Audio Engineering Society

Conference Paper 2

Presented at the 6th International Conference on Audio for Games
2024 April 27-29, Tokyo, Japan

-

This paper was peer-reviewed as a complete manuscript for presentation at this conference. This paper is available in the AES
E-Library (http://www.aes.org/e-1lib), all rights reserved. Reproduction of this paper, or any portion thereof, is not permitted
without direct permission from the Journal of the Audio Engineering Society.

A Machine learning method to evaluate and improve sound
effects synthesis model design

Yisu Zong', Nelly Garcia-Sihuay!, and Joshua Reiss!

L Centre for Digital Music, Queen Mary University of London

Correspondence should be addressed to Yisu Zong (y . zong@gmul.ac.uk)

ABSTRACT

Procedural audio models have great potential in sound effects production and design, they can be incredibly high
quality and have high interactivity with the users. However, they also often have many free parameters that may
not be specified just from an understanding of the phenomenon, making it very difficult for users to create the
desired sound. Moreover, their potential and generalization ability are rarely explored fully due to their complexity.
To address these problems, this work introduces a hybrid machine learning method to evaluate the overall sound
matching performance of a real sound dataset. First, we train a parameter estimation network using synthesis sound
samples. Through the differentiable implementation of the sound synthesis model, we use both parameter and
spectral loss in this self-supervised stage. Then, we perform adversarial training by spectral loss plus adversarial
loss using real sound samples. We evaluate our approach for an example of an explosion sound synthesis model.
We experiment with different model designs and conduct a subjective listening test. We demonstrate that this is an
effective method to evaluate the overall performance of a sound synthesis model, and its capability to speed up the
sound model design process.

1 Introduction real-time to the player’s actions and choices.

The demand for immersive sound effects in games is
increasing with the development of game content rich-
ness, and sound synthesis techniques are widely used in
games’ sound effects design and production processes.
The most common techniques are sample-based, but
their usability and variation are usually quite limited
because it is too expensive to get the full range of
a sound event, and its memory consumption is high.
High-quality audio files can be data-heavy, and creat-
ing a diverse sound library for every possible player
interaction and the game state is labor-intensive. This
static approach can also be rigid, unable to adapt in

Procedural audio [1] offers a solution to these chal-
lenges by using algorithms to generate sounds in real-
time based on player interactions and game states [2].
This dynamic method can not only reduce the need for
large, pre-defined audio files but also provide a more
adaptive and interactive gaming experience. A typical
sound designing process goes through several analyses
from different angles including waveform, spectrum
and physical phenomenon, followed by the process of
model parameterization [3]. This is generally challeng-
ing work because it requires a solid understanding of
the physical principles of sound generation. Moreover,
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it is necessary to take into account the trade-off be-
tween sound realism and computational complexity of
the model, which usually requires a lot of assumptions
and simplification. In practice, sound designers may
focus more on the sonic properties rather than ensuring
the physical feasibility [4].

Based on these considerations, the inner structure of
procedural audio models is generally complex, with
many free parameters that may not be specified just
from an understanding of the phenomenon, making it
very difficult for users to create the desired sound. Also,
procedural audio requires a large number of real-time
parameter combinations in many different sound events
[2], which poses an even more significant challenge for
parameter selection. Moreover, a sound model’s poten-
tial and generalization ability are rarely explored fully
because of its complexity. Thus, the model design may
be insufficient, which will lead to a worse synthesis
quality than other methods [35, 6].

Therefore, the research on the exploration of sound
models’ overall performance and limitations can facili-
tate the improvement of model design and usage. One
effective way is to conduct the sound matching experi-
ment for the model with a dataset consisting of the de-
sired sounds. A traditional way to do the sound match-
ing is to use Evolutionary Algorithms (EA), including
Evolution Strategies [7, 8], Genetic Algorithm [9, 10]
or Particle Swarm Optimization [11, 12] to find some
spectral representations’ similarity of query and the tar-
get sound. EA is a problem-independent optimization
method, it treats the model as a ’black-box’ model and
directly optimizes the parameter space. However, the
computational cost of these methods is too expensive,
so the requirements for a real-time query for users can
rarely be satisfied.

Machine learning offers a promising and efficient ap-
proach for the sound matching task. After the model
training, sound matching through the model could sat-
isfy the requirement of a real-time query. In relevant
studies [13, 14, 15], the typical approach is synthe-
sizing a substantial amount of data and subsequently
utilizing audio information to train a machine learning
model for predicting the parameters of synthesized au-
dio. The primary objective is to optimize this process
by minimizing the discrepancy between predicted and
ground-truth parameters.

Recently, the method Differentiable Digital Signal Pro-
cessing (DDSP) [16] integrated classical DSP compo-
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Fig. 1: User control interface of the explosion sound
synthesis model.

nents into the deep learning workflow, enabling back-
propagation of gradients in the audio domain. This idea
is a significant source of inspiration for a lot of research
and greatly enhances the applicability of deep learning
techniques in sound matching [17, 18, 19].

In this work, we conduct a machine learning method
to perform the sound matching experiment for an ex-
plosion sound synthesis model and its variants. The
explosion sound synthesis model and machine learning
method are introduced in Section 2. Objective evalua-
tion results are shown in Section 3, and results of the
listening test are shown in Section 4. The discussion
of results, limitations, and future research direction is
provided in Section 5. Finally, conclusions are shown
in Section 6.

2 Methods

2.1 Explosion Sound Synthesis

An explosion is a sudden and intense release of energy
that leads to a rapid expansion of gases. The sound
typically begins with a sharp, percussive shock wave,
followed by a big blast and a descending rumble.

Previous work in explosion sound synthesis was mainly
physical-based or sample-based methods. Due to the
complexity of an explosion, physical-based synthesis
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Fig. 2: High-level block diagram of the explosion sound synthesis model structure.

methods require expensive computation, and simplify-
ing the physical model may lead to a degradation in
sound quality [20]. Sample-based methods [21, 22]
can serve as a valuable complement to physical mod-
els. However, they still encounter challenges related to
heavy computation and limited variability.

In this work, the model we use is based on a physically-
inspired synthesis method by Andy Farnell’s design [3],
and is available on the Nemisindo website!. It uses digi-
tal signal processing (DSP) components to approximate
the physical phenomenon of explosion. The model is
divided into three parts: "Rumble", "Air", and "Dust".
All three parts start from a noise signal, where the Rum-
ble and Dust use pink noise, and Air uses white noise,
each with a user-controllable gain value. The explosion
rumble mainly consists of low frequency components,
so the Rumble is then connected to a low-pass filter
where the cutoff frequency is 100 Hz, and a filter bank
with five band-pass filters is used to shape the timbre.
A distortion function is then applied to the Rumble,

~ (3+Kk)-x-20- 555
T+ k|x|

ey

where k is user-controllable to change the amount of
distortion. The distortion enhances the granularity of

Thttps://nemisindo.com/models/explosion

the sound, aiming to simulate fragmented and shattered
effects. An exponential decay envelope is then applied
to Rumble, Air, and Dust respectively,

y(t) =Ae 7 2

where A is a gain value, and 7 is the user-controllable
decay constant. For Rumble, the gain value is very
high (A=3000) to achieve a dull thump effect at the
start. Air and Dust are delayed to simulate the pressure
wave effect, where the delay time is user-controllable.
Finally, the three parts are put together and passed to a
low-pass filter where the cutoff frequency is 10,000 Hz.
Figure 1 shows the high-level structure of this model.

In our preliminary experiments, we observed that the
model exhibited certain limitations, namely inadequate
initial shock and the absence of high-frequency compo-
nents in short bursts. We attributed these shortcomings
to the narrow range of gain and decay constant values,
and the limited coverage of explosion sound events by
the filter design in Rumble. Based on the analysis, we
experimented with the following settings of the con-
trollable model parameters. First, we used the original
setting of the synthesis model (Original) as the base-
line. Second, we extended the parameter value range,
and this model is denoted by Original-EV. The value
range was extended from [0,1] to [0,5] for Rumble
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Gain, Air Gain, and Dust Gain. For Rumble Decay, Air
Decay, and Dust Decay, the value range was extended
from (0,10] to (0,20]. Third, based on Original-EV,
we added one control band-pass filter (gain, center fre-
quency, and Q factor as control parameters) in the filter
bank of Rumble, and the cutoff frequency of the 100 Hz
low-pass filter in Rumble was exposed in the range of
[50, 500]. This model is denoted by Control-F. Fourth,
based on Original-EV, we exposed the gains, center
frequencies, and Q factors as control parameters of the
five band-pass filters in the filter bank of Rumble, and
the cutoff frequency of the 100 Hz low-pass filter in
Rumble. This model is denoted by Control-FB. Table 1
summarizes these model configurations.

2.1.1 Differentiable Implementation

In our experiments, the machine learning pipeline re-
quires a fully differentiable synthesis model allowing
gradient backpropagation. Our model requires a dif-
ferentiable biquad filter, where the transfer function
is:

_ bo+biz ! by ? 3)
ap+arz” ' +arz?

H(z)

Direct implementation of an infinite impulse response
(ITIR) filter is possible, but the computation is expen-
sive [23]. Based on implementation efficiency consid-
erations, we adopted a finite impulse response (FIR)
approximation method [24]. With an FIR filter, we
can approximate the frequency response by evaluating
H(e/®) across a set of uniformly spaced frequencies
at the frequency , thereby obtaining the output in the
frequency domain, Y = HX, where X = DFT (x). The
time domain output is obtained through inverse DFT,
y=IDFT(Y).

2.2 Training Procedure

2.2.1 Data

We used two different kinds of sound data: synthesized
sounds and real-world sounds.

For each version of the explosion model, we generated
the sound with random parameter settings within the
explosion model’s range. All sounds are 3 seconds
at the sample rate of 24,000 Hz. 30,000 data were
generated and split into training, validation and test
sets, each accounting for 80/10/10 respectively.

Then, we collected 72 high-quality real explosion
sound samples from Pro Sound Effects> and BBC
Sound Effects®. Our explosion model is designed to
generate a single explosion, without including any en-
vironmental reflections or interactive effects such as
glass shattering or impact by the explosion. Therefore,
our data collection process adheres to the standard of
avoiding obvious echoes and other interactive effects.
All the samples were cut or zero-padded in the tail to 3
seconds at the sample rate of 24,000 Hz.

2.2.2 Training with Synthesized Sounds

The first step of our training procedure was to train
a control parameter estimation network using synthe-
sized sounds. This stage is depicted in Figure 3(a).
We adopted a CNN-GRU architecture [16, 17] for the
parameter estimation network. Three 1D convolution
with normalization layers were employed for extracting
deep embedding of the Mel spectrogram of the input
sound data. Then, the output was fed into a 512-unit
gated recurrent unit (GRU) layer, and subsequently, the
GRU output was passed through a linear layer. As all
control parameters are positive, we applied a sigmoid
function to normalize the output to (0,1) and a linear
function was employed to map the sigmoid output from
(0,1) to the range of control parameters. The estimated
parameters were then fed into the differentiable synthe-
sis model for reconstruction.

The training objective in traditional deep learning
sound matching was parameter loss [14, 15], and the
differentiable implementation of the sound synthesis
model allows gradient backpropagation of spectral loss.
Recent work [17] has proposed that employing a mixed
training strategy incorporating parameter and spectral
loss could lead to better match quality. Therefore, we
used both parameter loss and spectral loss in this step,

L,=Y PP )

Ly =Y (/ISi = Sill1 + [[logS; —logSill1) (5

1

L=aL+(1-a)L, (6)

where parameter loss L, is L1 loss of normalized con-
trol parameters, and the spectral loss L is a multi-
resolution spectral loss [16], L is the total training ob-
jective. During the first 200 epochs, o was set to 0.5.

Zhttps://www.prosoundeffects.com/hybrid-library/
3https://sound-effects.bberewind.co.uk/
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Table 1: Summary of variations of the explosion synthesis model.

Model Type Main Improvement Number of Parameters
Original None 8
Original-EV ~ Extended value range 8
Control-F A control filter 12
Control-FB  Controllable filter bank 24
Input Estimated
Parameters Synthesized Parameters Reconstructed
Parameter | audio Pacametes | audio
Parameter 2 Parameter 2
(a). Panneer3 Explosion Parameter Parameter 3 Explosion .~
Parameter & Model Estimation Parameter 4 Model
Estimated
Recorded Parameters Reconstructed
audio Parameter | audio
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—2
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Fig. 3: Flow diagram of the training procedure.

Subsequently, in the following 50 epochs, & linearly
increased to 1 in order to complete the transition from
a mixed loss to a spectral loss. Finally, the model con-
tinued training for an additional 50 epochs.

2.2.3 Adversarial Training

We aimed for the synthesised sound to be indistinguish-
able from the real sounds. However, there was a clear
distribution gap between the audio space of the synthe-
sized and the real datasets. To improve the realism of
the matched output, we adopted the discriminator in
Mel-GAN [25] for adversarial training—a multi-scale
architecture containing three discriminators with dif-
ferent resolutions. As shown in Figure 3(b), the audio

reconstruction process can be regarded as the genera-
tor of a GAN, while the goal of the discriminator is
to identify whether the input is a reconstruction or a
real-world sound. Following the method employed in
Mel-GAN, the hinge version of discriminator loss in
GAN is denoted by L,4,(D;G). The hinge version of
generator loss in GAN L4, (G; D) and a feature match-
ing loss Lry were incorporated into the generation
training objective,

L =L+ Lay(G:D) + ALpy )

where Lrjy is L1 loss of distance between discriminator
feature maps, and A = 10. After training with synthe-
sized data, the model was trained with the discriminator
using real-world data for 100 epochs.

AES 6th International Conference on Audio for Games, Tokyo, Japan, 2024 April 27—29
Page 5 of 9



Zong, Garcia-Sihuay, and Reiss

Method to Improve Sound Effects Synthesis

> 140 137.49 AT
e 127.92 oT
5 .
o 122.15123.97
® 120 119.40
S
k)
a
5 100 97.11
[
=
E s0
£ 67.43
'g 64.89 ~°-
= 60
Original Original-EV Control-F Control-FB

(a) Maximum Mean Discrepancy.

-
w

AT

512 11.79 11.77 11.98 ot
£ 11.40 11.42
2
@
a2 11 10.86
T 10.37
§10 9.87
Q.
w
I
S o9
Original Original-EV Control-F Control-FB
(b) Log-spectral Distortion.
15
1.46 AT
c 14 DT
r=]
S13
=) 1.23
o 1.21
= 12 117 1.19 120
@
g 11
Q 1.06
+ 1.04
=10
0.9 — —
Original Original-EV Control-F Control-FB

(¢) Mel-cepstral Distortion.

Fig. 4: Bar plots of objective evaluation results across
different metrics. Blue bars represent adversar-
ial training (AT), and red bars represent direct
training using spectral loss (DT).

3 Objective Evaluation

For the evaluation metrics of overall sound matching
quality, we used Maximum Mean Discrepancy (MMD)
[26], a distribution distance measurement; log-spectral
distortion (LSD), the root mean square log spectra dis-
tance; and mel-cepstral distortion (MCD) [27], the
distance between Mel-frequency cepstral coefficients
(MFCCs). We compared the reconstructions obtained
by different model settings with the real sounds across
the metrics above. Additionally, we conducted ablation
studies to demonstrate the effectiveness of adversarial

Listening test results
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Fig. 5: Boxplot of subjective evaluation results. Black
dots represent the average scores of each
method.

training. We compared the real sound training effective-
ness of adversarial training with direct training using
spectral loss across all model configurations. The re-
sults are shown in Figure 4.

Adversarial training shows superior overall match qual-
ity compared to solely employing spectral loss across
various models and evaluation criteria, except the MCD
score for the Control-F model. The Control-F model
shows distinct characteristics of MMD and MCD com-
pared to other models, potentially indicating the incon-
sistency between these evaluation metrics. Original-EV
performs better than the Original model of MMD and
LSD, and Control-FB outperforms all the other mod-
els across all the evaluation metrics. We observe that
Control-F shows worse performance in LSD and MCD
than Original-EV and even worse than the Original
model, even though it introduces more control ability.
This implies that the selection of appropriate control
mode and control parameters is more crucial than just
augmentation, as it not only enhances user control dif-
ficulty but also diminishes the synthetic quality of the
model.

4 Subjective Evaluation

Following the methods in [6], we performed a listen-
ing test to compare 4 configurations of the explosion
sound synthesis model with 3 real sounds. Besides, we
incorporated two additional synthesis methods into the
evaluation as benchmarks: Sinusoidal Modelling (Si-
nusoidal) [28] and Granular Synthesis (Granular) [29].
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Table 2: P-values of pairwise comparison of synthesis methods using Tukey’s HSD. The red numbers represent
the null hypothesis has not been rejected (p > 0.05).

Real  Original Original-EV ~ Control-F  Control-FB  Sinusoidal = Granular

Real - <0.001 <0.001 <0.001 0.238 <0.001 <0.001

Original <0.001 - 0.315 <0.01 <0.05 <0.001 <0.01

Original-EV | <0.001  0.315 - 0.642 <0.001 <0.001 0.633
Control-F | <0.001  <0.01 0.642 - <0.001 <0.01 1.0

Control-FB | 0.238 <0.05 <0.001 <0.001 - <0.001 <0.001

Sinusoidal | <0.001  <0.001 <0.001 <0.01 <0.001 - <0.01

Granular <0.001  <0.01 0.633 1.0 <0.001 <0.01 -

Subjective evaluation similar to the MUIti Stimulus test
with Hidden Reference and Anchor (MUSHRA) was
conducted on the Go Listen platform [30] to evaluate
the real sound sample and its reconstructions using six
different methods. Participants rated the samples on a
scale ranging from O to 100, where 1-20 is completely
unrealistic, 20-40 is very unrealistic, 40-60 is some-
what unrealistic, 60-80 is good, and 80-100 is realistic.
In total, 21 participants engaged in the online test, each
providing 21 ratings. The participants were asked to
use headphones or speakers in a quiet environment.
Fourteen used headphones, and seven used speakers in
a quiet environment. The participants’ ages range from
21 to 63 years old, with an average of 29.3 years old.
Of the total, eight were female, twelve were male, and
one identified as other. Seventeen participants had a
background related to music or audio production. Five
of the participants did not rate any real audio samples
above 80, so their ratings were removed.

The results are shown in Figure 5. We performed
the one-way analysis of variance (ANOVA), show-
ing significant differences among the synthesis meth-
ods (p < 0.001). To analyse the significance between
the methods, we performed a post-hoc analysis using
Tukey’s Honest Significant Difference (Tukey’s HSD),
and the results are shown in Table 2. Control-FB outper-
formed all the other methods and was the only synthesis
method for which the ratings did not differ significantly
from the real samples. Control-F performed worse
than the Original, which is the same result as the ob-
jective evaluation. The median and average scores of
the Original-EV were lower than those of the Original
but higher than those of the Control-F. However, there
were no significant differences in ratings between the

Original-EV, Original, and Control-F (p > 0.05).

5 Discussion

Control-FB has the best performance among all the
models, and it can produce nearly indistinguishable ex-
plosion sounds from real ones. However, it also has the
most parameters, thereby posing challenges in terms
of model control ability when creating a sound from
scratch. The parameters in the filter bank could be con-
trolled by a two-dimensional interface, where users can
draw a frequency curve or gain curve. Further investi-
gation is required to assess the user-friendly method of
control.

A limitation of this work is that the reconstruction qual-
ity is subject to the combined influence of both sound
matching accuracy and expressive capacity of the syn-
thesis model. Given the relatively straightforward struc-
ture of our model, the impact of sound matching accu-
racy is considerably less pronounced compared to the
model’s expressive capacity. However, this approach
might become challenging when applied to other pro-
cedural models with more intricate structures.

Also, a precise objective metric is important to guide
the design direction. Control-F evaluation results high-
light the potential impact of incorrect parameterization
on model quality, emphasizing the need for a precise
metric to guide step-by-step design due to the substan-
tial cost of conducting a series of listening tests. There
is an evaluation difference within the selected objective
metrics, and their correlation to subjective perception
is not determined. Further perceptual quality metrics,
such as [31, 32], can be evaluated.
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6 Conclusion

We presented a machine learning method to evaluate
the overall quality of different designs of an explosion
sound synthesis model. We used synthesized data to
train the parameter estimation network for the sound
matching task, incorporating adversarial training using
real audio samples to enhance the fidelity of synthe-
sized sounds. The proposed explosion synthesis model
demonstrates a significant enhancement and can gener-
ate authentic explosion sounds. This approach shows
potential for expansion to applications of diverse pro-
cedural audio models.
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