time
can be controlled by truncation of z, stochastic noise injection
inside G, or rejection of samples with low discriminator
scores when available. Continuous latent spaces further allow
smooth interpolation and attribute manipulation by traversing
meaningful directions in z or in its mapped style space.

C. Variational AutoEncoder (continuous latent)

A Variational AutoEncoder (VAE) [47] assumes that each
observation x is generated from a low-dimensional continu-
ous latent z drawn from a prior p(z) and decoded through
pθ(x | z). Because the exact posterior pθ(z | x) is intractable,
an encoder qϕ(z | x) is trained to approximate it while we
maximize a tractable lower bound to the log-evidence:

log pθ(x) ≥ L(θ, ϕ;x) =
Eqϕ(z|x)

[
log pθ(x | z)

]
−DKL

(
qϕ(z | x) ∥ p(z)

)
.

The first term rewards reconstructions that are likely under the
decoder; the KL term limits how much information the latent
carries and aligns posteriors with the prior so that sampling
z ∼ p(z) is meaningful. Gradients flow through stochastic
sampling via reparameterization [48]:

z = µϕ(x) + σϕ(x)⊙ ϵ, ϵ ∼ N (0, I),

making Monte Carlo estimates of the ELBO differentiable in
ϕ.

1) Conditioning and priors: When side information c is
available, the conditional model replaces pθ(x | z) by pθ(x |
z, c) and the encoder by qϕ(z | x, c), and often learn pψ(z |c)
to reduce mismatch. Conditioning is commonly injected by
concatenation of class tokens at encoder/decoder inputs, as
in the conditional Wasserstein autoencoder for drums [49], or
by feature-wise modulation (FiLM [37]) to gate intermediate
activations in variational pipelines. Learned priors pψ(z | c)
reduce posterior–prior mismatch and make conditional draws
coherent. Adversarial matching of the aggregated posterior
regularizes z for interpretable control in percussive VAEs [50].
Prior shaping via aligning z to semantic audio embeddings
(e.g., CLAP [51]) encourages structured latents that reflect
content and improve conditional coherence [52]. Expressive
priors implemented as flows over z can further tighten the
bound while preserving efficient sampling. Flow-based latent
distributions have proven effective for high-fidelity sound-
effects synthesis [53].

2) Backbones: Backbone controls how much information
routes through z. Convolutional decoders paired with spectro-
gram likelihoods are reliable (and real-time) in autoencoding
settings [49], [54], and feedforward/U-Net-like Convolutional
Neural Networks (CNNs) can map high-level controls to
waveforms while preserving timbre structure [55]. End-to-end

variational systems adapted from text-to-speech add attention
blocks and a flow-regularized prior to keep z aligned with
semantic factors [52], and phase-aware decoders improve
resynthesis fidelity without collapsing the latent space [56].

3) Sampling and use: After training, generation draws
z∼ p(z) or pψ(z | c) and decodes once through pθ(x | z, c).
Interpolations and attribute edits are straightforward in the
latent space because z is continuous and usually organized by
the information bottleneck. This is especially effective when
the backbone and the KL schedule have encouraged z to
capture semantically coherent factors of variation.

D. Vector-Quantized Variational Autoencoder (discrete latent)

Vector-Quantized Variational Autoencoders (VQ-VAE) [57]
replace the continuous latent by indices from a learned code-
book. The encoder ze(x) is snapped to the nearest code ek
and the decoder predicts pθ(x | ek). Training minimizes a
reconstruction term plus codebook and commitment losses,

LVQ(x, c) =
∥∥x− x̂

∥∥2
2

+
∥∥sg[ze(x, c)]− ek

∥∥2
2

+ β
∥∥ze(x, c)− sg[ek]

∥∥2
2
,

and uses a straight-through gradient for the quantizer.
Discrete latents ease long-range modeling (via autoregressive
or diffusion priors) and support hierarchical or multi-band
structure for high fidelity synthesis [58], [59].

1) Conditioning and priors: Side information c can enter
the encoder/decoder by concatenation (e.g., class or event tags
fused into the VQ encoder for conditional sound generation
[60]) or by feature-wise modulation that gates intermediate
features before quantization (e.g. video-aware conditioning in
masked generative setups [61]). The prior over code indices
is typically learned: autoregressive Transformers with cross-
attention to text or video yield coherent long-form audio
from discrete tokens [59], [61], while discrete/latents diffusion
refines token sequences or multi-band code streams for higher
fidelity and temporal alignment [58], [62].

2) Backbones: Encoders/decoders are usually CNN/ResNet
stacks operating on spectrograms or learned codec features,
optionally with hierarchical codebooks or multi-rate branches;
this aligns well with token priors based on U-Nets or Trans-
formers [58], [59]. Masked modeling backbones (e.g., Spec-
MaskGIT) also pair naturally with discrete latents for efficient
pretraining and controllable synthesis from sparse context
[63]. For video-to-audio (VTA), dual-stream designs keep a
lightweight VQ decoder while the prior backbone (Trans-
former or dual-U-Net) handles alignment and rhythm cues [61].

3) Sampling and use: Generation selects code indices from
the learned prior conditioned on c and decodes once through
the VQ decoder. Hierarchical or multi-band codebooks enable
coarse-to-fine control and robust editing (token replacement
or span infilling) [58]. In text/video-to-audio, discrete-token
priors improve long-horizon structure and synchronization
while keeping inference tractable in practice [59], [61].
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E. Normalizing Flows

Normalizing flows (NFs) [48] construct an invertible map
fθ : X → Z that transforms data x to a simple base latent
representation z = fθ(x) with tractable density p(z) (e.g.,
standard Gaussian). By change of variables,

log pθ(x | c) = log pϵ
(
fθ(x, c) | c

)
+ log

∣∣∣∣det ∂fθ(x, c)∂x

∣∣∣∣ ,
so maximum likelihood is exact and trained by gradient ascent
on

∑
i log pθ(x

(i)). Expressivity comes from composing K
simple, bijective layers fθ = fK ◦ · · · ◦ f1 for which both the
inverse and log |det J | are efficient.

1) Conditioning and priors: Conditioning enters the affine
coupling networks by concatenation of c (class/action/timing)
into the scale/shift subnets, enabling controllable sound ef-
fects synthesis [64]. In flow-matching variants, cross-attention
to text embeddings provides semantic guidance during the
learned transport [65], while video features (and alignment
cues) guide the trajectory for efficient VTA generation under
rectified/flow matching [66]. Learned conditional bases replace
a fixed pϵ with pϵ(· | c), improving coherence without altering
invertibility [67].

2) Backbones: Flow coupling networks are typically
CNN/ResNet stacks (with invertible 1×1 convs) operating on
log-magnitude spectrograms or learned features [64]. Flow-
matching TTA/Video-to-Audio (V2A) systems pair the trans-
port field with U-Net or Transformer blocks to fuse text/video
context while keeping the sampler lightweight [65], [67].
Latent-flow designs move the transport to a compact space,
easing long-horizon structure while the decoder handles fine
detail [67].

3) Sampling and use: Exact flows sample in a single
forward pass through the invertible stack, giving real-time or
near–real-time synthesis and smooth control sweeps for sound
effects parameters [64]. Flow matching solves a short ODE
(or rectified flow) with tens of steps, trading tiny likelihood
slack for speed while preserving semantic alignment from
text/video [65], [66]. In practice, flows excel when low-latency
generation and deterministic, repeatable control are required,
and when conditioning carries precise timing.

F. Diffusion

Diffusion models learn to reverse a corruption process that
gradually mixes data with noise. In discrete-time Denoising
Diffusion Probability Models (DDPMs) [68], the forward
process is

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I),

and the model predicts either the noise ϵθ(xt, t), the clean
signal x0,θ(xt, t); the common training loss is

LDDPM(θ) = Ex0, c, ϵ, t

[ ∥∥ϵ− ϵθ(xt, t, c)
∥∥2
2

]
,

which is a form of denoising score matching. In continuous
time, the same idea appears as an SDE with a learned score
sθ(x, t)≈∇x log pt(x) and a corresponding probability-flow
ODE for deterministic generation.

1) Conditioning and priors: Conditioning is typically in-
jected by cross-attention to text/video encodings, letting the
denoiser network (usually Diffusion Transformers or U-Net-
style CNN) attend to semantic and temporal cues throughout
the denoising trajectory [69]. Precise control signals (e.g.,
onsets, timestamps, pitch tracks) can be fed by simple con-
catenation to inputs or intermediate blocks for fine timing
and event placement [53]. When stronger gating is needed,
FiLM/style modulation scales and shifts residual features using
conditioning embeddings, supporting multi-condition fusion
without overfitting [70]. For long-range structure and fidelity,
discrete codec-token priors provide a robust target space in
which diffusion operates (often multi-band), improving coher-
ence and sample quality [58].

2) Backbones: We found many systems in the sound effects
NAS literature that use U-Net backbones over spectrograms
or latents with multi-scale residual blocks and attention [5],
[71], [72]. Dual-U-Net designs decouple content and timing
(or text and audio latents) to boost sync and detail [73],
[74]. In parallel, Diffusion Transformers (DiTs) have become
the prevailing backbone in many large-scale diffusion models
across domains, and Transformer-based denoisers are increas-
ingly adopted for audio and audiovisual generation as well.
Transformer-augmented or temporal-aware diffusion improves
long-horizon coherence [75], [76], and specialized backbones
target precise event control (e.g., rhythm/onset modules or
control signals) [53], [70]. Waveform-domain diffusion trades
speed for phase fidelity [77], [78].

3) Sampling and use: Sampling iteratively denoises in
T steps (spectrogram or latent) with classifier-free guid-
ance. Few-step paths use consistency distillation or latent-
consistency to cut steps to single-digits while keeping quality
[79], [80]. For TTA, latent sampling with cross-attended
prompts followed by vocoder decoding is standard in open-
domain pipelines [76]. VTA uses the same sampler but con-
ditions on per-frame features to lock temporal sync [69],
[81]. Editing and insertion rely on masked/instruction-guided
diffusion to replace spans while preserving context [82]. When
precise events are needed, segment-wise resampling or timing-
conditioned latents enforce timestamps and reduce drift [53].

G. Autoregressive

Autoregressive (AR) models factorize the data distribution
into next–step conditionals,

pθ(x1:T | c) =
T∏
t=1

pθ
(
xt | x<t, c

)
,

and typically train by maximum likelihood with teacher forc-
ing,

LAR(θ) = −Ex, c
T∑
t=1

log pθ
(
xt | x<t, c

)
.

This objective is exact under the AR factorization, but it is
local: it optimizes one-step prediction and does not impose a
global transport/energy objective nor a latent bottleneck. Gen-
erative behavior emerges at inference by chaining predictions.
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1) Conditioning and priors: Conditioning c is injected
as additional context to the next-token predictor via cross-
attention (TTA in discrete-token AR transformers [59], VTA
with masked/AR fusion [61]) or simple concatenation of
class/scene cues in conditional AR RNNs [83]. There is no
separate latent prior p(z): the autoregressive model itself
defines pθ(xt | x<t, c) over tokens. Masked-token variants
learn an inpainting prior that fills spans conditioned on context
and c [63].

2) Backbones: The paradigm (next-step likelihood with
causal context) is agnostic to the backbone. RNN/GRU/LSTM
[84], [85] stacks provide streaming with compact state [83],
[86]. Causal Transformers scale context and support rich
cross-modal conditioning for discrete codec/VQ tokens [59],
[87]. Masked transformers (BERT-style over spectrogram/code
tokens) enable efficient pretraining and controllable span in-
filling for VAT/TTA [61], [63].

3) Sampling and use: Generation proceeds sequentially
from a prompt (or special token), sampling xt∼pθ(· | x<t, c);
temperature and top-k/p govern the fidelity–diversity trade-
off, while KV/state caching keeps throughput workable for
long sequences [87]. TTA uses cross-attended prompts over
discrete tokens and decodes with the codec’s vocoder [59];
VTA adds frame-level context to maintain synchronicity [61].
For editing and insertion, masked AR sampling fills selected
spans conditioned on surrounding tokens and controls [63].

H. Neural-codec + Prior

Rather than introducing a new generative principle, this
subsection groups models that separate representation from
generation. A neural codec (e.g. EnCodec [88]) learns an
encoder–decoder pair (Eϕ, Dθ) that maps x onto z (a low-
rate latent stream) and back x̂ = Dθ(z), optimized with a
rate–distortion objective

min
ϕ,θ

Ex, c
[
d
(
x, Dθ(Eϕ(x, c), c)

)
+ λR

(
Eϕ(x, c) | c

)]
,

where d(·, ·) measures reconstruction error and R(·) penalizes
bitrate (e.g., entropy of discrete tokens). After the codec is
trained, a prior is learned on the latent sequence z using one of
the paradigms described in previous subsections (typically an
autoregressive or diffusion model). We treat this configuration
separately for organizational reasons, because the codec fixes
a bandwidth-limited, perceptually shaped space and decouples
compression from generation, while the prior supplies seman-
tic structure and diversity.

In addition to proper neural codecs, some works use self-
supervised audio encoders such as wav2vec 2.0 [89] as sources
of continuous (and, when applicable, quantized) latent repre-
sentations. Although these models are not trained as codecs—
they do not optimize a waveform reconstruction objective—
they can play a similar role in that a generative prior can
operate directly on their learned latents. Such Self-Supervised
Learning (SSL) representations have been shown to transfer
well across downstream tasks, and analyses suggest that dif-
ferent hidden layers capture complementary information at
different levels of abstraction [90].

1) Conditioning and priors: Conditioning c is injected
mainly into the prior. For discrete tokens, text is fused
through cross-attention in an AR Transformer prior (TTA with
EnCodec/RVQ tokens) [59], and video cues are integrated
via masked/AR fusion for V2A alignment [61]. Diffusion
priors operate directly in token/latent space, using classifier-
free guidance and cross-attended embeddings for fidelity and
long-range structure [58], [91]. Discrete diffusion over code
indices offers robust coarse control [62]. Retrieval-augmented
conditioning further stabilizes semantics by biasing the prior
with nearest exemplars [92].

2) Backbones: Codecs are lightweight CNN/ResNet stacks
with down/up paths and residual vector quantization to yield
low-rate, streaming-friendly tokens. These pair naturally with
causal Transformer priors for long contexts in TTA [59],
[87]. When priors are diffusion models, U-Net/Transformer
backbones denoise in the token/latent domain, and dual-U-
Net designs help separate content versus timing factors [58],
[73]. Masked modeling backbones also work well with discrete
latents for efficient pretraining and controllable span infilling,
especially in V2A [61], [63].

3) Sampling and use: Synthesis is two-stage: (1) sample
z̃ ∼ pψ(z | c) with AR (temperature/top-k/p) or diffusion
(step budget/guidance), then (2) decode once x̂ = Dθ(z̃).
AR priors excel at semantic coherence and prompt following
over long horizons [59], [87], while diffusion priors provide
strong fidelity and editable generations via masked spans
or token-level replacement [58], [63]. Hierarchical Residual
Vector Quantization (RVQ) enables coarse-to-fine sampling
and localized edits (modify only high-level bands/tokens) [58].

I. DDSP-hybrids

DDSP denotes a family of methods that embed differen-
tiable DSP modules (oscillators, filters, controllers) in the
graph so a network predicts interpretable synthesis param-
eters and audio is rendered by a differentiable synthesizer
or signal-processing module. Let ψ be parameter trajectories
(e.g., f0, amplitudes, envelopes, filter coefficients) and gθ the
differentiable synthesizer. Training is based on the analysis-
by-synthesis paradigm:

ψ̂ = hϕ(x, c), x̂ = gθ(ψ̂), min
ϕ,θ

E
[
d(x, x̂)+

∑
j λj Rj(ψ̂)

]
,

with perceptual d(·, ·) and regularizers Rj (smoothness, non-
negativity, bandwidth). This family does not follow a genera-
tive objective per se. It supplies a strong inductive bias (har-
monicity, stability, controllability) and delegates generativity
to the model that produces or modulates ψ.

1) Conditioning and priors: Conditioning c (text, score,
identity, control curves) can drive ψ directly—supervising tra-
jectories such as spectral envelopes for sound effects controls
[93]—or via a learned prior pψ(ψ | c) that samples plausible
parameter paths before rendering. For generative behavior, a
sequence prior over ψ (AR or diffusion in parameter space)
provides diversity while constraints enforce physical ranges
and smoothness. This yields interpretable, editable controls
(e.g., transient vs. sustain shaping in percussives) [94], [95].
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2) Backbones: The family is the differentiable DSP de-
coder gθ; backbones are the networks mapping (x, c) → ψ
and the priors over ψ. Compact CNN/ResNet stacks give
stable, low-latency parameter estimates (timbre and envelope
controls) [55]. When long-range structure matters (phrasing,
form), lightweight Transformer blocks can be added without
bypassing ψ semantics. Filterbank-based controllers provide
robust time-varying trajectories for noisy sound effects and
pair well with DDSP renderers [96]. Small residual neural
decoders can capture off-manifold details while keeping most
energy in interpretable paths [93].

3) Sampling and use: Synthesis is two-stage: (1) obtain or
sample ψ̃∼pψ(ψ | c) with AR/diffusion and constraint checks;
(2) render once x̂ = gθ(ψ̃). It supports real-time operation,
direct edits to pitch/brightness/articulation, and robust gener-
alization where DSP assumptions hold (e.g., tonal/percussive
events, vocalizations) [94], [97]. Hybrids mitigate expressivity
limits with hierarchical controls and modest neural residuals,
preserving the interpretability that motivates DDSP [93].

VI. OVERVIEW OF NEURAL SOUND-EFFECTS SYNTHESIS

Table I compiles published contributions organized by
Farnell’s sound-effect categories (rows) and by generative
paradigm (columns).

It’s worth noting that natural and lifeform-related sound
effects significantly outnumber science fiction and Mayhem-
related ones. This can be attributed to the abundance of these
sound effects in nature, which are readily available in large,
open online databases like YouTube. This natural prevalence
provides a wealth of data for training models and creates
a higher demand for replicating these sounds. Additionally,
certain sound effects, particularly percussive sounds, whether
from acoustic drums or human activities (e.g., footsteps), seem
to pique the community’s interest more than others.

Furthermore, it is uncommon for articles to focus solely on
producing one type of sound effect. Instead, it is typical to
find references used for multiple effects, likely driven by two
factors: pursuing innovative sound combinations that do not
naturally occur and including a diverse range of effects within
the datasets. The idea of a generative model dedicated to a
single purpose might seem unusual, but this largely depends
on the level of control afforded to the user. Models trained on
a wide variety of effects may become overly complex if they
lack sufficient control mechanisms. This complexity is one of
the reasons behind the development of multimodal systems,
which aim to integrate and manage different types of effects
more effectively.

Table II outlines all the articles selected for this scope
review, categorized according to the architecture employed and
the dataset used for training. Unless explicitly stated otherwise,
it is assumed that the architecture can generate all elements
within the respective dataset.

It is noteworthy how certain datasets have become par-
ticularly influential in the field, with AudioSet [98] being
a prominent example and, more recently, AudioCaps [99],
especially in the context of multimodal research. Many of
the analyzed datasets incorporate multimodal data along with

audio, such as video or text, which enriches the training data. It
is also common to find that some datasets are actually subsets
of larger datasets, a trend especially evident with AudioSet.
Another notable observation is the number of studies that
use privately curated datasets or choose not to disclose the
specific training set employed. This trend suggests a degree
of proprietary research or the desire to protect competitive
advantages. In contrast, many other datasets are sourced from
open repositories donated by the community, with Freesound
[100] being a particularly successful example.

Interestingly, with the exception of the BBC SFX [101]
and some others, few datasets are entirely focused on sound
effects, often necessitating significant curation before they can
be effectively utilized for this specific task. This need for
curation underscores the challenges and the utmost importance
of careful dataset selection and preprocessing in achieving
high-quality sound effect generation.

A quantitative analysis of Table I reveals the underlying dis-
tribution in research scope across sound taxonomies, measured
by the number of sound effect entries citing relevant work
within the table. The “Nature” taxonomy shows the highest
engagement with 34 unique entries, followed by “Lifeforms”
(32 unique entries) and “Idiophonics” (24 unique entries).
“Mayhem” (18 unique entries), “Machinery” (17 unique en-
tries), and “Artificial” (14 unique entries) are represented,
while “Sci-Fi” (1 unique entry) is addressed least frequently
according to this table’s structure. Regarding paradigm preva-
lence, summing the citation instances across both Table I and
Table II provides a comprehensive picture. Diffusion models
appear most frequently with a total of 67 unique citations,
followed by GAN with 36 unique citations. VAE, VQ-VAE,
Neural-codec, and Autoregresive are also prominent, featuring
in 18, 14, 15, and 20 unique citations each respectively.
Normalizing flows and DDSP hybrids are less representative,
featuring 5 unique citations each of them.

VII. MULTIMODALITY IN NAS

Multimodality in generative audio has accelerated as a
practical response to the difficulty of specifying exactly the
sound a user wants to synthesize. Describing a sound effect
with all its nuances is hard. To bridge this gap, systems
condition on textT, imagesI, and videoV (see Tables I–II for
the consolidated references). Text-driven approachesT capture
semantics and style; image–audio methodsI link visual context
to acoustic events; and VTA systemsV address the added
challenge of temporal alignment and synchronization. Some
works even explore onomatopoeia as a compact, controllable
textual proxy for sound [102]–[104].

As shown in Fig. 5, multimodal systems have rapidly
evolved: since 2023 they match unimodal approaches in
sound-effect generation, and by 2024 they clearly surpass
them.

Despite this momentum, most multimodal pipelines still
translate between modalities rather than learn a shared rep-
resentation. Unified latent spaces that jointly encode audio
and vision remain rare. Instead, information commonly flows
from the visual domain to audio, often with text as an
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intermediate control signal. This has direct implications for
controllability—a persistent challenge in NAS—where richer,
truly joint-representations of modes would likely yield finer
and more reliable control.

Fig. 5. Number of articles using (or not) multimodality over the years.

VIII. EVALUATION METHODS

Progress in sound effects synthesis depends also on sound
evaluation. Here we emphasize audio-quality metrics—fidelity
and listener perception. We describe the metrics for evaluating
generated audio quality in terms of fidelity and perceived
quality. Metrics used exclusively to assess any other type
of quality (e.g., image, text, in multimodal systems) are out
of our scope. Table III shows papers following each of the
evaluation methods considered, while Fig. 6 shows the relative
distribution of the evaluation methods.

Fig. 6. Most popular evaluation methods found in the reviewed literature.

A. Objective Methods

In audio evaluation, many objective metrics are employed to
assess the performance of generative models and other audio
processing algorithms. These metrics quantify various aspects
of audio quality, such as spectral coherence, reconstruction
fidelity, or adaptation to certain sound effects. They ensure a
comprehensive evaluation and are necessary for comparison
with other state-of-the-art techniques. However, they do not
necessarily match with subjective quality. Below, we describe
the metrics used in the articles considered in this document:

Direct difference

It measures the distance between the generated and true
values. They are usually used to train the models. These met-
rics are not specifically related to generative models since the
comparison needs to be done against a real signal. Generative
models are not meant to recreate exactly what can be found in
the training datasets, but a plausible related sound effect. Mean
Squared Error (MSE) and Mean Absolute Error (MAE) are
usually computed for spectral distance provided by the Short-
Time Fourier Transform (STFT), or the MEL representation.
Some authors used a multi-scale representation in this regard.
In the case of [105] they used a MEL Cepstral Distortion
(MCD) as their direct comparison, and in [94] the Spectral
Flux (SF).

Statistical Difference

It computes the statistical distance of certain audio char-
acteristics between the generated sound and a set of sounds
belonging to the same category. These metrics are suitable for
generative model evaluation as they prove the sound effects
contain the characteristics of those representing the same
sound effects, considering the expected inherent variability
found in the true values. These metrics are usually computed
in the model’s latent space z, as it contains fundamental
information on the audio features. Some of the metrics found
in the literature are:

• Kullback-Leibler Divergence (KLD) [106]: Relies on
entropy to measure how one probability distribution di-
verges from a reference distribution. In the context of au-
dio evaluation, it quantifies the difference in information
content (or entropy) between the original and processed
audio signals.

• Fréchet Audio Distance (FAD) [107]: A metric that
assesses the similarity between the statistical properties
of features from original and processed audio signals,
specifically by comparing their means and covariances in
a multidimensional feature space. Unlike the KLD, FAD
offers a symmetric evaluation of the overall distributional
difference, providing a more comprehensive assessment
of how closely the processed audio resembles the orig-
inal while being less sensitive to small discrepancies or
outliers in the data.

Neural Evaluation

These metrics use a neural model to evaluate the quality
of the generated sound effect. Two models are popular in the
literature:

• VGGish Loss [108]: Pre-trained deep neural network
model designed for audio classification tasks. It is based
on the VGG architecture and has been adapted to work
with audio data by processing log-mel spectrograms.
VGGish is widely used for feature extraction in audio
tasks, converting raw audio inputs into compact, high-
level feature embeddings that can be used for audio
similarity assessment. The model is trained on a large-
scale dataset, which enables it to generalize well across
diverse audio domains.
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• Contrastive Language-Audio Pretraining (CLAP) [109]:
CLAP is a model designed for learning joint multimodal
representations of audio and text through contrastive
learning. By aligning audio and textual embeddings in
a shared latent space, CLAP facilitates tasks such as
cross-modal retrieval and classification. The model uses
a contrastive loss function to ensure that paired audio-
text samples are closely aligned while separating non-
paired samples. It is particularly effective for applications
that require understanding the relationship between audio
content and corresponding textual descriptions.

Subjective-equivalent Evaluation

These are objective metrics that claim to mimic human
perception in terms of quality evaluation. They compare the
generated sample with an original recording, mapping the
difference to a subjective scale. They can be taken as a proxy
for the opinion of final users. The metrics considered are:

• Virtual Speech Quality Objective Listener (ViSQOL)
[110]: A perceptual model used to objectively assess the
quality of speech and audio signals by simulating hu-
man auditory perception. It compares the time-frequency
content of a processed audio signal to a reference signal
using spectrograms and a similarity measure based on the
Structural Similarity Index (SSIM). It gives a ViSQOL-
MOS metric with values between 1 (worst) and 5 (best).
The MOS-ViSQOL mapper can be fine-tuned with human
subjective test data to improve reliability and domain
match, as in [111].

• Perceptual Evaluation of Audio Quality (PEAQ) [112]:
An objective metric designed to assess the perceived
audio quality of processed signals, particularly in the con-
text of audio compression and transmission. It simulates
human auditory perception by analyzing the differences
between a reference signal and a test signal across various
perceptual domains, such as frequency, loudness, and
temporal masking.

B. Subjective Methods

Subjective audio evaluation methods are the preferred
method for assessing the performance and quality of generative
audio models. Unlike objective metrics, subjective evaluations
rely on human perception to determine audio quality. This
approach allows testing end-users, which may include more
than just the quality of the recording but also the application,
the environment, or the psychology of the use case. As such,
subjective metrics provide insights that objective measures
may overlook, capturing subtle aspects of auditory perception
essential for a comprehensive evaluation.

Several factors must be considered when conducting a sub-
jective evaluation to ensure reliability and validity. The testing
environment should be acoustically controlled to minimize ex-
ternal noise and distractions. Participants should have normal
hearing and be adequately trained to understand the evaluation
criteria. Randomizing the presentation of audio samples helps
prevent order effects, and a sufficiently large sample size
ensures that the results are statistically significant. However,

a definitive standard process does not exist to assess the
perceived quality of generative sound. Therefore, one may find
creative ways to analyze the generative model performance.
Here, we will focus on the main premises and cite the articles
that performed the subjective tests without going deeper into
the details.

One of the most widely used subjective evaluation metrics
is the Mean Opinion Score (MOS) [113]. MOS is a scalar
measure used to rate the quality of audio on a scale from
1 (bad) to 5 (excellent). In a typical MOS test, a group
of listeners rate the quality of various audio samples, and
the scores are averaged to produce the MOS. This metric is
popular due to its simplicity and effectiveness in capturing
listener preferences and perceptions.

The MUlti-Stimulus test with Hidden Reference and Anchor
(MUSHRA) [114] is a robust method for subjective audio
evaluation, originally designed to assess intermediate quality
levels of audio codecs. Specifically, it employs simultaneous
comparison of multiple stimuli with reference and anchor
signals, facilitating detailed and discriminative assessments of
audio quality in a manner conceptually similar to the standard
MUSHRA approach.

IX. DISCUSSION

This scope review consolidates the rapidly evolving land-
scape of Neural Sound Effect Synthesis, mapping the key ar-
chitectures, datasets, sound taxonomies, and evaluation strate-
gies reported in the literature. The breadth and dynamism
of the field hinder the formulation of a prescriptive “cook-
book” to approach the neural synthesis—a simple mapping
from a desired sound effect to a definitive paradigm and
dataset—currently is unclear. The structured analysis presented
here offers insights and navigational guidance for differ-
ent stakeholders within the sound synthesis community. The
trends observed, particularly in generative paradigm adop-
tion and conditioning strategies, alongside the detailed cross-
referencing in Tables I and II, may illuminate both the current
state and potential future directions.

A prominent trend, vividly illustrated in Figure 4, is the
temporal evolution of paradigm preference. While earlier
work leveraged GANs, VAEs, and Autoregressive principles
to establish foundational sound effect synthesis capabilities,
the recent surge (post-2022) in Diffusion models indicates
a paradigm shift. These paradigms appear to offer superior
performance in capturing the complexity and temporal depen-
dencies inherent in many sound effects, driving much of the
contemporary research focus. This architectural shift correlates
strongly with the increasing sophistication behind conditioning
methods, as shown in Figure 5. The move from unconditional
generation towards text, image, and video conditioning reflects
a growing demand for controllability, contextual relevance,
and multimodality, pushing Neural Synthesis beyond simple
sound-effect generation towards more integrated creative tools.
In addressing the relationship between generative paradigms
and sound taxonomies (Table I), a definitive one-to-one map-
ping remains ineffable. While one might hypothesize that
certain generative principles are inherently better suited to
specific sound classes (e.g., transient versus textural sounds),
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TABLE III
SUMMARY OF EVALUATION METHODS AND WORKS THAT EMPLOY THEM.

Section Metric Works that use it

Objective
(Direct difference)

MSE/MAE (STFT/Mel) [41], [50], [56], [70], [77], [82], [93], [94], [115], [122], [128], [131], [148], [185]
Multi-scale [93], [96]
MCD [105]
Spectral Flux [94]

Objective
(Statistical difference)

KLD [106] [5], [6], [29], [53], [59], [62], [66], [67], [72], [74]–[76], [79], [80], [82], [91], [92], [132], [149], [154]–[156], [158], [161]–[163], [167], [169], [186], [187], [209], [210],
[212], [213]

FAD [107] [5], [6], [29], [39], [41]–[43], [52], [53], [59], [61], [63], [64], [66], [67], [71]–[80], [82], [92], [93], [95], [96], [104], [105], [116]–[120], [122]–[131], [134], [141], [143],
[149], [151], [152], [154], [156], [158], [159], [161]–[164], [167]–[169], [171], [176], [178], [183], [184], [186], [187], [191], [192], [209]–[213], [217], [218]

Neural evaluation
VGGish Loss [108] [60], [79], [97], [196]
CLAP [109] [29], [53], [72], [79], [80], [92], [104], [149]–[151], [155], [156], [161], [178], [193], [199], [210], [211]

Subjective-equivalent ViSQOL [110] [56], [58], [105]
PEAQ [112] [56], [139]

Subjective MOS / MUSHRA(-like) [113], [114] [4], [36], [38], [39], [43]–[45], [55], [58], [59], [62], [66], [72], [73], [75], [77], [80], [86], [93], [103], [105], [115], [117], [122], [127], [136], [138], [143], [145], [146],
[148], [149], [152], [155], [160], [165], [171], [174], [182], [185], [193], [202], [205], [210], [211]

the current literature suggests a more nuanced reality. The
choice of generative paradigm often appears driven by broader
trends (e.g., the favourability of Diffusion models for high-
fidelity generation) and data availability, rather than a specific
optimization for categories like “Lifeforms” or “Machinery”.
Nonetheless, Table I reveals the breadth of application for
generative paradigms like GANs and Diffusion across diverse
taxonomies, while also highlighting potential gaps where
certain sound types may be relatively under-explored using the
latest techniques. This lack of specialization suggests ample
room for research into architecture-sound suitability.

Similarly, examining the interplay between datasets and
generative paradigms (Table II) reveals important patterns. The
prevalence of certain models (e.g., Diffusion) in conjunction
with large benchmark datasets like AudioSet or DCASE
subsets suggests these architectures scale effectively and are
the focus of comparative academic study. Conversely, the
significant number of studies relying on private or unspecified
datasets, while potentially enabling highly specific task tun-
ing, introduces challenges in reproducibility and comparative
assessment. This “dataset divide” further complicates the cre-
ation of a universal cookbook, as performance is intrinsically
tied to the training data’s characteristics, which are not always
transparent or accessible. The frequent use of private data,
often marked in bold in Table II, underscores a critical
challenge for standardized benchmarking in the field.

For all these reasons, navigating this scope review depends
on the reader’s profile. For practitioners (sound designers,
game developers, producers) seeking to leverage Neural Syn-
thesis of Sound Effects, the insights point towards explor-
ing recent, high-performing generative paradigms, particularly
those demonstrating strong subjective evaluations or utilizing
relevant conditioning (e.g., text prompts for specific effects).
Tables I and II can serve as a guide for identifying papers that
tackle similar sound types or use potentially relevant (public)
datasets as a starting point. For AI researchers, this review
charts the evolving landscape of current research, illuminating
the plethora of opportunities that emerge throughout the ongo-
ing exploration rather than focusing solely on final outcomes.
The tables reveal under-explored intersections of taxonomies
and generative principles, the persistent challenge of con-
trollable synthesis despite advancements in conditioning, the

need for robust evaluation beyond standard metrics (espe-
cially for perceptual attributes crucial to sound effects), and
the critical issue of dataset accessibility and standardization.
Investigating why certain paradigms excel, developing more
efficient models, and bridging the gap between benchmark
performance and real-world usability remain key research
avenues. Ultimately, while a simple recipe is absent, this
synthesis provides the necessary ingredients and context for
both applying and advancing the state-of-the-art in Neural
Sound Effect Synthesis.

X. CONCLUSIONS

This literature scope review reveals a growing interest in
generating sound effects through NAS. The rise of generative
models has improved sound synthesis’ plausibility, consis-
tency, and diversity. These gains primarily concern synthe-
sis workflows; broader ‘sound creation’ practices (recording,
layering, editing) remain predominant, and adoption is still
emerging. Advancements have the potential to be revolutionary
in various industries, including film, theater, music, video
games, and more. The generative potential that these models
offer goes beyond the limitations of traditional, pre-recorded
sound databases. It opens up a more comprehensive array of
possibilities for artists, enabling them to sidestep the well-
known issue of repetitive sound effects, such as the “machine-
gun” effect, where the same sound is used repeatedly. More-
over, it enables the invention of novel sound effects by
exploring combinations—e.g., hybrid material timbres, non-
physical morphs, and cross-domain textures—that are im-
practical or impossible to realize acoustically. Unlike hand-
crafted pipelines based on layering/processing recordings or
bespoke procedural patches, NAS offers a learned generative
manifold and conditional controls (text, video, parameters) that
accelerate ideation and yield candidates for human curation.

The current state of the field demands high precision
and control for widespread application. This limitation has
spurred a trend towards multimodal approaches, enabling more
nuanced and refined sound synthesis. Although the sound
produced by these methods may not be final, it serves as a
crucial tool in the iterative process of sound design, supporting
the synthesis of more polished and practical sound effects.

In conducting our review, we adhered to the PRISMA
principles and harnessed the latest advancements in LLMs,
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to significantly enhance our filtering process beyond what
is achievable through standard keyword-based searches. This
approach, though cutting-edge, comes with inherent challenges
due to the lack of consensus for the standardisation of the
process. It specifically affects the comprehensively covering all
relevant literature. Despite our diligent efforts, some articles
may have been overlooked. To mitigate this, we have created
an online platform where readers can suggest any missing
works for future inclusion. This collaborative effort will help
ensure our review remains as comprehensive and up-to-date
as possible4.
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