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Reverse engineering of a recording mix with differentiable
digital signal processinga)

Joseph T. Colonelb) and Joshua Reiss
Centre for Digital Music, Queen Mary University of London, London, United Kingdom

ABSTRACT:
A method to retrieve the parameters used to create a multitrack mix using only raw tracks and the stereo mixdown is

presented. This method is able to model linear time-invariant effects such as gain, pan, equalisation, delay, and

reverb. Nonlinear effects, such as distortion and compression, are not considered in this work. The optimization pro-

cedure used is the stochastic gradient descent with the aid of differentiable digital signal processing modules. This

method allows for a fully interpretable representation of the mixing signal chain by explicitly modelling the audio

effects rather than using differentiable blackbox modules. Two reverb module architectures are proposed, a “stereo

reverb” model and an “individual reverb” model, and each is discussed. Objective feature measures are taken of the

outputs of the two architectures when tasked with estimating a target mix and compared against a stereo gain mix

baseline. A listening study is performed to measure how closely the two architectures can perceptually match a refer-

ence mix when compared to a stereo gain mix. Results show that the stereo reverb model performs best on objective

measures and there is no statistically significant difference between the participants’ perception of the stereo reverb

model and reference mixes. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005622

(Received 1 February 2021; revised 24 May 2021; accepted 24 June 2021; published online 27 July 2021)

[Editor: Peter Gerstoft] Pages: 608–619

I. INTRODUCTION

Multitrack mixing refers to the process of a mixing

engineer combining the elements of a song, audio piece, or

recording into a “mixdown.” In the case of a band recorded

in a studio, for example, a mixing engineer will collate the

band’s various recordings, prepare and align those tracks,

and apply sound effects and other processing to those tracks

to create a stereo mix. It is up to the mixing engineer to

ensure that the sonic elements of the composition are fixed,

fitted, and featured properly in accordance with the band’s

artistic vision.

Mixing engineers often will use both analog and digital

processing to create their mixdown. Frequently these

include gain, pan, equalisation (EQ), delay, reverb, distor-

tion, and dynamic range compression. In the absence of

automation, these first five effects are often implemented as

linear time-invariant processing. The latter two effects are

nonlinear.

As is now often the case, a mixing engineer will use a

session in a digital audio workstation (DAW) to create a

mixdown. This session contains most if not all of the infor-

mation regarding what effects and processing were applied

to each track in the multitrack recording. In the absence of

this session, it is very difficult to recreate the processing

used to create a specific mixdown, a process that is referred

to as reverse engineering the mix. Even in the case in which

the original session is available, sharing sessions can prove

difficult as sessions cannot be shared across different DAWs

or sometimes across versions of the same DAW.

Furthermore, the session may use specific (and often costly)

effect plugins unavailable to another mixing engineer, which

could make the entire session unusable should the first mix-

ing engineer employ complicated signal chains. This reverse

engineering problem may be phrased as, “Given a set of raw

multitrack recordings and a mixdown, how can one derive

all the effects and their parameters that were used to produce

the mixdown?”

II. BACKGROUND

The problem of reverse engineering a mix remains rel-

atively niche in the field of machine learning for audio.

However, much attention in the field has been paid to

recovering an audio signal in a blind manner after some

processing has been applied. Such problems include

denoising (Yu et al., 2008; Grais and Plumbley, 2017), der-

everberation (Lebart et al., 2001; Feng et al., 2014), and

source separation (Belouchrani et al., 1997; Stoller et al.,
2018).

In Jourjine et al. (2000), the authors reframe a source

separation problem as a reverse engineering of a mix. Given

that N sources are disjoint-orthogonal and anechoic, the

method can estimate the attenuation and delay applied to

each source from a two channel mix. Unfortunately, the

disjoint-orthogonal and anechoic assumptions rarely hold in

the case of a multitrack recording and mixdown given that

multiple sources may bleed into several tracks and delay

and reverb are echoic by definition.

a)This paper is part of a special issue on Machine Learning in Acoustics.
b)Electronic mail: aj.t.colonel@qmul.ac.uk
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In Gorlow and Marchand (2013), a two stage cascaded

encoder and decoder are used to estimate the compression,

gain, and panning effects applied to create a mixdown. This

is performed using only the spectrogram of the mixdown,

i.e., without the raw multitrack. The method requires fixing

the number of tracks used to create the mixdown and does

not attempt to model the EQ or reverb. Without access to

the raw multitracks, this problem statement and the problem

statement by Jourjine et al. (2000) land closer to source sep-

aration or upmixing than to reverse engineering a mix.

A considerabe amount of work has been published on

modelling individual sound effects and processing.

Presented in Gorlow and Reiss (2013) is a method for esti-

mating the parameters of a dynamic range compressor

applied to a signal. More recently, blackbox modelling of

audio effects using neural networks has received attention.

Examples can be found for modelling the EQ (Ram�ırez and

Reiss, 2018), distortion (Ram�ırez and Reiss, 2019), com-

pression (Hawley et al., 2019), and other nonlinear effects

(Ram�ırez et al., 2020). The blackbox approach outlined in

Steinmetz et al. (2020) simultaneously models the EQ, com-

pression, and reverb and can be controlled by passing

parameters relating to each effect to the blackbox.

The methods in Barchiesi and Reiss (2010) explicitly

try to answer this reverse engineering of a mix question and

inform the primary motivations of this paper. In Barchiesi

and Reiss (2010), a method for reverse engineering a mix is

presented, which combines separate modelling of the linear

processing and nonlinear processing used to create a

mixdown. This method uses both the mixdown and raw mul-

titrack. The nonlinear processing is estimated using a frame-

based approach in which the dynamic range compression is

modelled as a time-varying gain envelope. A time domain

least squares approach is used to model the linear process-

ing, including gain, pan, delay, and EQ. This method theo-

retically holds when estimating a convolutional reverb

impulse response, but the length of these impulse responses

makes a least squares estimate impractical.

The improvements to Barchiesi and Reiss (2010) that

are presented in this work combine that work’s explicit

modelling of the mixing chain with the capabilities of mod-

ern neural networks to model complex audio effects.

A neural network whitebox approach to audio synthesis

and sound effect modelling, called differentiable digital sig-

nal processing (DDSP), has been developed in Engel et al.
(2019). The DDSP toolbox contains modules often found in

sound synthesis, such as harmonic oscillators and subtrac-

tive synthesizers, that can be integrated into neural net-

works. The toolbox also contains a convolutional reverb

module and finite impulse response (FIR) EQ module.

The method presented in this paper expands on the lin-

ear processing modelling of Barchiesi and Reiss (2010) with

the aid of modules developed in Engel et al. (2019) but does

not incorporate nonlinear processing such as distortion or

compression. Whereas these effects are often used by mix-

ing engineers, there is currently no published literature on

whitebox neural network implementations of these effects.

By using explicit whitebox modelling of linear audio

effects, the algorithm presented here produces a fully char-

acterized, interpretable signal chain that could be further

modified upon inspection.

The paper is organized as follows. Section III will out-

line the architecture and optimization procedure used to

reverse engineer a mix using EQ, gain, pan, delay, and

reverb. Section IV will show the outputs of the reverse engi-

neering algorithm as well as the result of a listening study

conducted to evaluate the quality of the reverse engineered

mixdowns. Section V will discuss the results and Sec. VI

will conclude with remarks and directions for future work.

III. METHOD AND THEORY

A. Formal problem statement

Let y(n) represent a target mixdown, and let ŷðnÞ repre-

sent the mixdown produced by some mixing chain charac-

terized by a set of parameters H. The goal is to find values

that correspond to the parameter settings in a mixing chain

that will minimize jjyðnÞ � ŷðnÞjj, where jj � jj denotes some

norm that will be used as a cost function.

The signal processing chain applied to each input raw

track is as follows: dry input ! FIR EQ ! gain ! pan !
reverb and wet/dry mix ! sum with other stems. Note that

because these effects are all linear time-invariant, the order

of application of the effects is arbitrary. In mix engineering,

a “stem” refers to a raw track that has had processing

applied to it. To drive each module, a set of parameters

Hmodule are estimated. For example, HEQ refers to the set of

parameters estimated to drive the EQ module. A stem which

has been processed by applying both the EQ and gain to a

raw track x(n) can be written as

stemEQ;GainðnÞ ¼ GainðEQðxðnÞjHEQÞjHGainÞ; (1)

and a stereo mixdown of N raw tracks xiðnÞ with EQ, gain,

pan, and reverb applied can be written as

ŷLðnÞ ¼
XN

i¼1

ReverbðPanLðGainðEQðxðnÞijHEQÞjHGainÞjHPanÞjHReverbÞ;

ŷRðnÞ ¼
XN

i¼1

ReverbðPanRðGainðEQðxðnÞijHEQÞjHGainÞjHPanÞjHReverbÞ: (2)
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B. EQ

The frequency transfer curve module is used for EQ by

multiplying an input signal’s short-term Fourier transform

(STFT) magnitude response with a user specified curve in

the frequency domain (Engel et al., 2019). In this work, a

1025 point frequency transfer curve HEQ is used. This corre-

sponds to a FIR EQ with 2048 taps in its impulse response.

Given a raw track x(n), the EQ module can be written as

EQðxðnÞjHEQÞ ¼ ISTFT STFTðxðnÞÞ �HEQ

� �
; (3)

where ISTFT is the inverse short-time Fourier transform and

“�” refers to pointwise multiplication.

In this work, the EQ is modelled after a ten band FIR

graphical EQ (V€alim€aki and Reiss, 2016), which can be

characterized using a ten-dimensional HEQ gains. The ten val-

ues specify the gain of each of the octave band filters, which

are centered at 30, 60, 125, 250, 500, 1000, 2000, 4000,

8000, and 16 000 Hz respectively. Shelving filters are used

for frequencies below 30 Hz and above 16 000 Hz that

match the attenuation specified at the lowest and highest

octave band, respectively.

The following procedure is used to calculate the 1025-

dimensional HEQ that will approximate a ten band FIR

graphical EQ. First a ten-dimensional HEQ gains is generated.

Then, these values are transformed via

HEQ gains  1� rðHEQ gainsÞ; (4)

where r denotes the sigmoid function

rðxÞ ¼ 1

1þ e�x
: (5)

The values in the transformed HEQ gains range from (0,1) due

to the bounds of the sigmoid function.

Finally, a piecewise linear frequency transfer curve

HEQ is constructed using linear interpolation between the

octave band attenuations specified by HEQ gains. Thus, the

EQ module’s frequency transfer curve is bounded from (0,1)

at all points The estimated values are initialized with the

random uniform noise from [–1,1], which initializes the

octave band gains from �6 to �1 dB.

C. Gain and pan

The gain module is formulated as

GðxðnÞjHGainÞ ¼ LReLUðHGainÞ � xðnÞ; (6)

where LReLU( ) refers to the leaky rectified linear unit

(Maas et al., 2013)

LReLUðxÞ ¼
bx; x < 0

x; x � 0;

(
(7)

with tunable parameter b. For this work, b ¼ 0:5 has been

chosen. Note that these gains can go negative, which

corresponds with applying a phase shift to the equalised

stem. The gain parameters HGain are initialized with random

uniform noise from [0.9,1.1], which corresponds to gains

from �0.915 to 0.828 dB.

The pan module uses a linear panning law and is formu-

lated as

PanLðxðnÞjHPanÞ ¼ 0:5þ ð0:5� tanhðHPanÞÞð Þ � xðnÞ;
PanRðxðnÞjHPanÞ ¼ 1� PanLð Þ � xðnÞ; (8)

where “�” denotes pointwise multiplication and tanh( )

denotes the hyperbolic tangent function

tanhðxÞ ¼ ex � e�x

ex þ e�x
: (9)

The panning module applies a gain of PanL to the signal

before sending it to the left channel and a gain of PanR to

the signal before sending it to the right channel. The pan

parameters HPan are initialized with mean 0, variance 10�6

Gaussian noise.

D. Reverb

Similar to the EQ module, the reverb module also per-

forms convolution with a given impulse response via multi-

plication in the frequency domain. Instead of estimating a

frequency transfer curve, however, the reverb module

directly estimates an impulse response HIR.

Two reverb architectures were tested in this work, one

using a stereo reverb bus (thus, requiring two estimated

impulse responses for a mixdown) and one using two impulse

responses per channel [thus, requiring (2 � number of tracks)

impulse responses for a mixdown]. Figures 1 and 2 show the

block diagrams for each of the two architectures.

For the stereo reverb bus architecture, a wet/dry mix is

produced by performing a weighted sum between the input

stem and stem with reverb applied. Hence, the module esti-

mates HIR for the reverb’s impulse response and HW=D for

the module’s wet/dry mix. For the individual bus architec-

ture, HW=D is omitted.

In the stereo reverb bus case, the module’s output is for-

mulated as

ReverbðxðnÞjHW=D;HIRÞ ¼ xðnÞ þ rðHW=DÞ
� ðxðnÞ �HIRÞ; (10)

where rð Þ denotes the sigmoid function, “�” denotes multi-

plication, and “*” denotes convolution. HW=D is initialized

with uniform random noise from ½�0:3; 0:3�, which corre-

sponds to a range of �7 to �5 dB.

In the individual reverb bus case, the output becomes

ReverbðxðnÞjHIRÞ ¼ xðnÞ þ xðnÞ �HIR; (11)

where “*” denotes convolution. In both cases, HIR is initial-

ized with mean 0, variance 10�6 random Gaussian noise.

610 J. Acoust. Soc. Am. 150 (1), July 2021 Joseph T. Colonel and Joshua Reiss

https://doi.org/10.1121/10.0005622

https://doi.org/10.1121/10.0005622


The choice to investigate two reverb architectures stems

from a desire to balance the method’s modelling capacity

with the network size and complexity. Mathematically

speaking, both a left and right convolutional reverb impulse

response must be estimated for each raw track in a multi-

track to fully characterize the mixing chain. This is neces-

sary because mixing engineers typically use stereo reverb

impulse responses that are decorrelated in the left and right

channels to increase spatialisation (Kendall, 1995).

However, the number of learned reverb parameters HIR

is orders of magnitude larger than HW=D, HEQ, HPan, and

HGain combined. As formulated in this paper, the number of

parameters needed to describe the mixing chain before the

reverb module is 12: 1 for gain, 1 for pan, and 10 for the

graphic EQ. To model a 1 s convolutional reverb impulse

response sampled at compact disc (CD) quality, 44 100

values are needed. Given that multitracks often contain

more than 10 raw tracks, at least 20 impulse responses

would have to be estimated for a full characterization, which

balloons HIR to 882 000 estimated values. The stereo reverb

model would cap HIR at 88 200 parameters, in this case,

regardless of how many raw tracks make up the multitrack.

In this formulation, HW=D is necessary to control the

“amount of reverb” applied to each raw track sent to the left

and right channels.

E. Loss and optimization procedure

Given randomly initialized Hgain, Hpan, HEQ, HIR, and

HW=D, target mixdown y(n), raw tracks xiðnÞ, and estimated

mixdown ŷðnÞ as described in Eq. (2), the stochastic gradi-

ent descent can be used to minimize jjyðnÞ � ŷðnÞjj by

updating the module parameters H, where jj � jj denotes

some norm used as a cost function.

In this work, a multi-scale spectrogram (MSS) loss is

used as the cost function jj � jj (Engel et al., 2019), which

was inspired by the multi-resolution spectral amplitude dis-

tance demonstrated in Wang et al. (2020). As the name

implies, the MSS computes a norm by measuring the dis-

tance between the spectrograms of two audio signals with

varying STFT window sizes and performing a weighted sum

of these differences. Although the mean absolute error

(MAE) in the time domain is often used in audio applica-

tions and is cheaper to compute than the MSS loss, the latter

was chosen because it ignores the phase differences between

the target and estimated signals, which mimics human per-

ception (Chi et al., 2005). The resolutions for the spectro-

grams used are 2048, 512, and 128 samples. At a 44.1 kHz

sampling rate, these correspond to windows of sizes 50, 12,

and 3 ms. An L1 loss is computed on these spectrograms,

which is the absolute value of the difference between the

spectrograms reduced across both the frame and frequency

dimensions.

The stochastic gradient descent was performed with

learning rate scheduling and early stopping (Darken et al.,
1992). The descent begins using the ADAM optimizer with

learning rate 10�3 (Kingma and Ba, 2015). Once the loss

reaches an early stopping criterion, the learning rate is

dropped to 10�4. After the same procedure happens again,

the learning rate is further dropped to 10�5. The gradient

descent concludes thereafter.

IV. RESULTS AND ANALYSIS

All audio used in this work is sampled at 44.1 kHz, cor-

responding to CD quality audio. A professional mixing engi-

neer was tasked with producing mixdowns for five separate

multitrack recordings. The multitracks were chosen because

they ranged from roughly 10 to 20 raw tracks each, had rep-

resentative excerpts between 20 and 30 s in length, and were

diverse in instrumentation and genre. All stereo tracks were

converted to two mono tracks. All multitracks were down-

loaded from the Cambridge Multitracks dataset (Senior,

2011). Table I shows the artist and song title for each song

used in this work. For each multitrack, three approximated

mixdowns were calculated: a stereo bus approximation (two

FIG. 1. (Color online) The mixing chain diagram for the “stereo bus”

architecture.
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bus), an individual bus approximation (individual bus), and

a stereo gain mix approximation using the least squares esti-

matation method in Barchiesi and Reiss (2010) (gain mix).

Similar to the procedure followed in Barchiesi and Reiss

(2010), the mixing engineer only used linear processing to create

the mixdown, including gain, pan, EQ, delay, and reverb. No

distortion or dynamic range compression was used. Moreover,

no automation was used on the linear effects. All audio dis-

cussed in this paper can be found online.1

A. Objective evaluation

To objectively measure how close the estimated mix-

downs matched the target mixdowns, a set of low-level

audio features was calculated and compared according to

the methodology in Wilson and Fazenda (2016). These fea-

tures can be subgrouped into spectral measures (Bogdanov

et al., 2013), loudness measures (Recommendation, �),

stereo features (Tzanetakis et al., 2007), and envelope

probability mass function (PMF) features (Wilson and

Fazenda, 2014). The PMF features are calculated by

making a histogram of the values that a digital audio

signal takes, normalizing this historgram so it becomes a

PMF, and then calculating the statistical measures of

this PMF.

FIG. 2. (Color online) The mixing chain diagram for the “individual bus” architecture.

TABLE I. The songs chosen for mixing and shortened names used in this

paper.

Artist Song name Genre

Reference

name

Araujo The Saga of the Harrison

Crabfeathers

Jazz Saga

Blue Lit Moon Dad’s Glad Alternative rock Glad

Carol Dant I am the Desert Electronica Desert

The Complaniacs Etc Punk Etc

Timboz Pony Metal Pony
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A full account of each mixdown’s feature values can be

found in the supplementary materials included with this

paper.2 To aggregate each mixdown’s performance, the

average relative error of each subgroup of features can be

calculated. The relative errors must be taken as different fea-

tures have different units of measurements and, furthermore,

different feature measures can be orders of magnitude apart

from one another. Observing an average relative error across

subgroups of features allows for an overall picture of how

each mixdown matched the reference across perceptual

correlates.

Table II provides a summary of the average errors

across each feature subgroup for each approximated mix-

down relative to the reference mixdown. Within each song,

the two bus architecture outperforms both the individual bus

architecture and gain mix across all subgroups of the fea-

tures. For the songs “Saga,” “Pony,” “Desert,” and “Dad’s

Glad,” the gain mix outperforms the individual bus mix in

average relative error across each subgroup of features. For

the song “Etc,” the individual bus mix outperforms the gain

mix in average relative error for spectral, PMF, and stereo

measures with the gain mix performing best for the loudness

features.

There are certain instances in which the gain mix or the

individual bus mix matches the reference more closely than

the two bus mix in a given feature. When measuring 95%

spectral roll-off, the individual bus mix performs best in the

song “Saga.” When measuring spectral spread, the gain mix

outperforms the two bus mix in the songs “Dad’s Glad” and

“Saga.” These are the only instances in spectral measure in

which the two bus architecture does not perform best.

When measuring the PMF centroid, the gain mix per-

forms best for the song “Dad’s Glad,” and the individual bus

performs best for the song “Etc.” For the PMF skew, the

gain mix performs best in the songs “Desert” and “Pony.”

For the PMF kurtosis, the gain mix performs best in the

song “Desert.” In all other PMF measures, the two bus

architecture performs best.

When measuring both the stereo panning spectrum

across all bands and across high frequency bands, the indi-

vidual bus mix performs best for the songs “Dad’s Glad”

and “Etc.” For the mid band stereo panning spectrum, the

individual bus performs best for the song “Etc.” For the ste-

reo left-right ratio, the gain mix performs best for the song

“Desert.” In all other stereo measures, the two bus architec-

ture performs best.

For the loudness range measure, the gain mix performs

best for the song “Pony.” For the average crest factor mea-

sured with a resolution of 100 ms, the individual bus mix

performs best for the song “Desert,” and the gain mix per-

forms best for the song “Pony.” When the resolution of the

crest factor is increased to 1000 ms, the gain mix performs

best for the song “Desert.” The two bus mix performs best

for all other measures of loudness.

B. Human listener evaluation

Whereas much research has been done to numerically

characterize the timbre (see Peeters et al., 2011) and relate

closeness of timbres within a perceptual space (e.g., Caclin

et al., 2005; Elliott et al., 2013), there are no perfect numeri-

cal measures for determining how close two timbres are.

Furthermore, the timbral complexity of multitrack mixes

renders numerically characterizing mixes challenging

(Wilson and Fazenda, 2015; Colonel and Reiss, 2019).

Although the results presented in the objective evaluation

show the two bus mix outperforming the other two mixes in

numerical measures, this is no guarantee that the two bus

mix sounds most similar to the reference mix. Thus, a listen-

ing study was performed to assess how well each method

perceptually matched the reference mix.

The listening study included 23 participants to evaluate

the approximated mixdowns of the five multitracks.

Fourteen participants reported having no audio production

or mixing experience, whereas nine participants reported

having some audio production or mixing experience.

Participants were tasked with rating a set of mixes based on

how closely the mixes matched a reference mix on a contin-

uous scale of 0–1, where “0” represented a mix “very far”

from the reference, and “1” represented a mix “matching

exactly” the reference mix.

During the test, participants were presented each of the

mulitracks in a random order one-by-one. For a given multi-

track, participants were presented with four stimuli to rate

against the reference mix. One stimulus was the identical

reference mix. The other presented stimuli were three

approximated mixdowns: a stereo bus approximation, an

individual bus approximation, and a stereo gain mix approx-

imation. Participants evaluated mixes for each of the 5 mul-

titracks, therefore, providing a total of 20 ratings.

Participants were encouraged to use the full 0–1 rating range

when appropriate. Furthermore, participants were given no

TABLE II. The average relative errors by feature subgroup for approxi-

mated mixdowns compared to the reference mixdown.

Mixdown Spectral PMF Stereo Loudness Total

Desert two bus 0.95% 14.86% 5.99% 1.68% 4.88%

Desert gain mix 5.87% 15.96% 13.00% 4.80% 9.21%

Desert individual bus 35.55% 104.67% 133.84% 25.24% 70.52%

Etc two bus 2.52% 6.57% 14.07% 3.67% 6.54%

Etc gain Mix 19.21% 95.99% 33.83% 5.94% 32.91%

Etc individual bus 9.63% 62.78% 20.37% 22.64% 25.07%

Glad two bus 7.10% 6.04% 32.49% 1.80% 12.16%

Glad gain mix 23.16% 38.72% 51.85% 8.76% 29.60%

Glad individual bus 34.83% 91.09% 92.46% 17.52% 55.13%

Pony two bus 1.70% 21.34% 9.95% 7.67% 8.82%

Pony gain mix 28.24% 49.42% 35.33% 15.68% 30.49%

Pony individual bus 61.16% 55.86% 159.22% 16.65% 74.21%

Saga two bus 2.25% 3.26% 3.53% 0.41% 2.28%

Saga gain mix 13.57% 25.52% 17.44% 12.03% 16.26%

Saga individual bus 27.37% 356.85% 137.33% 61.17% 122.17%
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time limit for the test, and no limit was placed on how many

times a participant could listen to a given stimulus.

The analysis that follows is adapted from the perceptual

study presented in Moffat and Reiss (2018). The null

hypothesis is that the perceptual evaluation scores are from

the same distribution. A one-way analysis of variance

(ANOVA) with Bonferroni correction shows that for all

mixdowns, the effect the method used to reverse engineer

the mix had on the user perception was statistically signifi-

cant. This result holds when analysing the ratings separated

by each multitrack as well. Table III lists the f stats and

p-values. Figures 3 and 4 show the box plots of the overall

results of the listening study.

With the null hypothesis rejected, a post hoc Tukey

pairwise comparison with Bonferroni correction to reduce

the chance of type I errors was used. Table V shows the

results of these pairwise comparisons for all of the architec-

tures used. The pairwise comparisons demonstrate that the

mean of the participants’ ratings for the reference mix and

stereo bus mix do not differ significantly. All other pairwise

comparisons do differ significantly.

When breaking down the data by song, the above

results hold for three of the five multitracks: “Glad,”

“Desert,” and “Saga.” For the multitrack “Etc,” the pairwise

comparisons demonstrate that the mean of the participants’

ratings differs significantly for all pairs, including the refer-

ence and stereo bus models as shown in Table VI. For the

multitrack “Pony,” the reference/stereo bus model pair and

gain mix/individual bus model do not have participant rating

distributions that differ significantly as shown in Table VII.

Most of these results hold when excluding the listeners

with no audio production or mixing experience. Box plots

can be found in Figs. 5 and 6. A one-way ANOVA with

Bonferroni correction shows for all mixdowns that the effect

the method used to reverse engineer the mix had on user

perception was statistically significant. This result holds

when analysing the ratings separated by each multitrack as

well. Table IV lists the f stats and p-values for this subset of

participants with some audio production or mixing

experience.

TABLE III. The f stats and p-values for each multitrack and all multitracks,

including all participants.

Group f stat p-value

All songs 316.178 3:737� 10�107

Desert 143.595 4:127� 10�32

Etc 100.860 4:195� 10�27

Glad 91.140 9:891� 10�26

Pony 70.035 2:575� 10�22

Saga 42.554 1:529� 10�16

FIG. 3. (Color online) The box plots of all of the listener ratings, broken down by estimation architecture.

FIG. 4. (Color online) The box plots of all of the listener ratings, broken

down by each mixdown.
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Post hoc Tukey pairwise comparisons of the ratings

provided by this subset of participants are similar to those

for the whole group. When comparing across all songs and

mixdowns, the values of the Tukey analysis match those

presented in Table V. This also remains true for the songs

“Glad” and “Saga.” For the multitrack “Etc,” the pairwise

comparisons again demonstrate that the mean of the partici-

pants’ ratings differs significantly for all pairs, including the

reference and stereo bus models as shown in Table VI. And,

again, in “Pony,” the reference/stereo bus model pair

and gain mix/individual bus models do not have participant

rating distributions that differ significantly as shown in

Table VII. This subset’s ratings do differ for the song

“Desert,” where there is no statistical difference between the

stereo bus/reference pair and gain/reference pair. The results

are shown in Table VIII. As Fig. 3 demonstrates, partici-

pants rated the stereo bus model as nearly identical to the

reference mix, then rated the gain mix next closest, and

finally rated the individual bus mix the furthest from the

reference.

V. DISCUSSION

The results of both the objective evaluation and listen-

ing test suggest that the stereo reverb bus model outperforms

both the gain mix and individual bus models in a reverse

engineerning of a mix task. Furthermore, the gain mix out-

performs the individual bus model in almost all cases.

It is interesting to note that the individual bus architec-

ture performs poorer than a gain mix in both objective and

subjective measures given that the gain mix does not apply

EQ or reverb. Even with the explicit ability to modify a raw

track’s spectral content, the individual bus architecture does

a poorer job than the gain mix of matching the reference

mix’s spectral features in four of the five songs. “Etc” is the

only song where the individual bus model outperforms the

gain mix in spectral measures and, incidentally, is the only

song where the individual bus mix outperforms the gain mix

in all other measures as well. Yet, the results of the listening

test place the individual bus estimate of “Etc” lower than

FIG. 5. (Color online) The box plots of the ratings made by listeners with audio experience, broken down by architecture.

FIG. 6. (Color online) The box plots of the ratings made by listeners with

audio experience, broken down by mixdown.

TABLE IV. The f stats and p-values for each multitrack and all multitracks,

including only participants with audio production or mixing experience.

Group f stat p-value

All songs 207.896 1:322� 10�57

Desert 47.444 6:977� 10�12

Etc 91.529 8:701� 10�16

Glad 117.997 2:208� 10�17

Pony 53.478 1:450� 10�12

Saga 35.129 3:062� 10�10
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the gain mix for both experienced and inexperienced listen-

ers. This highlights the difficulty in using objective features

to characterize the multitrack mixes. In its estimate, the indi-

vidual bus architecture placed a prominent reverb on the

vocal stem that does not match the reference mix, which is

most likely why it performed so poorly in the listener evalu-

ation. In general, the mixes estimated by the individual bus

architecture frequently apply much more reverb than the

reference.

Across all of the tests, the “Desert” mix from the indi-

vidual bus model performed the worst in the listening test,

and the “Desert” mix from the stereo bus model performed

the best. In “Desert,” several synthesizers (Synth1–Synth6)

are layered within the composition and provide backing to a

layered vocal (Vox1–Vox3). The reference mix applies both

delay and reverb to most of the song’s elements in keeping

with a “washed-out electronica” style mix, as well as the

EQ, gain, and pan. Figures 7 and 8 show HIR and the fre-

quency transfer curves for select stems from the song

“Desert,” produced by the individual bus model and stereo

bus model, respectively. Observing Fig. 7, one can see the

stark differences between the learned reverb impulse

responses across the stems. Synth3 appears to have both

echo and reverb applied, Synth6 has a dense reverb with sig-

nificant energy in the tail applied, and Vox2 has a light echo

applied. Note as well that the gradient descent produces dis-

tinct reverbs for the left and right channels for each of these

stems. When listening to this mix, however, the vocals are

barely audible, and the synthesizers dominate the mix.

Figure 8 shows that the stereo bus model has combined both

a reverb with less energy in the tail than the individual bus

model with a prominent echo into the left and right channels

learned impulse responses. The result is a mixdown that is

nearly indistinguishable from the reference mix.

This failure by the individual bus model may be due to

the relatively large parameter space that the optimization

has to navigate. It may be the case that given random param-

eter initialization for the 20 raw tracks, the optimization

begins too far away from the parameters of the reference

and instead converges to a random local minimum. Note

that with 20 raw tracks, HIR consists of 1:764� 106 parame-

ters. It is interesting to note that the individual bus model’s

optimization also does not match the reference when pan-

ning certain raw tracks. While the stereo reverb bus model

pans Vox2 nearly center with PanL ¼ 0.502, the individual

reverb bus model pans Vox2 to the right with PanL ¼ 0.314.

This again suggests that the individual reverb bus model is

exploring some area of the parameter space distant from the

reference mix.

Future improvements may be made to the individual

bus model by bypassing the reverb module for the beginning

of the stochastic gradient descent. For example, the bypass

could be activated until the first early stopping, which would

allow for the network to best fit the gain, pan, and EQ

parameters before attempting to apply reverb. A full study

of how DDSP performs in reverb estimation may also shed

light on the issues of the individual bus model, including

how a gradient descent performed on a FIR reverb IR can

match infinite impulse response (IIR) reverb implementa-

tions and reverb impulse responses with non-integer delays.

There are several directions that future work can take.

The most pressing is implementing nonlinear processing in

the signal chain, including dynamic range compression and

distortion. These can either come in the form of some white-

box approximation of the effects or blackbox modules

inserted into the signal chain, which model specific effects

like those presented in Steinmetz and Reiss (2021) or Choi

et al. (2021). Another direction the work can take is

TABLE V. The results of the pairwise comparison of the mixdown archi-

tecture on the perceptual similarity rating across multitracks with the

Bonferroni correction, o > 0.05, * < 0.001 � ¼ no comparison.

Reference

mix

Gain

mix

Individual

bus mix

Two

bus mix

Reference mix � * * o

Gain mix * � * *

Individual bus mix * * � *

Two bus mix o * * �

TABLE VI. The results of the pairwise comparison of the mixdown archi-

tecture on the perceptual similarity rating within the “Etc” multitrack with

the Bonferroni correction, o > 0.05, * < 0.001 � ¼ no comparison.

Reference

mix

Gain

mix

Individual

bus mix

Two

bus mix

Reference mix � * * *

Gain mix * � * *

Individual bus mix * * � *

Two bus mix * * * �

TABLE VII. The results of the pairwise comparison of the mixdown archi-

tecture on the perceptual similarity rating within the “Pony” multitrack with

the Bonferroni correction, o > 0.05, * < 0.001 � ¼ no comparison.

Reference

mix

Gain

mix

Individual

bus mix

Two

bus mix

Reference mix � * * o

Gain mix * � o *

Individual bus mix * o � *

Two bus mix o * * �

TABLE VIII. The results of the pairwise comparison of the mixdown archi-

tecture on the perceptual similarity rating within the “Desert” multitrack,

including only participants with audio production experience, with

Bonferroni correction, o > 0.05, * < 0.001 � ¼ no comparison.

Reference

mix

Gain

mix

Individual

bus mix

Two

bus mix

Reference mix � o * o

Gain mix o � o *

Individual bus mix * o � *

Two bus mix o * * �
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modelling automation, which is frequently used by mixing

engineers. This could be realised using frame-by-frame

approximations of mixing parameters or some other control

scheme. Another direction would be the implementation of

differentiable IIR filters for the EQ as suggested in

Nercessian (2020) or Kuznetsov et al. (2020) rather than the

FIR filters presented here. Of particular note would be a

comparison in the phase behaviour of DDSP FIR EQs and

differentiable IIR EQs.

This reverse engineering work may also aid in numeri-

cally characterizing mixing engineers’ behaviour by analy-

sing and extracting mix parameters from a corpus of

professional mixes. This corpus could then be used to

improve objective measures of multitrack mixes for percep-

tual correlation to avoid issues such as those encountered

when objectively measuring the “Etc” mixdowns.

VI. CONCLUSION

This paper presents two architectures that can reverse

engineer the linear processing, including the gain, pan, EQ,

delay, and reverb, of a mix. This architecture takes as its

inputs the raw tracks of a multitrack and targets a reference

mixdown. This is achieved using whitebox neural network

FIG. 7. (Color online) The estimated frequency transfer curves and reverb impulse responses for select stems in the song “Desert,” using the individual bus

model.
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audio effect modelling using DDSP and performing gradient

descent. The results of objective measures and a listening

test demonstrate that the stereo bus reverb model outper-

forms the individual reverb bus model, and the participant’s

perceptual ratings between the stereo reverb model and ref-

erence mix do not differ significantly.
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