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ABSTRACT

Recorded room impulse responses enable accurate and high-quality artificial reverberation. Used in combination
with convolution, they can be computationally expensive and inflexible, providing little control to the user. On the
other hand, reverberation algorithms are parametric which enable user control. However, they can lack realism and
can be challenging to configure. To address these limitations, we introduce a multi-stage approach to optimize
the coefficients of a Feedback Delay Network (FDN) reverberator to match a target room impulse response, thus
enabling parametric control. In the first stage, we configure some FDN parameters by extracting features from the
target impulse response. Then, we use a genetic algorithm to fit the remaining parameters to match the desired
impulse response using a Mel-frequency cepstrum coefficients (MFCCs) cost function. We evaluate our approach
across a dataset of impulse responses and conducted a subjective listening test. Our results indicate that the
combination of the FDN with a short truncation of the target impulse response enables a better approximation,
however, there are still differences with respect to the overall spectrum and the clarity factor in some more
challenging cases.

1 Introduction

Recorded room impulse response offers an exhaustive
representation of the sound characteristics of a rever-
berant space at a given point. It is often used with
convolution to apply accurate reverberation to a digital
audio signal. However, impulse response convolution
with an audio signal doesn’t provide any parametric
control over the reverberation characteristics to the user.
Also, the computing resources required to convolve an
impulse response can be greater than the resources re-
quired for delay-based algorithmic reverberation [1].

Although several efficient architectures have been es-
tablished to implement reverberation, good-sounding
parametric reverberation is challenging [2, 3].The Feed-
back delay network (FDN) for reverberation was in-
troduced by Stautner and Puckette in 1982 [4], and
then developed further by Jot [5]. He proposed an
analysis-synthesis method allowing the control of the
FDN reverberation time as a function of the frequency
[6]. However, other parameters such as matrix coeffi-
cients, delay lengths, and gains are not covered in this
analytical approach.
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To counter those limitations, recent approaches used
machine learning to find the vector of FDN coefficients
that provides the lowest error between a target room
impulse response (RIR) and the FDN output. Coggin
et al. [7] used a genetic algorithm in combination with
a Yule-Walker optimization to determine the values of
the absorption filters in the FDN. Other approaches
in filter optimization showed better results compared
to Yule-Walker method when applied to IIR filters us-
ing the least-squares method [8] and deep learning [9].
Shen et al. [10] described a data-driven approach to
classify room parameters with FDN coefficients using
Support-Vector-Machines. Their approach also used
a genetic algorithm to generate the coefficients of the
FDN. Previous approaches used signal envelope error
[7, 11] and a weighted sum of reverberation time and
clarity factor as their cost function [10]. This could
be improved with a more perceptually relevant metric
such as MFCCs.

Previous works [7, 10, 12] used a truncation of the tar-
get impulse response to generate the early reflections
and then used the FDN for the late reverberation syn-
thesis. This hybrid approach was initially introduced
by Primavera et al. [13]. The length of the truncation
is usually around 80 ms and doesn’t take into account
the target impulse response characteristics such as its
reverberation time.

Genetic algorithm is often used in FDN optimization
[7, 10, 11], as IIR filters are challenging to optimize
with differentiable machine learning techniques. Lee
et al. [14] developed a method to replace the IIR with
FIR approximations, making artificial reverberators
differentiable. This new approach opens the scope
to more differentiable optimization on FDN. Previous
works didn’t assess the quality of their design against
an impulse response dataset.

We present a model that truncates the early reflections
based on the early decay time of the target impulse
response. Our genetic algorithm computes the cost
function with MFCCs. We use an automatic equaliza-
tion method that provides lower error compared to the
Yule-Walker approach to control energy decay. We
compare the performances of the hybrid and FDN-
only approach against a dataset of 82 room impulse
responses by assessing the quality of our design with
objective measurements and with a listening test.

Fig. 1: A feedback delay network (FDN) artificial re-
verberator of order N = 3. Each delay line Z−Mi

of length M samples has an absorption equal-
izer Hi(Z), feeding back into a matrix A, where
i is the delay line number. The output is cor-
rected with a parametric tone equalizer T (z).
bi,ci,d represent the input, output and direct
signal gains.

2 Methods

2.1 Dataset and model

We built our target impulse response dataset using Ope-
nAIRLib [15]. We extracted all the audio files from the
website and kept all the mono measures, resulting in a
dataset of 82 impulse responses. We normalized and
removed the initial silence of all the files. Furthermore,
we provide the code to generate the dataset along with
the model used to match those impulse responses 1.

2.2 FDN Implementation

We used the MATLAB FDN toolbox [16] that provides
an implementation of an FDN reverberation. This tool-
box handles the synthesis of impulse response gen-
eration using delay state-space filter matrices, which
reduce the processing time compared to sample-based
implementation. The structure of the FDN used is
shown in Figure 1.

The parameters detailed in Figure 1 are all the param-
eters we want to optimize to get an impulse response
perceived as the target impulse response. Some param-
eters were calculated directly from the target analysis,
such as the tone correction filter T (z) and the attenua-
tion filters Hi(z).

1https://github.com/ilias-audio/MatchReverb
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2.3 Absorption filter

The FDN absorption filters Hi(z) were implemented
as a 10-band biquad filter. To compute the absorp-
tion filters of the FDN, we used a modified version of
the analysis-synthesis method developed by Jot [6] to
match the RT60( f ) of the target reverberation. We fil-
tered the impulse response signal with an octave-band
filter bank Goctave( fc,n) to obtain one filtered signal
per biquad. We operated a squared time-reversed inte-
gration of the impulse response for each band resulting
in an energy decay curve EDC f ilter( fc,n), where fc is
the center frequency of the octave-band filter and n the
sample at a given time, which is given by:

EDCFilter( fc,n) =
N

∑
n

Goctave( fc,n)2 (1)

where n is the current sample and N is the total number
of samples. Some of the impulse responses in our
dataset had a high level of static noise. We had to
revise our measurement of RT60 with the following
measurement:

RT60 = 3 ·RT15 (2)

Where RT15 is measured between n[−5dB] and
n[−20dB] points. We apply this measurement to each
of the octave-band filters of the EDC f ilter( fc,n) giving
us an RT60( f ). This provides a more robust represen-
tation of the attenuation at all frequencies, given in
Equation 2.

Hi( f ) =
−60 ·Mi

RT60( f ) · fs
(3)

Then, we transform the desired reverberation time to
a transfer function using Equation 3. Where M is the
length in samples of a given delay line i, fs is the sample
rate, and f is the current frequency. From this desired
frequency response Hi( f ) we then use the accurate
equalizer developed by Valimaki et al.[8] using the
least-squares method to get the corresponding cascaded
second-order biquad filters coefficients. We used the
implementation given in the FDN Toolbox [16] for that
step. This process allowed us to have an initialization
of the attenuation filter parameters that was already the
best result.

2.4 Tone correction filter

Since the RT60( f ) of an impulse response is relative to
its initial energy, we needed to constrain the initial en-
ergy, otherwise, the FDN would behave as a decaying

Fig. 2: Example of an octave-band filtered EDC with
the blue line representing the RT60( f ) calcu-
lated from it.

white noise. To do so, we applied a static paramet-
ric equalizer to shape the initial energy of the impulse
response. The tone correction filter T (z) was imple-
mented following a similar method discussed in Section
2.3 for the absorption filter. Here, we look at the ini-
tial EDCFilter( fc,n) at n = 0 and generate a frequency
response that we then turned into biquad coefficient
values using the accurate equalizer algorithm [8].

2.5 Optimization algorithm

2.5.1 Arbitrary parameters

In the previous sections, we covered the analysis-
synthesis method that we used to determine the pa-
rameters for the absorption filters Hi(z) and the global
tone correction filter T (z). To our knowledge, there
is not yet a clear method to determine the gains, de-
lay lengths, and feedback matrix values of the FDN
to match an impulse response. We used a fixed FDN
order of N = 16 and a random uni-lossless feedback
matrix since it provides the best efficiency [1].

2.5.2 Genetic algorithm

The main parameters remaining to optimize were the
input, output, direct gains and the delay lengths (respec-
tively bi, ci, d and Mi). To find the best fitting values
we used a genetic algorithm following the optimization
process, detailed in Figure 3. We constrained the search
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Fig. 3: Block diagram of our method to match a target
impulse response. We first analyze and extract
features from the target impulse response. Then,
we synthesize an impulse response with the
FDN and compare it with the target using a cost
function. The cost is then used to define the
fitness of the impulse response for the Genetic
Algorithm.

for an optimal value of linear gain between [-1 : 1] and
[0.0002 : 0.25] seconds for the delay lengths. We tried
different combinations of meta-parameters for the num-
ber of generations and the number of impulse responses
per generation. Furthermore, we noticed that the ge-
netic algorithm quickly reaches a bias level in the opti-
mization process, not showing any improvement only
after a few generations. The impulse responses have
been generated using 50 impulse responses per gen-
eration over 5 generations. This process took around
15 minutes for a 5 seconds impulse response with a
sampling rate fs = 48 kHz using a consumer laptop.

2.5.3 Cost function

To compare the generated impulse response with the tar-
get impulse response, we used Mel-frequency cepstral
coefficients (MFCC). MFCCs offer a comprehensive
representation of the different aspects of the impulse
response. The first coefficient vector of the MFCC
represents the global signal energy, which is similar to
the energy decay curve. This value is used to check
the global decaying behavior of the impulse response.
The other coefficients of the ceptrum (typically 12 co-
efficients) are equally spaced on the mel scale, which
approximates the human auditory system’s response

Fig. 4: Block diagram of the hybrid reverberator used
in our design for a mono channel. We feed a
truncation of the target IR into an FIR filter and
then use the FDN to generate the late reflections
of the reverberation.

more closely than the linearly-spaced frequency bands
used in the normal spectrum. The algorithm aims to
minimize the cost function

C(Mtar,Mgen) =
1

KN

K

∑
i=1

N

∑
j=1

∣∣Mtar(i, j)−Mgen(i, j)
∣∣
(4)

where K is the number of MFCC, N is the total number
of bins, Mtar are the target impulse response MFCCs,
Mgen are the generated impulse response MFCCs, i
and j are the array index representing frequency bins
and time frames. The main goal of this optimization
process is to set the gains to match the energy decay
relief and avoid any audible ringing due to symmetric
delay lengths.

2.5.4 Hybrid impulse response

During our development, we noticed that the early
reflections and echo density build-up were poorly
matched with the FDN. This was particularly notice-
able when applied to percussive tracks. For this reason,
we decided to implement an early reflections device
that would help the echo density build-up. To demon-
strate that it was a relevant approach, we decided to
use a similar method to the one used by Primavera et
al. [13]. We truncated the target impulse response at
t = EDT and created an FIR filter. On our dataset, the
average was EDT = 0.04 s, resulting on average in a
1920 tap FIR filter at fs = 48 kHz. As the initial power
spectrum is already embedded in the FIR filter, we had
to modify our optimization method as per Figure 4. We
bypassed the tone correction filter T (z).

2.5.5 Listening test

We conducted a multiple stimuli with hidden reference
and anchor listening test, where participants have been
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Fig. 5: Variation of the flow diagram in Figure 3 used
to generate matched hybrid impulse responses.
The truncated impulse response provides the
initial energy of the spectrum, removing the
necessity of a tone correction filters.

asked to rate 4 reverberated tracks (hidden reference,
Anchor, Hybrid reverberation, FDN only reverbera-
tion), in 3 different musical contexts (percussion, legato
clean electric guitar, speech). We used two target re-
verberations, one with a short and one with a longer
reverberation time. (respectively, RT60 = 0.3 s and
RT60 = 0.8 s). The dry and wet signals were mixed
together at an equal level for the short reverberation.
For the long reverberation, the wet signal was −6 dB
lower than the dry signal. For the results, we normal-
ized the answers given by participants based on their
highest answers and removed participants that failed to
recognize the hidden reference twice or more.

3 Results

3.1 Objective evaluation

The spectrogram of the generated impulse response is
similar to the target impulse response, but show differ-
ences in the very high frequencies damping (Figures 6
& 7).

Our method produces a low level of error across several
metrics such as early decay time, RT60, Bass ratio (Fig-
ures 8 & 9) with a mean median value around ε = 0.1 s.
We observed a higher median value around ε = 6 dB
per octave band in clarity and spectrum matching over

Fig. 6: Spectrogram of a target room impulse response
from the OpenAIR dataset. RT60 = 0.8 s

Fig. 7: Spectrogram of the generated impulse response
matching Figure 6 using the hybrid approach.

the entire dataset (Figure 8). In most metrics, the hy-
brid reverberation reduces the error compared to the
FDN-only impulse responses.

3.2 Listening Test

We had 18 valid participants in our listening test. In
both listening tests (Tables 1 & 2), the anchor has the
highest score. Participants struggled to distinguish the
anchor and the reference, resulting in both being rated
very high. The low-pass filtered impulse response was
mixed with the dry signal resulting in not cutting the
hole high-frequency content of the signal.

The hybrid reverberation has consistently a better rating
than the FDN only (Tables 1 & 2). In some cases, such
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Fig. 8: Absolute error distribution in seconds on the 82
reverberations to match. On each box, the cen-
tral mark indicates the median, and the bottom
and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers
extend to the most extreme data points not con-
sidered outliers, and the outliers are plotted in-
dividually using the ’o’ marker symbol.

as speech and drums, the hybrid reverberation matches
the median score and distribution of the anchor. Large
room reverberation on drums has the lowest score over-
all due to its short decay, exposing more reverberation
sound.

Audio FDN Only Hybrid Anchor
Speech (%) 17±5 42±14 91±12
Guitar (%) 33±8 50±14 99±19
Drums (%) 20±2 60±18 60±18

Table 1: Small room reverberation convolved with dif-
ferent audio tracks. The table shows the me-
dian and one standard deviation of the ratings
given by participants.

4 Discussion

This study shows that matching a target impulse re-
sponse with an FDN and a direct convolution of the
early reflections is better than with an FDN only. We
observed a lower error in both objective and subjec-
tive tests. Listeners can distinguish between the hybrid
model and the reference reverberation, especially on

Fig. 9: Shows the absolute error distribution in dB
when attempting to match 82 reverberations.
On each box, the central mark indicates the
median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles, re-
spectively. The whiskers extend to the most
extreme data points not considered outliers, and
the outliers are plotted individually using the
’o’ marker symbol.

Audio FDN Only Hybrid Anchor
Speech (%) 26±7 45±11 42±12
Guitar (%) 34±8 40±9 90±17
Drums (%) 6±1 16±4 28±7

Table 2: Large room reverberation convolved with dif-
ferent audio tracks. The table shows the me-
dian and one standard deviation of the ratings
given by participants.

percussive audio tracks. Using MFCCs as a cost func-
tion for the genetic algorithm optimization consistently
provides a low error across several reverberation met-
rics. Though our model doesn’t match accurately the
spectrum and clarity factor, with an average error of
6dB per octave band in both metrics (Figure 8). Many
listeners didn’t rate the reference at 100, but still gave
it the highest score. This is because our test was un-
labeled, which led to incorrect ratings. We addressed
that by normalizing the listening test data based on the
maximum value of each test for each participant. This
study proves that MFCCs are suitable as a cost function
for impulse response analysis. Our findings show that
clarity and spectrum matching have a greater impact
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on the perception of a reverberation compared to the
error in reverberation time.

5 Conclusion

We presented a reproducible method to match impulse
responses with an FDN, allowing parametric control
of synthesized room impulse response. We evaluated
the performances of our model using an FDN and a
hybrid model with a truncation of the target impulse
response as an early reflection device. Furthermore, we
demonstrated the importance of the first milliseconds
of early reflections when matching a target impulse
response. Additionally, we demonstrate the relevance
of MFCCs as a cost function for impulse response
matching. Our model shows a low level of error overall,
but listeners can hear the difference between our model
and the target impulse response. This can be explained
by the errors we get on the initial spectrum and on the
clarity factor.
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