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Reverse engineering of a recording mix with differentiable
digital signal processing®

Joseph T. Colonel® and Joshua Reiss
Centre for Digital Music, Queen Mary University of London, London, United Kingdom

ABSTRACT:

A method to retrieve the parameters used to create a multitrack mix using only raw tracks and the stereo mixdown is
presented. This method is able to model linear time-invariant effects such as gain, pan, equalisation, delay, and
reverb. Nonlinear effects, such as distortion and compression, are not considered in this work. The optimization pro-
cedure used is the stochastic gradient descent with the aid of differentiable digital signal processing modules. This
method allows for a fully interpretable representation of the mixing signal chain by explicitly modelling the audio
effects rather than using differentiable blackbox modules. Two reverb module architectures are proposed, a “stereo
reverb” model and an “individual reverb” model, and each is discussed. Objective feature measures are taken of the
outputs of the two architectures when tasked with estimating a target mix and compared against a stereo gain mix
baseline. A listening study is performed to measure how closely the two architectures can perceptually match a refer-
ence mix when compared to a stereo gain mix. Results show that the stereo reverb model performs best on objective
measures and there is no statistically significant difference between the participants’ perception of the stereo reverb

model and reference mixes. © 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005622
(Received 1 February 2021; revised 24 May 2021; accepted 24 June 2021; published online 27 July 2021)

[Editor: Peter Gerstoft]

I. INTRODUCTION

Multitrack mixing refers to the process of a mixing
engineer combining the elements of a song, audio piece, or
recording into a “mixdown.” In the case of a band recorded
in a studio, for example, a mixing engineer will collate the
band’s various recordings, prepare and align those tracks,
and apply sound effects and other processing to those tracks
to create a stereo mix. It is up to the mixing engineer to
ensure that the sonic elements of the composition are fixed,
fitted, and featured properly in accordance with the band’s
artistic vision.

Mixing engineers often will use both analog and digital
processing to create their mixdown. Frequently these
include gain, pan, equalisation (EQ), delay, reverb, distor-
tion, and dynamic range compression. In the absence of
automation, these first five effects are often implemented as
linear time-invariant processing. The latter two effects are
nonlinear.

As is now often the case, a mixing engineer will use a
session in a digital audio workstation (DAW) to create a
mixdown. This session contains most if not all of the infor-
mation regarding what effects and processing were applied
to each track in the multitrack recording. In the absence of
this session, it is very difficult to recreate the processing
used to create a specific mixdown, a process that is referred
to as reverse engineering the mix. Even in the case in which
the original session is available, sharing sessions can prove
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difficult as sessions cannot be shared across different DAWs
or sometimes across versions of the same DAW.
Furthermore, the session may use specific (and often costly)
effect plugins unavailable to another mixing engineer, which
could make the entire session unusable should the first mix-
ing engineer employ complicated signal chains. This reverse
engineering problem may be phrased as, “Given a set of raw
multitrack recordings and a mixdown, how can one derive
all the effects and their parameters that were used to produce
the mixdown?”

Il. BACKGROUND

The problem of reverse engineering a mix remains rel-
atively niche in the field of machine learning for audio.
However, much attention in the field has been paid to
recovering an audio signal in a blind manner after some
processing has been applied. Such problems include
denoising (Yu et al., 2008; Grais and Plumbley, 2017), der-
everberation (Lebart et al., 2001; Feng et al., 2014), and
source separation (Belouchrani et al., 1997; Stoller et al.,
2018).

In Jourjine et al. (2000), the authors reframe a source
separation problem as a reverse engineering of a mix. Given
that N sources are disjoint-orthogonal and anechoic, the
method can estimate the attenuation and delay applied to
each source from a two channel mix. Unfortunately, the
disjoint-orthogonal and anechoic assumptions rarely hold in
the case of a multitrack recording and mixdown given that
multiple sources may bleed into several tracks and delay
and reverb are echoic by definition.

© 2021 Acoustical Society of America
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In Gorlow and Marchand (2013), a two stage cascaded
encoder and decoder are used to estimate the compression,
gain, and panning effects applied to create a mixdown. This
is performed using only the spectrogram of the mixdown,
i.e., without the raw multitrack. The method requires fixing
the number of tracks used to create the mixdown and does
not attempt to model the EQ or reverb. Without access to
the raw multitracks, this problem statement and the problem
statement by Jourjine et al. (2000) land closer to source sep-
aration or upmixing than to reverse engineering a mix.

A considerabe amount of work has been published on
modelling individual sound effects and processing.
Presented in Gorlow and Reiss (2013) is a method for esti-
mating the parameters of a dynamic range compressor
applied to a signal. More recently, blackbox modelling of
audio effects using neural networks has received attention.
Examples can be found for modelling the EQ (Ramirez and
Reiss, 2018), distortion (Ramirez and Reiss, 2019), com-
pression (Hawley et al., 2019), and other nonlinear effects
(Ramirez et al., 2020). The blackbox approach outlined in
Steinmetz et al. (2020) simultaneously models the EQ, com-
pression, and reverb and can be controlled by passing
parameters relating to each effect to the blackbox.

The methods in Barchiesi and Reiss (2010) explicitly
try to answer this reverse engineering of a mix question and
inform the primary motivations of this paper. In Barchiesi
and Reiss (2010), a method for reverse engineering a mix is
presented, which combines separate modelling of the linear
processing and nonlinear processing used to create a
mixdown. This method uses both the mixdown and raw mul-
titrack. The nonlinear processing is estimated using a frame-
based approach in which the dynamic range compression is
modelled as a time-varying gain envelope. A time domain
least squares approach is used to model the linear process-
ing, including gain, pan, delay, and EQ. This method theo-
retically holds when estimating a convolutional reverb
impulse response, but the length of these impulse responses
makes a least squares estimate impractical.

The improvements to Barchiesi and Reiss (2010) that
are presented in this work combine that work’s explicit
modelling of the mixing chain with the capabilities of mod-
ern neural networks to model complex audio effects.

A neural network whitebox approach to audio synthesis
and sound effect modelling, called differentiable digital sig-
nal processing (DDSP), has been developed in Engel et al.
(2019). The DDSP toolbox contains modules often found in
sound synthesis, such as harmonic oscillators and subtrac-
tive synthesizers, that can be integrated into neural net-

N

works. The toolbox also contains a convolutional reverb
module and finite impulse response (FIR) EQ module.

The method presented in this paper expands on the lin-
ear processing modelling of Barchiesi and Reiss (2010) with
the aid of modules developed in Engel ef al. (2019) but does
not incorporate nonlinear processing such as distortion or
compression. Whereas these effects are often used by mix-
ing engineers, there is currently no published literature on
whitebox neural network implementations of these effects.
By using explicit whitebox modelling of linear audio
effects, the algorithm presented here produces a fully char-
acterized, interpretable signal chain that could be further
modified upon inspection.

The paper is organized as follows. Section IIT will out-
line the architecture and optimization procedure used to
reverse engineer a mix using EQ, gain, pan, delay, and
reverb. Section IV will show the outputs of the reverse engi-
neering algorithm as well as the result of a listening study
conducted to evaluate the quality of the reverse engineered
mixdowns. Section V will discuss the results and Sec. VI
will conclude with remarks and directions for future work.

lll. METHOD AND THEORY
A. Formal problem statement

Let y(n) represent a target mixdown, and let y(n) repre-
sent the mixdown produced by some mixing chain charac-
terized by a set of parameters ®. The goal is to find values
that correspond to the parameter settings in a mixing chain
that will minimize ||y(n) — y(n)||, where || - || denotes some
norm that will be used as a cost function.

The signal processing chain applied to each input raw
track is as follows: dry input — FIR EQ — gain — pan —
reverb and wet/dry mix — sum with other stems. Note that
because these effects are all linear time-invariant, the order
of application of the effects is arbitrary. In mix engineering,
a “stem” refers to a raw track that has had processing
applied to it. To drive each module, a set of parameters
Ormodule are estimated. For example, @gq refers to the set of
parameters estimated to drive the EQ module. A stem which
has been processed by applying both the EQ and gain to a
raw track x(n) can be written as

stemgQ Gain (1) = Gain(EQ(x(1)|®rq)|Ocain), (1)

and a stereo mixdown of N raw tracks x;(n) with EQ, gain,
pan, and reverb applied can be written as

yp(n) = ZReverb(PanL (Gain(EQ(x(n),|®kq)|OGain) | Opan) | Oreverb)

i=1

N
}AIR(H) = ZRGVCI‘b(PaHR (Gain(EQ(x(n)i|®EQ)|®Gain) |®Pan) ‘®Reverb)' (2)

i=1
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B. EQ

The frequency transfer curve module is used for EQ by
multiplying an input signal’s short-term Fourier transform
(STFT) magnitude response with a user specified curve in
the frequency domain (Engel et al., 2019). In this work, a
1025 point frequency transfer curve O, is used. This corre-
sponds to a FIR EQ with 2048 taps in its impulse response.
Given a raw track x(n), the EQ module can be written as

EQ(x(n)|®gq) = ISTFT(STFT(x(n)) x Ogq), 3)

where ISTFT is the inverse short-time Fourier transform and
“x” refers to pointwise multiplication.

In this work, the EQ is modelled after a ten band FIR
graphical EQ (Valimaki and Reiss, 2016), which can be
characterized using a ten-dimensional ®gq gains. The ten val-
ues specify the gain of each of the octave band filters, which
are centered at 30, 60, 125, 250, 500, 1000, 2000, 4000,
8000, and 16 000 Hz respectively. Shelving filters are used
for frequencies below 30Hz and above 16 000Hz that
match the attenuation specified at the lowest and highest
octave band, respectively.

The following procedure is used to calculate the 1025-
dimensional ®gq that will approximate a ten band FIR
graphical EQ. First a ten-dimensional ®gq gains is generated.
Then, these values are transformed via

®Eanins —1- G(®Eanins); (4)

where ¢ denotes the sigmoid function

1

a(x) = gy

®)

The values in the transformed ®gq gains range from (0,1) due
to the bounds of the sigmoid function.

Finally, a piecewise linear frequency transfer curve
Ogq is constructed using linear interpolation between the
octave band attenuations specified by ©Ogqgains- Thus, the
EQ module’s frequency transfer curve is bounded from (0,1)
at all points The estimated values are initialized with the
random uniform noise from [-1,1], which initializes the
octave band gains from —6 to —1 dB.

C. Gain and pan

The gain module is formulated as
G(x(n)|Ogain) = LReLU(Ogyuin) X x(n), (6)

where LReLU( ) refers to the leaky rectified linear unit
(Maas et al., 2013)

px, x<0
LReLU(x) = -0 (7
x’ X - b

with tunable parameter f5. For this work, f = 0.5 has been
chosen. Note that these gains can go negative, which

610  J. Acoust. Soc. Am. 150 (1), July 2021

corresponds with applying a phase shift to the equalised
stem. The gain parameters @gy,;, are initialized with random
uniform noise from [0.9,1.1], which corresponds to gains
from —0.915 to 0.828 dB.

The pan module uses a linear panning law and is formu-
lated as

Pany (x(n)|®pan) = (0.5 + (0.5 x tanh(®pyy,))) X x(n),
Pang (x(n)|®pan) = (1 — Pang) x x(n), (8)

where “x” denotes pointwise multiplication and tanh( )
denotes the hyperbolic tangent function

e —e™

e+ e

tanh(x) = )

The panning module applies a gain of Pan; to the signal
before sending it to the left channel and a gain of Pang to
the signal before sending it to the right channel. The pan
parameters ®p,, are initialized with mean 0, variance 10~°
Gaussian noise.

D. Reverb

Similar to the EQ module, the reverb module also per-
forms convolution with a given impulse response via multi-
plication in the frequency domain. Instead of estimating a
frequency transfer curve, however, the reverb module
directly estimates an impulse response Og.

Two reverb architectures were tested in this work, one
using a stereo reverb bus (thus, requiring two estimated
impulse responses for a mixdown) and one using two impulse
responses per channel [thus, requiring (2 X number of tracks)
impulse responses for a mixdown]. Figures 1 and 2 show the
block diagrams for each of the two architectures.

For the stereo reverb bus architecture, a wet/dry mix is
produced by performing a weighted sum between the input
stem and stem with reverb applied. Hence, the module esti-
mates O for the reverb’s impulse response and ®Oy/p for
the module’s wet/dry mix. For the individual bus architec-
ture, Oy /p is omitted.

In the stereo reverb bus case, the module’s output is for-
mulated as

Reverb(x(n)|®w/p, Or) = x(n) + (O p)

x (x(n) * ORr), (10)
where () denotes the sigmoid function, “x” denotes multi-
plication, and “*” denotes convolution. @y p is initialized
with uniform random noise from [—0.3,0.3], which corre-
sponds to a range of —7 to —5 dB.

In the individual reverb bus case, the output becomes

Reverb(x(n)|®ORr) = x(n) + x(n) * O, (11)

where “*” denotes convolution. In both cases, Oy is initial-
ized with mean 0, variance 107® random Gaussian noise.

Joseph T. Colonel and Joshua Reiss
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FIG. 1. (Color online) The mixing chain diagram for the ‘“stereo bus”
architecture.

The choice to investigate two reverb architectures stems
from a desire to balance the method’s modelling capacity
with the network size and complexity. Mathematically
speaking, both a left and right convolutional reverb impulse
response must be estimated for each raw track in a multi-
track to fully characterize the mixing chain. This is neces-
sary because mixing engineers typically use stereo reverb
impulse responses that are decorrelated in the left and right
channels to increase spatialisation (Kendall, 1995).

However, the number of learned reverb parameters ®r
is orders of magnitude larger than Oy /p, Ogq, Opa,, and
®Gain combined. As formulated in this paper, the number of
parameters needed to describe the mixing chain before the
reverb module is 12: 1 for gain, 1 for pan, and 10 for the
graphic EQ. To model a 1s convolutional reverb impulse
response sampled at compact disc (CD) quality, 44 100
values are needed. Given that multitracks often contain
more than 10 raw tracks, at least 20 impulse responses

J. Acoust. Soc. Am. 150 (1), July 2021

would have to be estimated for a full characterization, which
balloons O to 882 000 estimated values. The stereo reverb
model would cap ®r at 88200 parameters, in this case,
regardless of how many raw tracks make up the multitrack.
In this formulation, ®y/p is necessary to control the
“amount of reverb” applied to each raw track sent to the left
and right channels.

E. Loss and optimization procedure

Given randomly initialized ©gyin, Opan, Orq, Or, and
O /D> target mixdown y(n), raw tracks x;(n), and estimated
mixdown y(n) as described in Eq. (2), the stochastic gradi-
ent descent can be used to minimize |[y(n) —y(n)|| by
updating the module parameters ®, where || - || denotes
some norm used as a cost function.

In this work, a multi-scale spectrogram (MSS) loss is
used as the cost function || - || (Engel et al., 2019), which
was inspired by the multi-resolution spectral amplitude dis-
tance demonstrated in Wang et al. (2020). As the name
implies, the MSS computes a norm by measuring the dis-
tance between the spectrograms of two audio signals with
varying STFT window sizes and performing a weighted sum
of these differences. Although the mean absolute error
(MAE) in the time domain is often used in audio applica-
tions and is cheaper to compute than the MSS loss, the latter
was chosen because it ignores the phase differences between
the target and estimated signals, which mimics human per-
ception (Chi et al., 2005). The resolutions for the spectro-
grams used are 2048, 512, and 128 samples. At a 44.1 kHz
sampling rate, these correspond to windows of sizes 50, 12,
and 3ms. An L1 loss is computed on these spectrograms,
which is the absolute value of the difference between the
spectrograms reduced across both the frame and frequency
dimensions.

The stochastic gradient descent was performed with
learning rate scheduling and early stopping (Darken et al.,
1992). The descent begins using the ADAM optimizer with
learning rate 107> (Kingma and Ba, 2015). Once the loss
reaches an early stopping criterion, the learning rate is
dropped to 107*. After the same procedure happens again,
the learning rate is further dropped to 107°. The gradient
descent concludes thereafter.

IV. RESULTS AND ANALYSIS

All audio used in this work is sampled at 44.1 kHz, cor-
responding to CD quality audio. A professional mixing engi-
neer was tasked with producing mixdowns for five separate
multitrack recordings. The multitracks were chosen because
they ranged from roughly 10 to 20 raw tracks each, had rep-
resentative excerpts between 20 and 30 s in length, and were
diverse in instrumentation and genre. All stereo tracks were
converted to two mono tracks. All multitracks were down-
loaded from the Cambridge Multitracks dataset (Senior,
2011). Table I shows the artist and song title for each song
used in this work. For each multitrack, three approximated
mixdowns were calculated: a stereo bus approximation (two

Joseph T. Colonel and Joshua Reiss 611
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FIG. 2. (Color online) The mixing chain diagram for the “individual bus” architecture.

bus), an individual bus approximation (individual bus), and
a stereo gain mix approximation using the least squares esti-
matation method in Barchiesi and Reiss (2010) (gain mix).
Similar to the procedure followed in Barchiesi and Reiss
(2010), the mixing engineer only used linear processing to create
the mixdown, including gain, pan, EQ, delay, and reverb. No

TABLE I. The songs chosen for mixing and shortened names used in this
paper.

Reference
Artist Song name Genre name
Araujo The Saga of the Harrison Jazz Saga
Crabfeathers

Blue Lit Moon Dad’s Glad Alternative rock Glad
Carol Dant I am the Desert Electronica Desert
The Complaniacs Etc Punk Etc
Timboz Pony Metal Pony

612  J. Acoust. Soc. Am. 150 (1), July 2021

distortion or dynamic range compression was used. Moreover,
no automation was used on the linear effects. All audio dis-
cussed in this paper can be found online."

A. Objective evaluation

To objectively measure how close the estimated mix-
downs matched the target mixdowns, a set of low-level
audio features was calculated and compared according to
the methodology in Wilson and Fazenda (2016). These fea-
tures can be subgrouped into spectral measures (Bogdanov
et al., 2013), loudness measures (Recommendation, W),
stereo features (Tzanetakis et al., 2007), and envelope
probability mass function (PMF) features (Wilson and
Fazenda, 2014). The PMF features are calculated by
making a histogram of the values that a digital audio
signal takes, normalizing this historgram so it becomes a
PMF, and then calculating the statistical measures of
this PMF.

Joseph T. Colonel and Joshua Reiss
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A full account of each mixdown’s feature values can be
found in the supplementary materials included with this
paper.” To aggregate each mixdown’s performance, the
average relative error of each subgroup of features can be
calculated. The relative errors must be taken as different fea-
tures have different units of measurements and, furthermore,
different feature measures can be orders of magnitude apart
from one another. Observing an average relative error across
subgroups of features allows for an overall picture of how
each mixdown matched the reference across perceptual
correlates.

Table II provides a summary of the average errors
across each feature subgroup for each approximated mix-
down relative to the reference mixdown. Within each song,
the two bus architecture outperforms both the individual bus
architecture and gain mix across all subgroups of the fea-
tures. For the songs “Saga,” “Pony,” “Desert,” and “Dad’s
Glad,” the gain mix outperforms the individual bus mix in
average relative error across each subgroup of features. For
the song “Etc,” the individual bus mix outperforms the gain
mix in average relative error for spectral, PMF, and stereo
measures with the gain mix performing best for the loudness
features.

There are certain instances in which the gain mix or the
individual bus mix matches the reference more closely than
the two bus mix in a given feature. When measuring 95%
spectral roll-off, the individual bus mix performs best in the
song “Saga.” When measuring spectral spread, the gain mix
outperforms the two bus mix in the songs “Dad’s Glad” and
“Saga.” These are the only instances in spectral measure in
which the two bus architecture does not perform best.

When measuring the PMF centroid, the gain mix per-
forms best for the song “Dad’s Glad,” and the individual bus
performs best for the song “Etc.” For the PMF skew, the
gain mix performs best in the songs “Desert” and “Pony.”
For the PMF kurtosis, the gain mix performs best in the

TABLE II. The average relative errors by feature subgroup for approxi-
mated mixdowns compared to the reference mixdown.

Mixdown Spectral ~ PMF Stereo  Loudness  Total

Desert two bus 0.95%  14.86% 5.99% 1.68% 4.88%
Desert gain mix 587% 1596% 13.00%  4.80% 9.21%
Desert individual bus  35.55% 104.67% 133.84% 25.24%  70.52%
Etc two bus 2.52% 6.57% 14.07%  3.67% 6.54%
Etc gain Mix 1921%  9599% 3383%  594%  3291%
Etc individual bus 9.63%  62.718% 2037% 22.64%  25.07%
Glad two bus 7.10% 6.04% 3249%  1.80%  12.16%
Glad gain mix 23.16%  38.72% 51.85%  8.76%  29.60%
Glad individual bus ~ 34.83% 91.09% 92.46% 17.52%  55.13%
Pony two bus 1.70%  21.34%  9.95%  7.67% 8.82%
Pony gain mix 28.24%  49.42% 3533% 15.68%  30.49%
Pony individual bus ~ 61.16%  55.86% 159.22% 16.65%  74.21%
Saga two bus 2.25% 3.26% 3.53%  041% 2.28%
Saga gain mix 13.57%  25.52% 17.44% 12.03%  16.26%
Saga individual bus  27.37% 356.85% 137.33% 61.17% 122.17%

J. Acoust. Soc. Am. 150 (1), July 2021

song “Desert.” In all other PMF measures, the two bus
architecture performs best.

When measuring both the stereo panning spectrum
across all bands and across high frequency bands, the indi-
vidual bus mix performs best for the songs “Dad’s Glad”
and “Etc.” For the mid band stereo panning spectrum, the
individual bus performs best for the song “Etc.” For the ste-
reo left-right ratio, the gain mix performs best for the song
“Desert.” In all other stereo measures, the two bus architec-
ture performs best.

For the loudness range measure, the gain mix performs
best for the song “Pony.” For the average crest factor mea-
sured with a resolution of 100 ms, the individual bus mix
performs best for the song “Desert,” and the gain mix per-
forms best for the song “Pony.” When the resolution of the
crest factor is increased to 1000 ms, the gain mix performs
best for the song “Desert.” The two bus mix performs best
for all other measures of loudness.

B. Human listener evaluation

Whereas much research has been done to numerically
characterize the timbre (see Peeters et al., 2011) and relate
closeness of timbres within a perceptual space (e.g., Caclin
et al., 2005; Elliott et al., 2013), there are no perfect numeri-
cal measures for determining how close two timbres are.
Furthermore, the timbral complexity of multitrack mixes
renders numerically characterizing mixes challenging
(Wilson and Fazenda, 2015; Colonel and Reiss, 2019).
Although the results presented in the objective evaluation
show the two bus mix outperforming the other two mixes in
numerical measures, this is no guarantee that the two bus
mix sounds most similar to the reference mix. Thus, a listen-
ing study was performed to assess how well each method
perceptually matched the reference mix.

The listening study included 23 participants to evaluate
the approximated mixdowns of the five multitracks.
Fourteen participants reported having no audio production
or mixing experience, whereas nine participants reported
having some audio production or mixing experience.
Participants were tasked with rating a set of mixes based on
how closely the mixes matched a reference mix on a contin-
uous scale of 0—1, where “0” represented a mix “very far”
from the reference, and “1” represented a mix “matching
exactly” the reference mix.

During the test, participants were presented each of the
mulitracks in a random order one-by-one. For a given multi-
track, participants were presented with four stimuli to rate
against the reference mix. One stimulus was the identical
reference mix. The other presented stimuli were three
approximated mixdowns: a stereo bus approximation, an
individual bus approximation, and a stereo gain mix approx-
imation. Participants evaluated mixes for each of the 5 mul-
titracks, therefore, providing a total of 20 ratings.
Participants were encouraged to use the full 01 rating range
when appropriate. Furthermore, participants were given no
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TABLE III. The f stats and p-values for each multitrack and all multitracks,
including all participants.

Group fstat p-value

All songs 316.178 3.737 x 107177
Desert 143.595 4.127 x 10732
Etc 100.860 4.195 x 10777
Glad 91.140 9.891 x 10726
Pony 70.035 2.575 x 10722
Saga 42.554 1.529 x 107!¢

time limit for the test, and no limit was placed on how many
times a participant could listen to a given stimulus.

The analysis that follows is adapted from the perceptual
study presented in Moffat and Reiss (2018). The null
hypothesis is that the perceptual evaluation scores are from
the same distribution. A one-way analysis of variance
(ANOVA) with Bonferroni correction shows that for all
mixdowns, the effect the method used to reverse engineer
the mix had on the user perception was statistically signifi-
cant. This result holds when analysing the ratings separated
by each multitrack as well. Table III lists the f stats and
p-values. Figures 3 and 4 show the box plots of the overall
results of the listening study.

With the null hypothesis rejected, a post hoc Tukey
pairwise comparison with Bonferroni correction to reduce
the chance of type I errors was used. Table V shows the
results of these pairwise comparisons for all of the architec-
tures used. The pairwise comparisons demonstrate that the
mean of the participants’ ratings for the reference mix and
stereo bus mix do not differ significantly. All other pairwise
comparisons do differ significantly.

When breaking down the data by song, the above
results hold for three of the five multitracks: “Glad,”
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FIG. 4. (Color online) The box plots of all of the listener ratings, broken
down by each mixdown.

“Desert,” and “Saga.” For the multitrack “Etc,” the pairwise
comparisons demonstrate that the mean of the participants’
ratings differs significantly for all pairs, including the refer-
ence and stereo bus models as shown in Table VI. For the
multitrack “Pony,” the reference/stereo bus model pair and
gain mix/individual bus model do not have participant rating
distributions that differ significantly as shown in Table VIIL.

Most of these results hold when excluding the listeners
with no audio production or mixing experience. Box plots
can be found in Figs. 5 and 6. A one-way ANOVA with
Bonferroni correction shows for all mixdowns that the effect
the method used to reverse engineer the mix had on user
perception was statistically significant. This result holds
when analysing the ratings separated by each multitrack as
well. Table IV lists the f stats and p-values for this subset of
participants with some audio production or mixing
experience.
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FIG. 3. (Color online) The box plots of all of the listener ratings, broken down by estimation architecture.
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FIG. 5. (Color online) The box plots of the ratings made by listeners with audio experience, broken down by architecture.

Post hoc Tukey pairwise comparisons of the ratings
provided by this subset of participants are similar to those
for the whole group. When comparing across all songs and
mixdowns, the values of the Tukey analysis match those
presented in Table V. This also remains true for the songs
“Glad” and “Saga.” For the multitrack “Etc,” the pairwise
comparisons again demonstrate that the mean of the partici-
pants’ ratings differs significantly for all pairs, including the
reference and stereo bus models as shown in Table VI. And,
again, in “Pony,” the reference/stereo bus model pair
and gain mix/individual bus models do not have participant
rating distributions that differ significantly as shown in
Table VII. This subset’s ratings do differ for the song
“Desert,” where there is no statistical difference between the
stereo bus/reference pair and gain/reference pair. The results
are shown in Table VIII. As Fig. 3 demonstrates, partici-
pants rated the stereo bus model as nearly identical to the
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FIG. 6. (Color online) The box plots of the ratings made by listeners with
audio experience, broken down by mixdown.
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reference mix, then rated the gain mix next closest, and
finally rated the individual bus mix the furthest from the
reference.

V. DISCUSSION

The results of both the objective evaluation and listen-
ing test suggest that the stereo reverb bus model outperforms
both the gain mix and individual bus models in a reverse
engineerning of a mix task. Furthermore, the gain mix out-
performs the individual bus model in almost all cases.

It is interesting to note that the individual bus architec-
ture performs poorer than a gain mix in both objective and
subjective measures given that the gain mix does not apply
EQ or reverb. Even with the explicit ability to modify a raw
track’s spectral content, the individual bus architecture does
a poorer job than the gain mix of matching the reference
mix’s spectral features in four of the five songs. “Etc” is the
only song where the individual bus model outperforms the
gain mix in spectral measures and, incidentally, is the only
song where the individual bus mix outperforms the gain mix
in all other measures as well. Yet, the results of the listening
test place the individual bus estimate of “Etc” lower than

TABLE IV. The f stats and p-values for each multitrack and all multitracks,
including only participants with audio production or mixing experience.

Group [ stat p-value

All songs 207.896 1.322 x 1077
Desert 47.444 6.977 x 1072
Etc 91.529 8.701 x 107'°
Glad 117.997 2.208 x 1077
Pony 53.478 1.450 x 10712
Saga 35.129 3.062 x 10710
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TABLE V. The results of the pairwise comparison of the mixdown archi-
tecture on the perceptual similarity rating across multitracks with the
Bonferroni correction, o > 0.05, * < 0.001 - = no comparison.

TABLE VII. The results of the pairwise comparison of the mixdown archi-
tecture on the perceptual similarity rating within the “Pony” multitrack with
the Bonferroni correction, o > 0.05, * < 0.001 - = no comparison.

Reference Gain Individual Two Reference Gain Individual Two
mix mix bus mix bus mix mix mix bus mix bus mix
Reference mix . * ® 0 Reference mix . * * 0
Gain mix * - * * Gain mix * . 0 *
Individual bus mix * * . * Individual bus mix * 0 . *
Two bus mix o * * Two bus mix 0 * *

the gain mix for both experienced and inexperienced listen-
ers. This highlights the difficulty in using objective features
to characterize the multitrack mixes. In its estimate, the indi-
vidual bus architecture placed a prominent reverb on the
vocal stem that does not match the reference mix, which is
most likely why it performed so poorly in the listener evalu-
ation. In general, the mixes estimated by the individual bus
architecture frequently apply much more reverb than the
reference.

Across all of the tests, the “Desert” mix from the indi-
vidual bus model performed the worst in the listening test,
and the “Desert” mix from the stereo bus model performed
the best. In “Desert,” several synthesizers (Synth1-Synth6)
are layered within the composition and provide backing to a
layered vocal (Vox1-Vox3). The reference mix applies both
delay and reverb to most of the song’s elements in keeping
with a “washed-out electronica” style mix, as well as the
EQ, gain, and pan. Figures 7 and 8 show Oz and the fre-
quency transfer curves for select stems from the song
“Desert,” produced by the individual bus model and stereo
bus model, respectively. Observing Fig. 7, one can see the
stark differences between the learned reverb impulse
responses across the stems. Synth3 appears to have both
echo and reverb applied, Synth6 has a dense reverb with sig-
nificant energy in the tail applied, and Vox2 has a light echo
applied. Note as well that the gradient descent produces dis-
tinct reverbs for the left and right channels for each of these
stems. When listening to this mix, however, the vocals are
barely audible, and the synthesizers dominate the mix.
Figure 8 shows that the stereo bus model has combined both
a reverb with less energy in the tail than the individual bus
model with a prominent echo into the left and right channels
learned impulse responses. The result is a mixdown that is
nearly indistinguishable from the reference mix.

TABLE VI. The results of the pairwise comparison of the mixdown archi-
tecture on the perceptual similarity rating within the “Etc” multitrack with

This failure by the individual bus model may be due to
the relatively large parameter space that the optimization
has to navigate. It may be the case that given random param-
eter initialization for the 20 raw tracks, the optimization
begins too far away from the parameters of the reference
and instead converges to a random local minimum. Note
that with 20 raw tracks, @ consists of 1.764 x 10° parame-
ters. It is interesting to note that the individual bus model’s
optimization also does not match the reference when pan-
ning certain raw tracks. While the stereo reverb bus model
pans Vox2 nearly center with Pan; = 0.502, the individual
reverb bus model pans Vox2 to the right with Pan, = 0.314.
This again suggests that the individual reverb bus model is
exploring some area of the parameter space distant from the
reference mix.

Future improvements may be made to the individual
bus model by bypassing the reverb module for the beginning
of the stochastic gradient descent. For example, the bypass
could be activated until the first early stopping, which would
allow for the network to best fit the gain, pan, and EQ
parameters before attempting to apply reverb. A full study
of how DDSP performs in reverb estimation may also shed
light on the issues of the individual bus model, including
how a gradient descent performed on a FIR reverb IR can
match infinite impulse response (IIR) reverb implementa-
tions and reverb impulse responses with non-integer delays.

There are several directions that future work can take.
The most pressing is implementing nonlinear processing in
the signal chain, including dynamic range compression and
distortion. These can either come in the form of some white-
box approximation of the effects or blackbox modules
inserted into the signal chain, which model specific effects
like those presented in Steinmetz and Reiss (2021) or Choi
et al. (2021). Another direction the work can take is

TABLE VIII. The results of the pairwise comparison of the mixdown archi-
tecture on the perceptual similarity rating within the “Desert” multitrack,
including only participants with audio production experience, with

the Bonferroni correction, o > 0.05, * < 0.001 - = no comparison. Bonferroni correction, 0 > 0.05, * < 0.001 - = no comparison.
Reference Gain Individual Two Reference Gain Individual Two
mix mix bus mix bus mix mix mix bus mix bus mix
Reference mix . * * * Reference mix . 0 *
Gain mix * * * Gain mix 0 . 0 *
Individual bus mix * * . * Individual bus mix * 0 . *
Two bus mix * * * Two bus mix 0 * *
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FIG. 7. (Color online) The estimated frequency transfer curves and reverb impulse responses for select stems in the song “Desert,” using the individual bus

model.

modelling automation, which is frequently used by mixing
engineers. This could be realised using frame-by-frame
approximations of mixing parameters or some other control
scheme. Another direction would be the implementation of
differentiable IIR filters for the EQ as suggested in
Nercessian (2020) or Kuznetsov et al. (2020) rather than the
FIR filters presented here. Of particular note would be a
comparison in the phase behaviour of DDSP FIR EQs and
differentiable IIR EQs.

This reverse engineering work may also aid in numeri-
cally characterizing mixing engineers’ behaviour by analy-
sing and extracting mix parameters from a corpus of

J. Acoust. Soc. Am. 150 (1), July 2021

professional mixes. This corpus could then be used to
improve objective measures of multitrack mixes for percep-
tual correlation to avoid issues such as those encountered
when objectively measuring the “Etc” mixdowns.

VI. CONCLUSION

This paper presents two architectures that can reverse
engineer the linear processing, including the gain, pan, EQ,
delay, and reverb, of a mix. This architecture takes as its
inputs the raw tracks of a multitrack and targets a reference
mixdown. This is achieved using whitebox neural network
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model.

audio effect modelling using DDSP and performing gradient
descent. The results of objective measures and a listening
test demonstrate that the stereo bus reverb model outper-
forms the individual reverb bus model, and the participant’s
perceptual ratings between the stereo reverb model and ref-
erence mix do not differ significantly.
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