Audio Engineering Society

@ Convention e-Brief 655

Presented at the 151st Convention
2021 October, Online

This Engineering Brief was selected on the basis of a submitted synopsis. The author is solely responsible for its presentation,
and the AES takes no responsibility for the contents. All rights reserved. Reproduction of this paper, or any portion thereof, is
not permitted without direct permission from the Audio Engineering Society.

WaveBeat: End-to-end beat and downbeat tracking in the

time domain

Christian J. Steinmetz and Joshua D. Reiss

Centre for Digital Music, Queen Mary University of London, UK

Correspondence should be addressed to Christian J. Steinmetz (c. j.steinmetz@gmul.ac.uk)

ABSTRACT

Deep learning approaches for beat and downbeat tracking have brought advancements. However, these approaches
continue to rely on hand-crafted, subsampled spectral features as input, restricting the information available to
the model. In this work, we propose WaveBeat, an end-to-end approach for joint beat and downbeat tracking
operating directly on waveforms. This method forgoes engineered spectral features, and instead, produces beat
and downbeat predictions directly from the waveform, the first of its kind for this task. Our model utilizes temporal
convolutional networks (TCN5s) operating on waveforms that achieve a very large receptive field (> 30 s) at audio
sample rates in a memory efficient manner by employing rapidly growing dilation factors with fewer layers. With
a straightforward data augmentation strategy, our method outperforms previous state-of-the-art methods on some
datasets, while producing comparable results on others, demonstrating the potential for time domain approaches.

1 Introduction

Beat tracking involves estimating a sequence of time
instants that reflect how a human listener may tap
along with a musical piece. Downbeat tracking ex-
tends this by requiring the estimation not only of the
beat locations, but specifically the locations of beats
corresponding to the first beat within each bar. Such
a system has applications across music signal process-
ing including automatic transcription [[1], chord recog-
nition [2]], music similarity [3]], and remixing [4].

Early signal processing approaches generally utilized
a two-stage pipeline composed of an onset detection
function followed by a post-processing phase to deter-
mine which onsets correspond to beats, often incorpo-
rating musical knowledge [3\ 5, |6, [7, 8]. In contrast,
with the rise of deep learning, systems have adopted
predominately data driven approaches. Recurrent net-
works were first shown to be successful in the beat
tracking task a decade ago [9], and have now been ex-

tended through a number of iterations [[10} [11]]. More
recently, convolutional networks have been success-
ful, performing on par with recurrent networks with
greater efficiency [12]]. Other works have focused on
improving performance through the design of domain-
inspired features [13], multi-task learning [[14} [15]], or
specialized architectures [16].

While these deep learning approaches have demon-
strated superior performance, they continue to employ
aspects of traditional techniques, namely the use of
hand-crafted magnitude spectrograms as input, along
with specialized post-processing. The use of these fea-
tures facilitates the construction of models that con-
sider a large context efficiently, but discards a signifi-
cant amount of information from the time domain sig-
nal in the process. This discarded information may be
relevant for the beat tracking task, but training mod-
els directly on audio waveforms likely requires larger
models, with more compute and training data [17]].
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Fig. 1: The WaveBeat architecture composed of strided 1D convolutions with increasing dilation factors.

In this work, we investigate learning to jointly pre-
dict beat and downbeat events directly from raw au-
dio. This enables us to forgo engineered features, and
take advantage of information within the phase of the
input signal, which has been shown to be useful in tra-
ditional approaches [[L8]. We also investigate if com-
monly employed post-processing techniques are actu-
ally required, enabling a complete end-to-end system.

We employ a specialized temporal convolutional net-
work (TCN) [19], also known as the feedforward
WaveNet [20], that achieves a significant receptive
field whilst operating on audio waveforms with the use
of rapidly growing dilation factors [21]]. With appro-
priate data augmentation, our proposed model, Wave-
Beat, achieves comparable results to a previous deep
learning approach [15]], even outperforming this ap-
proach on some datasets. This indicates not only are
end-to-end models feasible for this task, they may pro-
vide a pathway for improved performance. However,
while these results are promising, they indicate our
model struggles to generalize to unseen data distribu-
tions, lagging behind spectrogram-based approaches.

2 Proposed Model

Estimating the location of the downbeat often requires
significant context, potentially upwards of 30 sec-
onds [22]]. Constructing a model with a context win-
dow or receptive field of this size for waveforms re-
quires attending to over 1 million timesteps, which
imposes significant compute and memory cost. The
challenge in constructing an efficient end-to-end net-
work has likely been a dominating factor in the use of
sub-sampled spectral features in previous deep learn-
ing beat tracking approaches. To address this chal-
lenge, our proposed model incorporates two core de-
sign elements: convolutions with rapidly growing di-
lation patterns and carefully designed subsampling.

2.1 Architecture

The WaveBeat architecture is based on the TCN (or
feedfordward WaveNet) design with a number of mod-
ifications. The block diagram in Figure[T]demonstrates
the overall structure at three different levels. Start-
ing from the lowest level, on the right, each block
is composed of residual 1-dimensional convolutional
layers that incorporate batch normalization followed
by a PReLU activation [23]]. The center of Figure [1]
shows a TCN stack, which is composed of four blocks,
after which the dilation pattern is repeated, a common
approach [20]. The complete model is shown on the
left, composed of two TCN stacks, a 1 x 1 convolution
to downmix to two channels, and a sigmoid function
to generate the beat and downbeat activations.

TCNs commonly employ a dilation pattern such that
the dilation factor at each layer [ € {1,2,..., N} within
a stack is given by d; = 2!~!, a convention likely the
result of the approach introduced in [24]], later popu-
larized for audio with WaveNet [25]]. To achieve an
even larger receptive field, we consider utilizing a di-
lation pattern that grows more rapidly. Inspired by re-
cent work in audio effect modeling [21], we consider
increasing the growth such that the dilation factor at
each layer is given by ¢; = 8/~ 1.

We also note that is not useful to produce a beat acti-
vation function at audio sample rates, as the beat anno-
tations are likely only accurate within tens of millisec-
onds [[7]. To address this, we downsample the signal
through the depth of the network by employing strided
convolutions, similar to the approach used in a TCN-
based encoder applied to room acoustics analysis [26].
With 8 layers, each with stride 2, we downsample the
signal by a factor of 28 = 256, which, given an in-
put sample rate of 22.05 kHz produces an output signal
with a sample rate of 86 Hz, close to those of previous
works, which tend to be around 100 Hz [11]].
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2.2 Loss function

It is common to treat the beat tracking problem as a bi-
nary classification task. This is achieved by construct-
ing a target signal y, with a value of 1 at each timestep
n containing a beat, and 0 elsewhere. Then the model
is then trained with the binary cross-entropy

. 1 & .
Locr(3,y) == X (Fnlog(yn) + (1= 5n)log(1 = yn)),
n=1

where the output of the model §, is an estimate of the
likelihood of a beat at the timestep n, with the total
number of timesteps N. This can lead to a class imbal-
ance across the temporal dimension, since there are of-
ten more locations with no beat. In practice, we found
this encourages the model to avoid detecting beats,
since such a solution will minimize the loss due to the
small number of beat activations.

To address this, we adapt the mean false error
Avre 27, a metric introduced to handle such class
imbalances. Based upon the binary cross-entropy, we
compute the loss as a sum of two terms that relate to
the false-positive error and false-negative error

. 1 R
Zrpe(9,y) = vl Y Zoce(y,y))
=
. 1 .
ZLene(9,y) = I Y Zoce ()
kek

MFE = ZFPE + -ZFNES

where J is the set of timesteps corresponding to nega-
tive examples (no beat), and K corresponds to the pos-
itive examples (beat). This loss function attempts to
balance performance by computing the sum of the av-
erage error at locations where a beat should be present,
as well as the average error where there should be no
beat. This encourages the model to avoid only predict-
ing the majority class, i.e. the absence of a beat. How-
ever, we find as the sample rate of the beat activation
function is reduced, this becomes less of an issue.

3 Experiments

3.1 Datasets

In order to investigate the performance of the proposed
model across a number of styles and audio sources,
we consider six popular beat tracking datasets: Bea-
tles 28|, Hainsworth [29], Ballroom [30] [31l], RWC
Popular [32], SMC [33]], and GTZAN [34}135]]. Similar

to previous works, we train using four datasets (Bea-
tles, Hainsworth, Ballroom, and RWC Popular), and
evaluate using two datasets that were not seen during
training (SMC and GTZAN). All audio is resampled to
fs =22.05kHz.

3.2 Training

We train WaveBeat where each convolutional layer
utilizes kernels of size 15 and a stride of 2. The num-
ber of convolutional channels begins at 32 and then
increases by 32 at each layer. Combined with the
rapidly growing dilation factors, this enables a recep-
tive field of over 1 million timesteps, ~ 47s, using
only 8 convolutional layers. This is comparable to
previous spectrogram-based beat tracking models that
achieve a receptive field of around one minute [14].
However, WaveBeat has a total of 2.9 M trainable pa-
rameters, which is an order of magnitude more than
common spectrogram-based models.

We utilize Adam with an initial learning rate of 13,
decreasing the learning rate by a factor of 10 after the
beat and downbeat F-measure has not improved on the
validation set for 10 epochs. To stabilize training we
apply gradient clipping when the norm of the gradients
exceeds 4. All models are trained with a batch size of
16 with inputs of 22! = 2097152 samples (x1.6 min
at 22.05kHz) for a total of 100 epochs. In order to
balance the influence of the datasets while training,
we define a single epoch to constitute 1000 random
excerpts with replacement from each dataset. Addi-
tionally, we use automatic mixed precision to decrease
training time and memory consumption. To facilitate
reproducibility, we have made the code for these ex-
periments available online{j

3.3 Data augmentation

End-to-end approaches are more expressive than their
counterparts that rely upon spectral features, thus they
often require significantly more training data [17].
Due to the limited music recordings with beat and
downbeat annotations, we found data augmentation
critical in curbing overfitting. We employ a set of
fairly common data augmentations, each of which has
an associated probability p of being applied to each
training example during a training epoch. This in-
cludes the applications of highpass and lowpass filters
with random cutoff frequencies (p = 0.25), random

'https://github.com/csteinmetzl/wavebeat
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Beat Downbeat
Dataset Size Model F-measure CMLt AMLt F-measure CMLt AMLt
Spectral TCN [15] 0.962 0.947 0.961 0916 0913 0.960
Ballroom 5h57m WaveBeat (Peak) 0.961 0.929 0.929 0.904 0.762 0.803
WaveBeat (DBN) 0.925 0.829 0.937 0.953 0916 0.941
Spectral TCN [15]] 0.902 0.848 0.930 0.722 0.696 0.872
Hainsworth 3h 19 m WaveBeat (Peak) 0.965 0.937 0.937 0912 0.748 0.843
WaveBeat (DBN) 0.973 0.976 0.976 0.954 0.886 0.970
Spectral TCN [15]] - - - 0.837 0.742 0.862
Beatles 8h09m WaveBeat (Peak) 0.887 0.733 0.790 0.689 0.327 0.585
WaveBeat (DBN) 0.929 0.894 0.894 0.732 0.509 0.724
Spectral TCN [15] 0.885 0.813 0.931 0.672 0.640 0.832
GTZAN 8h20m WaveBeat (Peak) 0.825 0.682 0.767 0.563 0.279 0.515
WaveBeat (DBN) 0.828 0.719 0.860 0.598 0.503 0.764
Spectral TCN [15]] 0.544 0.443 0.635 - - -
SMC 2h25m WaveBeat (Peak) 0.403 0.163 0.255 - - -
WaveBeat (DBN) 0.418 0.280 0.419 - - -

Table 1: Beat and downbeat tracking results on the held-out test sets. No examples from the GTZAN and SMC

datasets were seen during training.

pitch shifting between -8 and 8 semitones (p = 0.5),
additive white noise (p = 0.05), applying a tanh non-
linearity (p = 0.2), shifting the beat locations forward
or back by a random amount between + 70ms (p =
0.3), dropping a contiguous block of audio frames and
beats of no more than 10% of the input (p = 0.05), as
well as a random phase inversion (p = 0.5).

3.4 Post-processing

Existing beat tracking systems generally utilize a post-
processing stage which inspects the beat activation
functions in order to select beat locations, commonly
a dynamic Bayesian network (DBN) [11]. Ideally,
an end-to-end model would be able to forgo such
post-processing. We analyze the beat and downbeat
activation functions from WaveBeat using first sim-
ple peak picking, selecting peaks with an amplitude
greater than 0.5. We then compare against beat acti-
vations produced by further post-processing with the
pre-trained DBN in the madmom library [36] in order
to examine the performance improvement.

4 Evaluation

We split the four training datasets into train/val/test
sets (80%/10%/10%). We utilize the standard distance
threshold of +70 ms and report the F-measure, CML,
and AMLt metrics [28]] for both beat and downbeat
tracking on the test sets in Table I} We also show the

reported scores for a recent spectrogram-based TCN
model [15] as a point of comparison. However, it
should be noted that their scores are the result of an
8-fold cross validation, whereas our scores are com-
puted using a single dataset split as described above.
Also, their model was trained with an additional three
datasets (SMC [33], H/DB [37], and Simac [38]),
amounting to an additional 9 hours of training data,
yet we employed more extensive data augmentation.
In the bottom of Table|l| we report results on the left-
out datasets (GTZAN and SMC), in order to test the
generalization capability.

Our results demonstrate that an end-to-end approach
operating directly on waveforms can in fact achieve
results on-par with current state-of-the-art approaches
that employ carefully engineered input features. On
the Ballroom dataset we find that WaveBeat achieves
comparable results on the beat tracking task, but
achieves an improvement of 4% in downbeat track-
ing. Similarly, WaveBeat achieves an improvement of
over 7% and 23% on the Hainsworth dataset for beat
and downbeat tracking, respectively. While WaveBeat
produces strong results on beat tracking on the Beatles
dataset, its performance is somewhat worse on down-
beat tracking.

However, these results indicate that WaveBeat falls be-
hind the previous approach when generalizing to out-
of-distribution examples and achieves comparable, yet
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lower results on the GTZAN dataset on both beat and
downbeat tracking. On the SMC dataset, which con-
tains a number of challenging pieces, WaveBeat per-
forms clearly worse than the previous approach on
beat tracking. Results on the downbeat tracking task
are omitted for this dataset due to the absence of down-
beat annotations.

With respect to the post-processing, we find that while
the pre-trained DBN brings about a small improve-
ment in the F-measure, our end-to-end model achieves
comparable performance using simple peak picking.
This contrasts with previous approaches, which of-
ten report up to 15% improvement with such post-
processing [11]]. Surprisingly, the results in Table []
appear to indicate that applying the DBN actually
harmed performance in the case of beat tracking on
the Ballroom dataset.

5 Conclusion

We demonstrated the ability of an end-to-end model
to learn directly from waveforms on the joint beat
and downbeat tracking task. With an architecture de-
signed to efficiently achieve a large receptive field, we
find that our model is able to achieve performance on-
par with state-of-the-art methods for beat and down-
beat tracking on some common datasets. We addition-
ally investigate the requirement for specialized post-
processing in the task of locating beat activations and
find that our model performs well without such post-
processing using very simple peak picking. While
these results are promising, indicating that end-to-end
waveform based approaches can bring improvement
over existing spectrogram-based methods, additional
work is needed to improve the generalization ability
of these approaches. Future work involves the addi-
tion of a more rigorous data augmentation strategy,
along with the application of self-supervised learning
to leverage large music corpora without annotations.
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