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Abstract—Traditional sound design workflows rely on manual
alignment of audio events to visual cues, as in Foley sound design,
where everyday actions like footsteps or object interactions are
recreated to match the on-screen motion. This process is time-
consuming, difficult to scale, and lacks automation tools that
preserve creative intent. Despite recent advances in vision-to-
audio generation, producing temporally coherent and seman-
tically controllable sound effects from video remains a major
challenge. To address these limitations, we introduce Fol·AI, a
two-stage generative framework that decouples the when and the
what of sound synthesis, i.e., the temporal structure extraction
and the semantically guided generation, respectively. In the first
stage, we estimate a smooth control signal from the video that
captures the motion intensity and rhythmic structure over time,
serving as a temporal scaffold for the audio. In the second
stage, a diffusion-based generative model produces sound effects
conditioned both on this temporal envelope and on high-level
semantic embeddings, provided by the user, that define the
desired auditory content (e.g., material or action type). This
modular design enables precise control over both timing and
timbre, streamlining repetitive tasks while preserving creative
flexibility in professional Foley workflows. Results on diverse
visual contexts, such as footstep generation and action-specific
sonorization, demonstrate that our model reliably produces audio
that is temporally aligned with visual motion, semantically
consistent with user intent, and perceptually realistic. These
findings highlight the potential of Fol·AI as a controllable and
modular solution for scalable, high-quality Foley sound synthesis
in professional and interactive settings. Supplementary materials,
including samples and code, are accessible on our dedicated demo
page at https://ispamm.github.io/FolAI.

Index Terms—video-to-audio, sound effects synthesis, diffusion
models, audio-video synchronization.

I. INTRODUCTION

Sound is a fundamental component of audiovisual story-
telling, capable of deeply altering the meaning and emotional
impact of a scene. Traditionally, Foley artists and sound
designers manually select, record, and synchronize sounds
(like footsteps or object interactions) to match on-screen
actions. This careful process ensures the desired narrative
effect but is inherently time-consuming and requires significant
effort. Recent advancements in deep learning, particularly in
multimodal generative models [1]–[3] and Large Language
Models (LLMs) [4], [5], have generated significant interest
in automating and enhancing audio synthesis. This has led to
the rise of Video-to-Audio (V2A) generation [6]–[10], a re-
search area focused on synthesizing audio that is semantically

Fig. 1. Example showing ground truth audio and video, predicted RMS
envelope and generated audio.

relevant and temporally aligned with an input video sequence.
Initial efforts in this area often focused on semantic alignment,
generating ambient sounds or soundtracks reflecting the overall
mood [11]–[14], but lacked the temporal precision needed for
synchronizing specific sound effects.

Achieving both appropriate semantic content and precise
timing is crucial for effective V2A generation as temporal
alignment is equally fundamental for realism, particularly
when synchronizing distinct sound events like Foley effects.
Even slight timing mismatches, on the order of milliseconds,
can be perceived by the audience and disrupt the feeling of
immersion [15]. Furthermore, although more recent end-to-end
V2A models [7], [10], [16]–[19] aim for better synchrony,
they often function as “black boxes”. This typically offers
limited direct control for sound designers to refine the timing
or creatively adjust the generated audio beyond basic post-
processing. This lack of fine-grained control hinders their
adoption in professional workflows where artistic input and
adjustments are essential.

To address these critical needs for robust temporal alignment
and user control, we introduce FOL·AI, a novel two-stage
generative framework designed for accurate V2A synthesis.
Our approach separates the task into predicting the temporal
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structure and then generating the audio based on that structure
and desired sound characteristics, as shown in Fig. 2. The first
stage analyzes the input video using frame features and optical
flow to predict a Root Mean Square (RMS) envelope. This
envelope represents the audio’s timing, intensity, and duration
[20]. Importantly, this predicted envelope is human-readable
and can be directly edited by the sound designer. This allows
for fine-tuning the timing or even adding sounds for off-screen
events before the audio is generated. The second stage employs
a state-of-the-art diffusion model architecture to create the final
sound. To ensure the audio matches the timing specified by
the envelope, we introduce an additional conditioning network
architecture that steers the diffusion process using the RMS
envelope from the first stage. Users can control the timbre
by providing semantic information through embeddings from
reference audio samples, text descriptions and the input video.
This modular design allows creatives to control when sounds
occur and what they sound like.

The FOL·AI framework successfully generates 44.1 kHz
stereo audio of variable length that shows strong temporal and
semantic synchronization with the input video, as qualitatively
illustrated in Fig. 1. We demonstrate the effectiveness of our
model through careful objective evaluations on the widely used
Greatest Hits V2A benchmark dataset [21], where FOL·AI
achieves state-of-the-art results compared to existing V2A
models. Furthermore, recognizing the lack of suitable public
datasets with high-quality audio and video for evaluating V2A
models on specific, highly relevant sound design tasks like
Foley, we introduce Walking The Maps. This new dataset
focuses specifically on footstep generation, a key challenge
and frequent task in the field [22]. Sourced from high-quality
video game walkthroughs available online, it provides numer-
ous video clips featuring clearly audible footstep sounds across
various surfaces (like grass, concrete, wood) and character
actions (walking, running), paired with corresponding high-
definition video offering excellent temporal cues. The audio
was carefully preprocessed using source separation techniques
to isolate footstep sounds, creating clean targets suitable for
robust V2A model training and evaluation. We make Walking
The Maps freely available to the research community to
facilitate progress and benchmarking in realistic automated
Foley synthesis scenarios.

II. RELATED WORKS

Generating audio that is aligned with a silent reference video
is salient task nowadays for multimedia post production. Due
to recent developments in deep learning, many of the leading
experts in the audiovisual industry are focusing their efforts
on adopting deep learning models that can be integrated into
the principal post production tools [23]–[26].

Despite these advancements, generating audio from video
still presents many challenges. Not only the audio produced
must maintain semantic coherence with what is shown in
the video, but generated sounds also have to exhibit enough
time alignment with the actions throughout the video to
allow an adequate sense of realism while watching the scene.
Although several audio models manage to generate reasonably

realistic sounds for Foley synthesis [20], [27]–[30], many V2A
models struggle when it comes to actually achieving good time
alignment.

Im2Wav [8] focuses on generating sounds that are seman-
tically relevant to an image or sequence of images, using
CLIP [31] to condition with visual features two transformer
language models. In order to perform a cross-modality gen-
eration between video and audio, Xing, et al. [32] propose a
multimodality latent aligner with the pre-trained ImageBind
[33] model, used to condition a latent diffusion model (LDM)
in order to generate an audio that is semantically relevant for
an input video.

RegNet [34] represents one of the first attempts to achieve
semantic as well as temporal synchronization. This model uses
a simple and efficient video encoder that extracts relevant
visual features from frames and optical flow of an input video
and uses them to condition a Generative Adversarial Network
(GAN) to generate visually aligned sounds. SpecVQGAN
[35] also uses RGB and optical flow features of a video but
leveraging a more powerful Transformer-based autoregressive
architecture to generate temporally and semantically synchro-
nized sounds to an input video.

A similar architecture is used in CondFoleyGen [36], where
such a model is trained directly using Greatest Hits, succeed-
ing in achieving an efficient alignment in both content and
timing with the reference video. Instead, Diff-Foley [37] uses
Contrastive Audio-Visual Pretraining (CAVP) to temporally
and semantically align audio and video modalities, being able
to generate a video embedding that contains features relevant
to the corresponding audio. Such features are used to directly
condition an LDM. However, all these models do not provide
human-intelligible control, thus not allowing direct supervision
by sound designers over the final generation, as they cannot
act on either the semantics or the timing of the final output.

SyncFusion [38] - which was the first to introduce a human
readable control for the V2A task - uses a video encoder based
on a ResNet(2+1)D-18 [39] that, by taking frames of the target
video as input, generates an onset track; this onset track is then
passed to a time-domain diffusion model [40] to generate the
final output. A similar approach is implemented in [41]. The
visual representation provided by the onsets is very similar
to the manual annotations used by sound designers when
determining the temporal placements of the sound sources to
be sonorized in a video. Therefore, it provides an informative
and yet easy-to-edit control for the user, allowing direct
oversight on the generation of the final output. This onset track
is represented by a binary mask that indicates the presence
or absence of the action of interest for each frame of the
video. Hence, an onset can indicate the temporal location of a
sound but can not inform either about the intensity or temporal
duration. Furthermore, the onset of a sound event cannot be
determined unambiguously, as in the case of a sound event
sustained over time where the temporal placement of the onset
is not unequivocally determined. Consequently, in order to use
onsets, it is necessary to have a dataset containing manual
annotation for every sound event in each video.

T-Foley [20], although not working with an input video,
uses an envelope to condition a diffusion model similar to
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Fig. 2. FOL·AI architecture consists of two distinct parts: the video model, that predicts an envelope representative for the audio directly from the input video,
and the audio synthesis model for the controlled generation of the final audio effect. The generation is controlled temporally by the predicted RMS envelope
through a DiT ControlNet, and semantically by CLAP and CAVP embeddings. The length of the output waveform can be controlled with seconds start and
seconds total parameters.

the one in SyncFusion, demonstrating the effectiveness of
such a control for generating highly temporally conditioned
audio. This model can generate sounds that follow with high
accuracy the temporal guidance provided by the envelope,
extending this idea in Video-Foley [42], where AudioLDM
[43] is employed to generate 16 kHz mono audio aligned
temporally and semantically with the input video.

III. BACKGROUND

A. Audio Diffusion Models

Diffusion Models currently represent the state-of-the art in
generative deep learning. They are based on non-equilibrium
thermodynamics and are defined by a Markov chain of dif-
fusion steps that slowly add noise to target data. The aim of
such models is to reverse this process in order to learn how
to generate data of interest from noise.

Denoising Diffusion Probabilistic Models were introduced
in [44]. They were first used to obtain state-of-the-art results in
image generation and then in the synthesis of different media,
such as video and audio. Like Diffusion Models for images,
Audio Diffusion Models (ADM) start by producing a random,
noisy audio signal and gradually enhance it through multiple
refining iterative steps. In each step, the noise is reduced, and
finer details are added to the audio. Such models have been
used to generate both music [45] and environmental sounds
[46].

Latent Diffusion Models [47] perform the diffusion process
in the latent space. In this case, high-dimensional data of
interest y, such as audio, are encoded in low-dimensional
latent embeddings z = E(y), providing a more meaningful
representation for training the network. For V2A, the process
is guided by a set of conditionings C = c1, c2, ..., cn. In the
forward process, Gaussian noise is slowly added to the original
data distribution with a fixed schedule α1, . . . , αT , where T
is the total timesteps, and ᾱt =

∏t
i=1 αi:

q(zt|zt−1) = N (zt;
√
αtzt−1, (1− αt)I) (1)

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I). (2)

The model should attempt to reverse the process by opti-
mizing a denoising objective, typically defined as:

LLDM = Ez0,t,ϵ∥ϵ− ϵθ(zt, t,C)∥22, (3)

where ϵ is Gaussian noise and ϵθ(zt, t,C) denotes the
estimated noise, which is the output of the model.

After training, LDMs generate latents by sampling through
the reverse process with zT ∼ N (0, I) formulated as:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t,C), σ2
t I) (4)

µθ(zt, t,C) =
1

√
αt

(
zt −

1− αt√
1− ᾱt

ϵθ(zt, t,C)

)
(5)

σ2
t =

1− ᾱt−1

1− ᾱt
(1− αt). (6)

Finally, the desired output ŷ is obtained by decoding the
generated latent z0 with a decoder D.

These models are widely used for audio generation [48],
with Stable Audio [49], [50] representing a state-of-the-art
latent ADM.

B. Guiding diffusion processes with ControlNet

ControlNet [51] is a neural network specifically designed
for diffusion models that allows more precise control over
the generation process by conditioning the model on addi-
tional inputs. It was first used to control image generation in
Stable Diffusion with extra information such as features or
prompts. Initially designed for U-Net-based diffusion models,
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ControlNet was later extended in [52] to work with Diffusion
Transformers (DiT) for image synthesis.

In audio diffusion models, ControlNet can guide the genera-
tion of sound by incorporating specific constraints like tempo,
rhythm, pitch, or other audio characteristics [53]. This makes it
useful for tasks like generating audio that adheres to a desired
structure or style, improving the accuracy and flexibility of the
diffusion process.

IV. PROPOSED METHOD

A. Problem Formulation

Let us consider a target video x ∈ RT×C×H×W , where T
is the total duration of the video expressed in frames, C is the
number of input RGB channels, i.e. 3 channels, H×W is the
dimension in height and width of each frame. The objective of
the proposed model is to generate an audio track y ∈ RCh×L,
where Ch represents the number of audio channels, that is
2 for stereo audio, and L is the time duration of the audio
expressed in samples. The generated audio y must be seman-
tically and temporally synchronized with the input video, so it
can be used as a realistic soundtrack for it. For example, in the
case of a video depicting a person walking slowly on a wooden
pavement, the audio generated by the model must be both in
terms of semantics and temporal alignment distant from the
audio generated for a video depicting a person running on
grass.

One of the main challenges when approaching V2A prob-
lems is the completely different temporal resolution between
video and audio. Indeed, the temporal resolution of a video,
expressed in frames per second (fps), is usually much lower
than the temporal resolution of an audio, expressed in sample
rate (sr). For instance, a commonly used frame rate in video
is 30 fps, while the standard in audio is represented by a sr
of 44.1 kHz. This means that in this specific case 1470 audio
samples are represented by one single frame. One possible
solution to mitigate this difference is to increase the fps of the
video and lower the sr of the audio. However, increasing the
frame rate of a video excessively leads to a significant rise
in the computational cost of the model. On the other hand,
decreasing the sample rate results in a loss of audio quality,
which is unsuitable for practical use in sound design. It is
therefore crucial to carefully manage the transition between
the two modalities, i.e., audio and video, to ensure that the
problem remains computationally feasible while maintaining
high enough audio quality to capture all the features of the
sound needed by sound designers and Foley artists [54], [55].

B. Mapping a Video to an Envelope

In audio, the envelope describes how a sound evolves
over time. It is represented by a smooth curve outlining the
extremes of the signal, providing useful information such as
its amplitude and duration over time. Moreover, by tracking
the shape of the waveform, it is an effective and visually
understandable feature for indicating the temporal locations
of all sound events in the audio.

The envelope can be calculated in different manners. In T-
Foley [20], the Root-Mean-Square (RMS) of the waveform,

Fig. 3. Example of the ground truth envelope before and after the smoothing
operation.

a commonly used frame-level amplitude envelope feature, is
employed for temporal-event guided waveform generation.
The i-th sample of the temporal sequence representing the
RMS envelope is then calculated on a window of the audio
signal y as follows:

ri = RMSi(y) =

√√√√ 1

W

ih+W∑
t=ih

y2(t), (7)

where W is the window size and h is the hop size.
We address this task as a classification one since trying to

map a curve representing the envelope of an audio as a regres-
sion task does not produce satisfactory results [42]. The reason
is that sounds related to actions are often transient, which
makes audio containing multiple repeated actions sparse, i.e.
most samples represent silence. A model that tries to map such
a time series as a regression task thus tends to predict silence
or the mean value of the curve, as we also found out in our
early experiments.

We then perform amplitude quantization of the envelope
by µ-law encoding. This encoding is widely used in audio,
especially in pitch estimation [56], precisely to mitigate the
transient and sparse nature of waveform of this kind. This
encoding allows amplitude quantization of the signal by divid-
ing the values into equidistant bins. The idea here is to map
video frames to a sequence of specific classes, representing
the amplitude values of the envelope.
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Furthermore, it is necessary not to penalize near-correct
predictions. Indeed, a precise prediction of the correct class
is desirable but not strictly required to ensure good perceptual
quality. Then, in order to minimize the penalty of a near-
correct class prediction, Gaussian label smoothing on the target
envelopes - as proposed in [57] - is used:

r(i) =

{
exp

(
− (ci−cgt)

2

2σ2

)
if |ci − cgt| ≤ W (ci, cgt ̸= 0)

0 otherwise,
(8)

where i is the class index, cgt is the ground-truth class, σ = 1,
and W is the window size on whose values the smoothing is
applied.

C. Video Model

The first stage of our model, the video model, is a simple
neural network that takes some features extracted from the
video as input and generates a temporal guide for the sound
synthesis process of the second stage.

The target is an envelope extracted from a corresponding 10-
second audio chunk sampled at 16 kHz. This relatively low
sample rate helps reduce the temporal resolution gap between
audio and video while preserving sufficient detail in the audio
track. We compute the RMS with the function implemented
in the Librosa Feature module1. Following the nomenclature
of Eq. 7, we set W = 512 and h = 128, thus obtaining an
envelope r with 1250 time samples. Since we normalize the
audio y in the [−1, 1] range, the resulting r is a curve with
values in the range [0, 1].

In addition, to mitigate the high-frequency variations which
are common in real sound waveforms, we apply a smoothing
filter with a kernel size of 15. Our experiments show that
incorporating such a filter is essential to improve the results,
simplifying the classification task that the network performs
on the video frames, as can be seen in Fig. 3. Finally, we map
the time-continuous RMS-envelope to 64 distinct classes by
applying µ-law encoding, using the function provided in the
Librosa library2. We then apply Gaussian label smoothing on
the target discretized envelope.

the video model takes as input features extracted from the
videos. We first convert each video to 30 fps. This means that
a 10-second long video is represented by a sequence of 300
consecutive frames.

In addition, we compute the optical flow of each video
using the RAFT [58] model. To effectively capture both
appearance and motion cues relevant to sound generation,
we utilize features extracted by Temporally Contextualized
CLIP (TC-CLIP) [59] from both RGB frames and RAFT-
computed optical flow. TC-CLIP excels at video understanding
by integrating temporal context. Our experiments confirm that
combining static frame appearance (RGB) with motion infor-
mation (optical flow) via TC-CLIP significantly improves the
ability of the video model to predict accurate audio envelopes,
as motion is often a key indicator of sound events.

1https://librosa.org/doc/main/generated/librosa.feature.rms.html
2https://librosa.org/doc/main/generated/librosa.mu compress.html

RGB frames

Optical Flow

Predicted RMS

Fig. 4. Block diagram for the proposed the video model.

TC-CLIP generates 512 dimensional frame-wise features.
We concatenate the RGB and optical flow features along
the feature dimension, finally obtaining an input of size
[video frames, 1024], where in our case video frames = 300
for Greatest Hits experiments.

Then, we use an efficient model based on the RegNet video
encoder [34], and we improve it to generate the output of
our model. The network is composed of three 1D convo-
lutional layers, a two-layer bidirectional LSTM (Bi-LSTM)
[60] and a linear layer that projects the resulting features to
the output size required for the classification task. We use
the convolutional block as an upsample branch needed to
scale features from video temporal resolution to the audio
temporal resolution. Each convolutional layer is followed by
a batch normalization layer, a ReLU activation function and
an Upsample layer. The upsample sizes for the three layers
are [600, 1200, 1250], thus increasing the time dimension
of the output from video frames to RMS frames, where
RMS frames is equal to 1250. Thanks to this upsample, we
do not perform a frame-by-frame classification of the video,
but we directly map the continuous RMS envelope.

We use a Cross Entropy loss as objective for our classifica-
tion problem:

LCE(rd, r̂d) = −
C∑
i=1

rdi log(r̂di
), (9)

where rd is the discretized RMS envelope r, i.e. the envelope
after µ-law encoding and Gaussian label smoothing, and r̂d
is the output of our model. Fig. 4 depicts a block diagram of
the proposed the video model.

D. Audio Synthesis Model

The audio synthesis model leverages Stable Audio Open
[61], which is an Audio Latent Diffusion Model for generating
long-form, variable-length stereo music and sounds at 44.1
kHz using text prompts. Therefore, this model is not specifi-
cally trained for V2A tasks, which means that the generated

https://librosa.org/doc/main/generated/librosa.feature.rms.html
https://librosa.org/doc/main/generated/librosa.mu_compress.html
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audio does not take into account a time alignment with a
specific reference.

We want to use the prior knowledge of such a state-of-
the-art model for audio synthesis, but at the same time guide
audio generation both semantically and temporally. This means
that the audio synthesis model should be controlled by the
envelope extracted from the the video model, representing our
temporal control, and conditionings that capture the semantics
and duration of the audio.

The aim of the synthesis model is to learn a probability dis-
tribution p(y|F, r) of a waveform y, given a time-independent
set of conditionings F = f1, f2, ..., fn, representing a set of n
desired semantic characterizations, and r, that is the temporal
control.

The audio synthesis model is trained on the same L2 loss
on which Stable Audio models are trained.

1) Temporal Control: We use a ControlNet to drive gener-
ation using a temporal control and at the same time just fine-
tune Stable Audio Open on our specific task, without having to
train the model from scratch. A key innovation of the audio
synthesis model lies in its temporal control mechanism. We
adapt the ControlNet framework, originally designed for U-
Nets, to operate with Diffusion Transformer (DiT) architecture
of Stable Audio, following recent advancements [52]. To our
knowledge, this represents the first successful integration of
ControlNet with Stable Audio’s DiT to impose explicit, fine-
grained temporal control via an external signal like the RMS
envelope, allowing us to precisely guide the synthesis process
while leveraging the power of the pre-trained Stable Audio
model.

We want to generate stereo audio at 44.1 kHz. In the training
phase, the length of the audio to be generated is fixed at 10s.
Accordingly we interpolate the ground truth RMS envelope,
extracted for both L/R channels, to the length in samples of
the target audio signal.

The input of the ControlNet needs to be of the same dimen-
sion as the input of the diffusion process, i.e. the embedding
of the audio used in Stable Audio. To extract this latent
representation of the envelope, we use the VAE introduced
in [49] for encoding the input to the diffusion model, without
needing to update its weights. This VAE downsamples the
input stereo audio by a factor of 1024. Specifically, it maps
an input signal y ∈ R2×L, where L is the number of samples
representing the waveform, and 2 is the number of channels,
to an embedding yc ∈ R64× L

1024 .
In all of our experiments, such a VAE has proven to provide

a meaningful representation of the RMS envelope as well, so
we use it to encode the input of the ControlNet r and the
diffusion process input y.

For the design of the audio synthesis model we follow the
general architecture of ControlNet: the DiT layers are then
frozen, and a trainable copy for each of them is created with
two zero-initialized convolutional layers placed before and
after the copy. For training, the envelope is computed so that
it has the same length in samples as the target audio. The
control signal r, representing the RMS envelope, and the input
waveform y are both encoded through the same VAE. For each
layer, the encoded control signal rc is first processed through

the first zero-initialized convolutional layer, then added to the
input yc, which is the latent version of y obtained through the
VAE; the resulting signal is subsequently passed through the
trainable copy and the second zero-initialized convolutional
layer and finally added to the output of the frozen layer,
derived from input yc. The visualization of this process is
depicted in Fig. 5.

Finally, we use a depth factor parameter to use only a
subset of the pre-trained layers of the original DiT: in our ex-
periments we use a depth factor of 20%, which corresponds
to using only 5 layers of the Stable Audio DiT.

2) Semantic Control: Several recent deep learning inves-
tigations have focused on developing versatile audio repre-
sentations that can be effectively generalized across various
downstream tasks [62]. Contrastive learning, in particular,
gained great popularity for the training of multimodal models.
A notable example of this approach is CLAP [63], which
aligns embeddings for both audio and text in a shared latent
space. We then condition our sound synthesis model on CLAP
audio embeddings during training, enabling it to incorporate
text-based conditioning as an additional modality at inference
time only.

To further refine the semantic and temporal alignment of
the final audio, we also condition the generation process
with a direct frame representation of the reference video. We
do so using the embeddings provided by the CAVP video
encoder, introduced in [37]. This video encoder aligns the
audio and video modalities, providing useful information about
the timing and semantics of the related audio. CAVP takes as
input video at 4 fps, so we use this frame rate to pass only
RGB frames to it. These semantic controls are fed via cross-
attention layers, as global conditionings for Stable Audio.

Conditionings on duration, represented by the hyperparam-
eters seconds start and seconds total, indicating the total
length of the audio, are fed to the model via prepending
it to the input of the model. Prepend conditioning also in-
cludes timestep conditioning, indicating the current diffusion
timestep. These conditionings are concatenated along the
channels dimension to the input.

V. EXPERIMENTAL SETUP

A. Datasets

1) Greatest Hits: We use the Greatest Hits dataset [21], a
widely-adopted datasets for V2A tasks. This dataset includes
videos of humans using a drumstick to hit or rub objects
or surfaces. The choice of a drumstick as the striking object
is useful, as it minimally occludes each frame, enabling the
video model to better comprehend motions in the scene. Each
video in the dataset captures the drumstick strokes; the audio
is recorded with a shotgun microphone attached to the camera,
and then denoised. The dataset provides metadata associated
to each video. We use it to define textual prompts according
to a predetermined structure: “A person {action} {frequency}
on {material} with a wooden stick”, where {action} – which
can be “hit” or “scratch” –, {frequency} – which can be either
“multiple times” or “once” – and {material} are derived from
the metadata.
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Fig. 5. Block diagram for the audio synthesis model. Trainable modules are
ControlNet blocks while Stable DiT blocks are frozen.

The high quality of the samples in this dataset is critical for
training V2A models, as very often datasets of video in the
wild do not guarantee either good video and audio quality and
sufficient audiovisual alignment to allow the models to learn
the relationships required to generate audio that is semantically
and temporally aligned with the reference video. Altogether,
the dataset consists of 977 videos captured both outdoor
and indoor. Indoor scenes contain a variety of hard and soft
materials, such as metal, plastic, cloth, while the outdoor
scenes contain materials that scatter and deform, such as grass,
leaves and water. On average, each video contains 48 actions,
divided between hitting and scratching. This ensures that each
extracted chunk of video, lasting either 10 seconds, contains
a sufficient number of hits. We divide the dataset into 732
videos for the training set, 49 for the validation set and 196
for the test set.

2) Walking The Maps: We want to train and test our
model on a case study of interest, among the most relevant
in the sound design of audiovisual works: the generation of
footsteps sounds. Datasets properly adapted for V2A tasks do
not exist or are not currently publicly available. A dataset for
V2A models must consist of high-resolution video and sound
design-quality audio. We therefore decided to build a novel
dataset with these characteristics in order to test our model in
real-world scenarios for Foley synthesis. The audio and video
quality of the most modern video games is extremely high,
making them the perfect source, in our opinion, to create a
V2A dataset. Then, we collected clips taken from publicly
available YouTube videos of walkthroughs of some famous
video games.

Many gamers upload videos to YouTube in which they roam
with their animated character in the maps of different video
games. These videos are the perfect target for our dataset;
in fact, the sound of footsteps is clearly audible and each
footstep is strongly characterized, e.g. steps on grass, concrete
or wood sound completely different from each other as well
as steps related to a slow walk or a run. High-definition video
is associated with such sounds for more modern video games,

Fig. 6. Samples from the Walking The Maps dataset highlighting different
lighting conditions and grounds.

allowing for an excellent temporal and semantic relationship
between audio and video.

In order to create the current version of our dataset, called
Walking The Maps, we chose 4 video games as targets:
Hogwarts Legacy, Zelda Breath of the Wild, Assassin’s Creed:
Odyssey, Assassin’s Creed IV Black Flag. For each selected
video, we extracted only clips in which the sound of the steps
is clearly audible and there are no other possible sound sources
in the video that can be related to the target sound.

Thus, our dataset is finally composed of 893 video clips
of different lengths. The average duration of the videos is
8.82 seconds, where the shortest video has a duration of 2.04
seconds and the longest one is 72.05 seconds long. Each chunk
is saved by reporting the unique ID of the video posted on
YouTube, the start second of the chunk related to the full
video, and the end instant expressed in seconds, so each video
in the dataset will have a name of the type ID start end.mp4.
While YouTube game walkthroughs often feature prominent
footstep sounds, they can also contain background music,
dialogue, or other game sounds. To ensure the dataset provides
clean target audio primarily containing footsteps, essential for
training robust V2A models, we preprocessed the audio from
each clip using the AudioSep [64] source separation model
with the query “footstep sounds”.

Since the shortest video in our dataset is 2 seconds long,
we fine-tuned our FOL·AI model on 2 seconds chunks of each
video in the dataset. The dataset is made publicly available so
that it can be used for evaluation of V2A models and to be
further extended.

Some samples from our dataset are provided in Fig. 6
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B. Training and Inference Details

We train the video model and the audio synthesis model
separately. The video model is trained on a single 48 GB
Nvidia RTX A6000. We use a batch size of 64, training the
model for 500 epochs with a learning rate maintained constant
at 1 × 10−3 and Adam as an optimizer with a weight decay
set to 1× 10−3.

To train the audio synthesis model, we use the official
Stable Audio Open3 repository and the related checkpoint4

to initialize the weights of our model. We use 44.1 kHz stereo
audio as ground truth for experiments with Greatest Hits. the
audio synthesis model is trained on a single 48 GB Nvidia
RTX A6000 with a batch size of 12 for 20k steps. We use a
fixed learning rate of 1× 10−4 and AdamW as an optimizer,
with parameters set as it is done in Stable Audio Open.

In inference, we use the RMS envelopes predicted though
the the video model; after µ-law decoding5, we use interpo-
lation to match the sample rate and employ these envelopes
as input to the ControlNet of the audio synthesis model. The
model then performs 150 sampling steps to generate the final
output, using classifier-free guidance [65] with a scale set to
2.

Regarding the experiments on our Walking The Maps
dataset, we fine-tuned our model starting from the best
checkpoints obtained after training on Greatest Hits for both
the video model and the audio synthesis model. The use
of 2 second-long chunks implies a change in the temporal
dimensions of the data in our model. Other than that, the
parameters used for these experiments are the same as those
used for Greatest Hits.

In this case, the video model is fine-tuned with a decreasing
learning rate scheduler, with γ = 0.5, for 2500 epochs. While
the audio synthesis model is fine-tuned without any change
with respect to Greatest Hits experiments.

C. Evaluation Metrics

To perform an objective evaluation of our model, we employ
some of the most widely used metrics to attest semantic quality
and time alignment in V2A tasks. We use E-L1, acc@1,
acc@5, acc@10 for the evaluation of the the video model,
while we use FAD-P, FAD-C, FAD-CL, CLAP-score, FAVD
and E-L1 for the evaluation of both the audio synthesis model
and the complete model, FOL·AI.

1) E-L1: Time alignment is evaluated with the E-L1 metric
introduced in T-Foley [20]. E-L1 evaluates the fitting of the
generated sounds to the temporal condition of the event:

E-L1 =
1

k

k∑
i=1

∥ri − r̂i∥, (10)

where ri is the ground-truth envelope of the i-th frame, and
r̂i is the predicted one.

3https://github.com/Stability-AI/stable-audio-tools
4https://huggingface.co/stabilityai/stable-audio-open-1.0
5https://librosa.org/doc/main/generated/librosa.mu expand.html

2) Accuracy metric: We also use class-wise accuracy at k
(k = {1, 5, 10}). Since we are not trying to make a perfect
classification of the various frames in the envelope, as we
do not want to penalize near-correct predictions, the most
informative accuracy is acc@5.

3) Fréchet Audio Distance: FAD [66] is used to evaluate
the quality and realism of generated audio compared to refer-
ence audio. This metric computes the similarity between the
statistical distributions of embeddings of the real and generated
audio.

The choice of audio encoder from which to extract embed-
dings significantly impacts the FAD score because different
features representations encode specific aspects of audio, so
the audio quality measured by this metric with respect to
human perception is embeddings dependent [67]. For this
reason we measure FAD using three different audio encoders:
PANNs wavegram-logmel [68] (FAD-P), Microsoft CLAP
[69] (FAD-C) and Laion-CLAP [63] (FAD-LC).

To calculate these metrics, we use the fadtk6 library.
4) CLAP-score metric: CLAP-score is another metric used

to assess the overall quality of the generated waveforms, as
done in [61]. We generate embeddings through CLAP [63]
of both ground truth and generated audio and compute cosine
similarity between them. Since our model is based on the use
of CLAP as the audio representation, this metric is useful for
attesting how relevant the conditioning audio features are in
generating the final output.

5) Fréchet Audio-Visual Distance: FAVD [70] is gaining
increasing popularity in the evaluation of V2A models, as the
purpose of this metric is to measure the temporal and semantic
alignment between video and audio modalities. It does so by
calculating the Frèchet Distance between video embedding
and audio embedding. In our case, we use video and audio
encoders used in the reference library, namely I3D [71] and
VGGish [72], to calculate the embedding of the ground truth
video and the embedding of the generated audio.

VI. RESULTS

A. Complete Model

We compare our complete model, FOL·AI, with the main
V2A models publicly available at the time of writing this
paper. More precisely, our baseline models are the afore-
mentioned SpecVQGAN [35], CondFoleyGen [36], Diff-Foley
[37], Video-Foley [42] and SyncFusion [38].

For all available models, we use the official code provided
on GitHub along with their checkpoints. For comparison
with [42], we used our video model to generate the RMS
envelopes, as at the time of writing this paper the only code
and checkpoints available are for the audio synthesis model.

As shown in Table I, FOL·AI achieves improved results
across all metrics, including both time alignment and the se-
mantic quality of the generated audio, compared to all baseline
models considered. These results highlight the importance of
using a strong temporal control, such as the envelope, to
guide the generation of audio. Indeed, the second- and third-
best models in our tests, Video-Foley and SyncFusion, use

6https://github.com/DCASE2024-Task7-Sound-Scene-Synthesis/fadtk

https://github.com/Stability-AI/stable-audio-tools
https://huggingface.co/stabilityai/stable-audio-open-1.0
https://librosa.org/doc/main/generated/librosa.mu_expand.html
https://github.com/DCASE2024-Task7-Sound-Scene-Synthesis/fadtk
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TABLE I
RESULTS FOR FOL·AI AND COMPARISON WITH OTHER SOTA MODELS ON Greatest Hits. TABLE SHOWS WHETHER THE MODEL GENERATES THE OUTPUT

CONDITIONED ON AN AUDIO OR TEXT PROMPT; HRC STANDS FOR HUMAN READABLE CONTROL AND REFERS TO THE USE OF TIME-VARYING
INTERPRETABLE SIGNALS THAT SOUND DESIGNERS CAN USE TO CONTROL THE GENERATION PROCESS (I.E., ENVELOPE OR ONSETS). OUR MODEL

PROVIDES THE BEST RESULTS, EVEN IN THE SETTING OF TEXT CONDITIONED GENERATION.

Model Audio Text HRC FAD-P ↓ FAD-C ↓ FAD-LC ↓ E-L1 ↓ CLAP ↑ FAVD ↓

SpecVQGAN [35] ✗ ✗ ✗ 99.07 1001 0.7102 0.0427 0.1418 6.5136
Diff-Foley [37] ✗ ✗ ✗ 85.70 654 0.469 0.0448 0.3733 4.6186
CondFoleyGen [36] ✓ ✗ ✗ 74.93 650 0.4883 0.0357 0.4879 6.4814

SyncFusion [38] ✗ ✓ ✓ 35.64 591 0.4365 0.0231 0.5154 4.3020
✓ ✗ ✓ 27.85 542 0.2793 0.0177 0.6621 3.2825

Video-Foley [42] ✗ ✓ ✓ 67.04 644 0.4997 0.0242 0.3680 4.9106
✓ ✗ ✓ 28.45 435 0.1671 0.0183 0.6779 2.2070

FOL·AI (Ours) ✗ ✓ ✓ 32.80 381 0.2516 0.0137 0.4806 3.9413
✓ ✗ ✓ 16.57 217 0.1048 0.0137 0.6833 2.0264

TABLE II
RESULTS FOR THE VIDEO MODEL WITH DIFFERENT RGB AND OPT. FLOW ENCODERS.

Encoder RGB Opt. Flow E-L1 ↓ Acc@1 ↑ Acc@5 ↑ Acc@10 ↑

BN-Inception ✓ ✓ 0.01 0.092 0.398 0.630
TC-CLIP ✓ ✗ 0.0130 0.073 0.340 0.536
TC-CLIP ✓ ✓ 0.0115 0.104 0.430 0.650

TABLE III
RESULTS FOR THE AUDIO SYNTHESIS MODEL FOR AUDIO PROMPT AND GROUND-TRUTH RMS WITH AND WITHOUT FRAMES CONDITIONING.

Model Frames Cond. FAD-P ↓ FAD-C ↓ FAD-LC ↓ E-L1 ↓ CLAP ↑ FAVD ↓

GT RMS ✗ 9.0722 252 0.0635 0.0062 0.7640 1.7103
✓ 7.67 260 0.0630 0.0060 0.7762 1.5832

envelope and onset tracks for temporal conditioning, providing
a stronger guide for temporal alignment than the methods
employed by SpecVQGAN, CondFoleyGen, and Diff-Foley.

Furthermore, the results on audio quality metrics demon-
strate the critical importance of leveraging a state-of-the-art
model like Stable Audio for audio generation. Achieving high
audio definition in V2A models is crucial to making these
tools actually useful for sound designers.

The use of ControlNet enables us to leverage the prior
knowledge of Stable Audio for generating ambient sounds,
allowing the production of 44.1 kHz stereo audio effects,
matching professional audio production standards. In fact,
compared with the baseline methods reported, ours is the only
one that generates audio at a standard rate for professional
audio. Additionally, the integration of ControlNet with a
high depth factor of 20% ensures that our model is both
lightweight and fast. Indeed, the results we achieve are based
on training the model on a small dataset of approximately
6 hours, such as Greatest Hits, with a limited number of
training steps, thus avoiding the need for substantial time and
computational resources.

Table IV shows the results on objective metrics obtained by
evaluating our model on the Walking The Maps test set. Both
the video model and the audio model, succeed to obtain good

results for the synchronization between audio and video as
well as for the quality of the produced waveforms, managing
to generate realistic footsteps sounds. The sounds produced are
diversified from each other according to both the character’s
walking style and the ground type.

B. Ablation studies

1) Different encoders in the video model: Our experiments
demonstrate the fundamental importance of the optical flow in-
formation. When we provide the model with only the features
derived from video frames, the results are significantly worse
compared to using the concatenation of RGB and optical flow
features.

We also experiment with the feature extractor used in
RegNet, that is BN-Inception [73]. This network is trained
on images, so the features extracted for one frame are not
correlated with those of other frames. However, it is trained
on an extremely large dataset (ImageNet [74]), allowing it
to generalize well and produce strong results even when
encoding video frames, despite not being designed for this
purpose. Our experiments show that TC-CLIP achieves better
results than BN-Inception. This outcome is significant, as
TC-CLIP is trained on a smaller dataset (Kinetics-400 [75])
specifically designed for motion recognition. In our opinion,
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TABLE IV
RESULTS FOR FOL·AI ON Walking The Maps.

Model FAD-C ↑ FAD-LC ↑ E-L1 ↑ CLAP ↑ FAVD ↓

FOL·AI 167 0.2556 0.0460 0.6956 3.0682

this demonstrates the direction V2A research should pursue:
employing models specifically designed to capture temporal
context.

Results for the video model and related ablation studies are
reported in Table II.

2) Use of video features in the audio synthesis model:
We evaluate the audio synthesis model by generating audio
through ground truth RMS envelopes extracted directly from
waveforms. As ablation study, we train the model without the
direct conditioning of frames provided by CAVP. The results
reported in Table III show that such additional information
leads to a perceptible improvement in the semantics of the
produced audio, as can be noticed from the metrics for
semantic alignment. While there is no perceivable enhance-
ment in temporal alignment; this result shows that temporal
conditioning is contributed entirely by the ControlNet input,
demonstrating the strength of such conditioning, which is the
desired result.

VII. CONCLUSION AND DISCUSSION

In this paper, we present a novel model for generating an
audio track semantically and temporally aligned to a silent
input video, called FOL·AI. The model is divided into two
distinct parts, trained separately and joined only at inference
time: the video model, which maps a representative envelope
of the audio to be generated directly from the reference video,
and the audio synthesis model that, through the use of the
predicted envelope and other semantic controls, generates the
final output of the model. Our sound synthesis model leverages
Stable Audio Open and, to the best of our knowledge, this
is the first time that such a state-of-the-art model for audio
generation is used in the context of Video-to-Audio. The main
contributions of FOL·AI also include the novel application
of ControlNet to Stable Audio’s DiT architecture for precise
temporal control using RMS envelopes, the introduction of
the Walking The Maps dataset focused on the challenging
Foley task of footstep synthesis, and achieving state-of-the-
art performance in V2A tasks while generating high-fidelity
44.1 kHz stereo audio.

Although the audio synthesis model tracks with high accu-
racy the envelope used as a control, mapping that envelope
from the video represents the bottleneck of our model, still
leaving room for potential future research works.

In addition, datasets suitable for V2A problems, containing
high-quality video and audio, are still too few or difficult to
obtain. In our case, we believe that the introduction of suitable
datasets, such as Walking The Maps, can be of great help for
researchers in the field of Foley synthesis.

Also, the semantics of the generated waveforms can be
further optimized through the use of different and more
relevant semantic conditionings.
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