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ABSTRACT

We present AFX-Research, a repository1 and associated website2 gathering scientific literature about
research on audio effects. Our database includes publications on topics like: modeling, classification
and identification, estimation and regression, removal, style transfer, processing. It also includes
review papers, which themselves survey the scientific literature. Furthermore, publications included
in our database are not limited to specific methods or techniques (e.g. neural networks or wave
digital filters) in an effort to highlight the long tradition of audio effects research and the many
different approaches adopted along the decades. While our website contains a table with all details
about each publication, the table itself allows to search, filter and order the publications; making it
extremely easy to retrieve relevant information. At the same time the repository allows anyone to
submit requests to add a new publication or update/modify an existing one. Considering the constant
contributions of the audio effects research community to such topics and the fast pacing of machine
learning approaches, we hope AFX-Research will facilitate up-to-date literature reviews and help
explore novel ideas, as well as reorganizing the content in line with new research avenues.

1 Introduction

Research on audio effects has significantly expanded over the last few decades [1, 2, 3], driven by advances in digital
signal processing [4], machine learning [5], and auditory perception. As the body of literature grows, so does the need
for a centralized repository that not only gathers this research but also offers tools for easy access and exploration.
AFX-Research aims to fulfill this need by providing a comprehensive database of publications related to audio effects.
This repository is designed to be both extensive and flexible, accommodating a wide variety of research topics and
methodologies.

The goal of AFX-Research is to serve as a go-to resource for researchers, educators, and practitioners in the field of
audio effects. By offering a platform where publications can be easily accessed, searched, and organized, we aim
to streamline the process of literature review and foster the exploration of new research directions. Additionally, the
repository encourages community participation by allowing users to contribute to the database, ensuring that it remains
up-to-date with the latest research developments.

2 Repository and Website

The AFX-Research repository is hosted on a dedicated website designed to facilitate user interaction with the database.
The website features a user-friendly interface (see Fig. 1) that allows for the comprehensive exploration of the repos-
itory’s contents. Key functionalities of the website include search, filter, and sort options, which enable users to
efficiently navigate through the extensive collection of publications.

1https://github.com/mcomunita/AFX-Research
2https://mcomunita.github.io/AFX-Research
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The website also supports community-driven updates, where users can submit new publications or suggest modifica-
tions to existing entries. This feature ensures that the repository remains current and continues to reflect the evolving
landscape of audio effects research.

Figure 1: AFX-Research website UI - table of publications

3 Database

The database offers detailed metadata for each publication (see Fig. 2), allowing users to assess its relevance without
needing to access the full text. At the moment of publication, the metadata includes:

• Title
• Author(s)
• URL: URL to the publication
• Date
• Main Task: classification, estimation, modeling, processing, removal, style transfer, review
• Paradigm(s): what paradigm(s) is the publication using (i.e., black-, gray-, white-box)
• Device(s) Type(s): what type of effects the publication is about (e.g., reverb, delay)
• Device(s): what specific device(s)/circuit(s) are considered (e.g., Ibanez Tube Screamer or vacuum tube

stage)
• Parametric/Controllable: whether the approach includes a form of parametric control
• Neural/Differentiable: whether the publication uses approches that support gradient backpropagation
• Method(s): which method(s) or combination of methods is the publication based on (e.g., neural network,

Wiener-Hammerstein or state-space)
• Webpage: URL of the page associated with the publication
• Code: URL of the repo associated with the publication
• Dataset: URL of the data associated with the publication
• Abstract
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Figure 2: AFX-Research website UI - example of publication page and metadata

3.1 Tasks

The database categorizes publications based on the primary research tasks they address. These tasks include but are
not limited to:

• Classification and identification: studies that classify different types of audio effects (e.g., distortion, phaser,
reverb) or identify specific devices (e.g., ProCo Rat distortion, Teletronix LA2A compressor) from audio
signals [6, 7, 8].

• Estimation, regression, extraction: works concerned with estimating the controls settings (e.g., gain, cutoff
frequency, modulation speed) used to process a certain audio example [6, 7, 9] or related to estimating the
internal coefficients of certain processing blocks (e.g., allpass filter, biquad filter, low-frequency oscillator)
[10, 11, 12].

• Modeling: research focused on developing mathematical or computational models of audio effects [13, 14,
15, 16, 17, 18].

• Removal: research aimed at removing audio effects from processed signals [19, 20, 21].
• Style Transfer: studies concerned with replicating the sonic characteristics of a reference audio example when

applied to an input audio example, regardless of the content or specific audio effects and effects implementa-
tions used to process the reference and the input examples [22, 23, 24, 25].
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• Processing: broad category of research about processing audio signals. This includes: automatic audio effects
control [26], automatic mixing [27], audio processing graph estimation [28, 29], anti-aliasing techniques [30],
creative uses of audio effects or derivation of new audio effects that do not strictly model specific devices
[31, 32].

• Review: overviews of a specific subtopic or task in the field of audio effects research [1, 3, 5].

3.2 Paradigms

The database includes publications that employ various modeling or emulation paradigms:

• White-box: emulation is based on complete knowledge or thorough understanding of the system (e.g., cir-
cuit schematic) and typically employs ordinary/partial differential equations to describe its behaviour and
numerical methods to solve them in the continuous or discrete domain [11, 33, 34, 35, 36]. Therefore, such
methods are often associated with a time consuming design process and computationally demanding and
non-transferable implementations.

• Gray-box: combine a partial theoretical structure - referred to as block-oriented model - with data - typi-
cally input/output measurements - to complete the model [15, 37, 38, 39, 40, 41]. Although they reduce
prior knowledge necessary to model a device, gray-box approaches still require ad hoc measurements and
optimization procedures and knowledge of the underlying implementation.

• Black-box: modeling requires minimal knowledge of the system and mostly relies on input-output mea-
surements. A major advantage is that black-box models simplify the process to collecting adequate data
[18, 13, 14, 42]. However, these models often lack interpretability and might entail time-consuming opti-
mizations.

3.3 Methods

The methods section categorizes publications based on the technical approaches and tools used in the research. Com-
mon methods include:

• Differentiable DSP: a family of techniques in which loss function gradients are backpropagated through
digital signal processors, facilitating their integration into neural networks [43].

• Dynamic Convolution: techniques where the impulse response or processing kernels of a system are varied as
a function of the present and/or past input amplitude to model non-linear or hysteretic behaviours of a system
[44].

• Equations: techniques where modeling or emulation is based on solving or approximating the physical equa-
tions describing a system’s behavior. Often based on iterative or numerical methods [45, 46].

• Neural Network: techniques where neural networks are used to solve a task by learning from data [5, 16].
• State-space: the state-space approach represents an electronic circuit as a system of first-order differential

equations, describing the circuit’s dynamics in terms of state variables, inputs, and outputs [47, 48, 49, 50].
This method uses matrix algebra to model the relationships between circuit components, allowing for efficient
digital simulation of complex analog systems. Methods developed for the simulation of state-space systems
include the K-method, NK-method and DK-method.

• Wave Digital Filters: a method for digitally modeling analog circuits based on the theory of traveling waves
(scattering theory). It uses wave variables instead of standard circuit variables (voltage and current) to rep-
resent the behavior of circuit elements [51, 33, 34, 52]. Wave digital filters are designed to preserve key
properties of analog circuits, such as passivity and energy conservation, making them stable and robust for
digital implementation.

• Port-Hamiltonian: a method for digitally modeling analog circuits based on the principles of Hamiltonian
mechanics, focusing on the conservation of energy within a system [53, 54].

• Volterra Series: mathematical tool used for modeling and simulating nonlinear systems. It extends the concept
of linear systems by representing a nonlinear system as an infinite series of integral operators, analogous to
a Taylor series expansion but in the context of systems and signals [55, 56, 57, 58]. In contrast to linear
systems, where the output is directly proportional to the input, nonlinear systems exhibit a more complex
relationship. The output in such systems depends on both the current and past inputs in a nonlinear manner.
A Volterra series expresses the output of a nonlinear system as a sum of convolutions of the input signal with
a series of kernels (functions).
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• Waveshaping: application of a nonlinear function to an input audio signal. This function can be mathemati-
cally defined or represented as a waveshaping curve. The input signal, usually a simple waveform like a sine
wave, is passed through this nonlinear function, which modifies the amplitude of the signal in a non-linear
fashion, thereby altering its harmonic content [59, 60].

• Wiener-Hammerstein: a class of models used to emulate the nonlinear and dynamic behavior of audio de-
vices and other systems. These models combine linear and nonlinear elements in a structured way, making
them particularly well-suited for capturing the characteristics of audio processing equipment like amplifiers,
distortion units, and other effects that exhibit both linear filtering and nonlinear distortion [15, 61, 62, 63]. A
Wiener model consists of a linear block followed by a nonlinear block. A Hammerstein model consists of a
nonlinear block followed by a linear block. A Wiener-Hammerstein model combines both structures, placing
a linear block both before and after the nonlinear block.

4 Conclusion

AFX-Research is a valuable resource for the audio effects research community. By providing a centralized, easily
accessible, and regularly updated repository, it facilitates comprehensive literature reviews and supports the exploration
of new research ideas. The repository’s flexible design, which accommodates a wide range of tasks, paradigms, and
methods, ensures that it remains relevant to researchers with diverse interests and expertise. As the field of audio
effects continues to evolve, AFX-Research will play a crucial role in helping researchers stay informed and inspired.
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