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ABSTRACT 
Audio post-production for film involves, among other things, the manipulation of large amounts of audio data. 

There is a clear need for the automation of many organization and classification tasks that are currently performed 

manually and repeatedly by sound engineers, such as grouping and renaming multiple audio recordings. Here, we 

present a method to classify such sound files in two categories, ambient recordings and single-source sounds or 

sound effects. Automating these organization tasks requires a deep learning model capable of answering questions 

about the nature of each sound recording based on specific stereo and monaural features. This study focuses on 

identifying these features and on the design of one possible model. The relevant features for this type of audio 

classification and the model specifications are discussed. In addition, an evaluation of the model is presented, 

resulting in high accuracy, precision and recall values for audio classification.    

1 Introduction 

Machine learning methods can successfully classify 

sound signals using categories such as Noise, Natural 

Sounds, Artificial Sounds, Speech or Music [1, 2], 

and across them, i.e. the ‘Freesound General-Purpose 

Audio Tagging Challenge’1 (2018). The approaches 

often used objective labels related to the nature of the 

source [3, 4, 5] (i.e. a recording of a chainsaw might 

be labelled as man-made since a chainsaw cannot be 

found in nature) as discretizers.  

This project aims to classify sound signals using 

labels linked to the industry of cinema and video-

game audio, such as ambient recordings and textures 

from sound effects. The boundaries that separate 

ambient sounds from sound effects are well 

documented [6]. However, there are no criteria that 

differentiate these classes in an objective or absolute 

way and can be generalized to all non-musical and 

non-speech sound signals.  

1 https://www.kaggle.com/c/freesound-audio-tagging

In film audio post-production, an ambient sound is a 

non-speech, non-musical signal in which one or more 

components or streams corresponding to different 

sources, are layered together [6]. A sound effect is a 

non-speech non-musical signal that generally 

contains a single stream, a sound with a single source. 

Previously mentioned models [1-5] are fit for 

categorization across different types of sound effects 

and capable of classifying different ambient sounds. 

However, they are not focused on the discrimination 

between the two main non-objective classes. 

The relevant audio signals do not always easily fit 

into one of these two classes. More than one stream 

might be layered in a sound effect to characterise the 

sound of a single source, i.e. a car sound effect 

contains the sound of the tires, the motor, etc. or due 

to practical limitations of the recording process, i.e. 

the sound effect of a train approaching the station 

http://guillem.peeters@gmail.com/


Peeters and Reiss Sound Textures and Atmospheres Versus Single Source Sounds 

AES 148th Convention, Online, 2020 June 2-5
Page 2 of 10 

might have a background of traffic sound or 

conversations in the station.  

This nomenclature, ambient sounds and sound 

effects, is also not universal. In other contexts, both 

may be referred to as sound effects, e.g. [7-9]. 

Furthermore, researchers tend not to use the term 

sound effects and instead refer to the second category 

as single source sounds. We will generally adopt this 

term throughout the text, to avoid ambiguity.  

Besides, we assume that the original label of the file, 

given by the engineer who recorded or generated the 

sound, can be considered as ground truth. 

2 Related work 

Previous research on audio signal classification often 

made use of frequency-based features for sound 

classification [2, 10]. Either single source sounds or 

ambients might produce a large variety of 

spectrograms since both might have any possible 

source (or combination of sources). Therefore, 

features such as the Mel Frequency Cepstral 

Coefficients (MFCCs) and Mel Spectrograms, which 

can be treated as images that capture the frequency 

characteristics of the sound signal, result to be 

insufficient and misleading for this research [11, 12]. 

The class definition conflicts explained in the 
previous section, reside in the frequency domain, that 

is, Mel Spectrograms might help differentiate the 

sound of two different types of vehicle and however 

might not succeed in categorising if a sound file is a 

single source sound or an ambience recording. 

Thus, the features to be extracted for the building of 

a Machine Learning model capable of this sort of 

classification have to be picked-by-hand out of 

different libraries and previous studies, as opposed to 

the use of the available feature libraries, which are of 

valuable and common use in other types of audio 

classification problems. 

Fortunately, a lot of previous work in audio signal 

classification is still a good reference because it 

makes use of complementary features that, although 

they may not solve classification problems as 

standalone features, can be of great importance in this 

2 https://bbcsfx.acropolis.org.uk/

study, i.e. the use of Spectral Bandwidth (SB) feature 

as a complement of the Spectral Centroid (SC).  

In addition, previous research not directly related to 

this study has been revised and used in this classifier 

[13]. Stereo width features have been extracted from 

Brecht De Man et al. [14], an analysis of valuable 

features for multitrack music mixtures. Energy-

Entropy (EE) features, often used in speech detection 

problems [15], are adapted to help classify our 

signals.  

Since entropy is a measure of the uncertainty and 

disorganisation of a random variable, it can be a good 

indicator of the degree of randomness of an ambient 

recording in comparison to less random single source 

sounds such as alarms and tone like sounds.   

Other more common features were also adapted and 

implemented in this model. Zero-Crossing Rate 

(ZCR) [16] measures the number of times in a given 

time interval that the amplitude of the signal crosses 

through a 0 value. Ambient recordings and sound 

textures are expected to have a fairly constant 

distribution of frame zero-crossing rates, as opposed 

to single source sounds which will contain periods 

with low ZCRs dispersal and periods with high ZCRs 

dispersal. 

3 Implementation 

3.1   Data 

The data used for testing and training the model 

consisted of two sets of audio samples commonly 

used in movie sound postproduction and the original 

audio files of a real feature film.  

The BBC Sound Library2 includes 16,000 sound files 

available for personal, education or research 

purposes. The 6000 Sound Effect bank 3  includes 

7,500 sound files containing single source sounds and 

ambient recordings.  

The original film audio files contain professional 

sound from the set recordings of the unreleased movie 

‘Emperor (2014)’ and around 1,643 Foley effects. 

This material was facilitated by Nick Lowe, a 

professional sound designer and sound supervisor 

who has worked on more than 64 titles.  

3 https://www.sound-ideas.com
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The data types range between mono, stereo and multi-

channel wave audio files of different lengths. The 

original sampling frequency of the files is 48kHz and 

they are quantized at 16 or 24 bits (the 6000 Sound 

Effect bank was recorded for CD format). All the files 

are either single-source sounds or ambient sounds 

including indoors and outdoors recordings.  

The data preparation and feature extraction processes 

have been implemented in Python4 using the Librosa5 

and pyAudioanalysis6 libraries.  

All files were trimmed to the length of one minute, 

files shorter than one minute are lengthened by zero-

padding. The trimming function is applied with a one-

second offset to avoid short silences at the beginning 

of the audio files.  

44.1kHz was chosen as sampling frequency since 

preserving the high-frequency content of the signals 

is key for a correct classification of the audio files. 

Only the first two channels of the multi-channel files 

were preserved, taking into account that in the field 

of cinema, by convention, the first two channels of a 

multi-channel file belong to the 1st and 2nd boom 

microphones and the remaining channels belong to 

radio microphones (lavalier microphones).  

L1 normalization is applied once stereo features are 

extracted and the files converted down to mono, to 

avoid compromising the amplitude differences 

between L and R channels in the case of one-sided 

panned stereo single source sounds or ambiences. 

As mentioned, the ground truth labels (single source 

sound or sound texture) were extracted based on the 

judgement of the sound engineer responsible for the 

recordings (i.e. the file name or folder origin). 

3.2   Stereo features 

Two stereo measures from studies on music mix 

engineering [14] were implemented. 

3.2.1  Left/Right Imbalance 

The Left/right imbalance is obtained by calculating 

the Root-Mean-Square (RMS) value of each frame of 

each channel of the time-series signal. In the L/R 

imbalance ratio, denoted L is the total RMS power of 

4 https://www.python.org/ 

5 https://librosa.github.io/librosa/

the left channel, denoted R the total RMS results of 

the right channel [14]. 

3.2.2 Side Mid Ratio 

The side/mid ratio measure is the relation between the 

power of the side-channel and the power of the mid-

channel. The side-channel is the addition of the left 

channel and polarity-reversed right channel divided 

by the number of channels. The mid-channel is 

obtained by calculating the RMS power of the 

addition of the left and right signals divided by the 

number of channels. 

Figure 1.  Stereo features (SMR and LRI) for single-

source (SSS) and ambient sounds scatter plot. 

Taking these two features into consideration, 

information about the amount of panning of a stereo 

recording is obtained [14]. We can also extract 

information about how correlated are the Left and 

Right signals in each file. For example, the case of a 

recording using two microphones set in the same 

exterior location but separated by a considerable 

distance indicates a low imbalance and a high 

side/mid ratio which gives low values for correlation. 

Figure 1 shows the distribution of single-source 

sounds and ambient recordings based on their stereo 

features. 

6 https://github.com/tyiannak/pyAudioAnalysis



Peeters and Reiss Sound Textures and Atmospheres Versus Single Source Sounds 

       AES 148th Convention, Online, 2020 June 2-5  
Page 4 of 10 

3.3   Mono Features 

The following mono features were implemented. 

3.3.1 Variance of Zero-Crossing Rate (ZCR) 

The zero-crossing value extracted is an average of the 

variance of the rate of zero-crossings over the total 

number of frames of the audio file. Here, the ZCR [2] 

was not used as a pitch tracker as usual, since 

previous work showed that ZCR is informative as a 

stand-alone feature [17, 18]. 

Ambient recordings and textures have a normal 

distribution of frames with lower and higher ZCRs. In 

contrast, single-source sounds contain a much more 

uneven distribution; distinct periods with a low 

number of zero-crossings and periods with a higher 

number of zero-crossings [2].  

The variance of ZCR is extracted from the audio files 

before zero-padding to avoid the bias of analysing 

fixed-length files. 

The Standard Deviation (SD) measure resulted in 

high deviation values for single-source sounds and 

low variance values for constant ambient recordings 

and textures. 

3.3.2 Root Mean-Square Rate (RMS) 

RMS [14] levels are obtained by calculating the root-

mean-square value of the amplitude of each frame. 

Although ambient recordings are often used as a 

background in sound postproduction, i.e. mixed at 

low amplitudes, they show higher RMS values than 

single-source sounds, the reason for this is the lack of 

discernible peaks on the signal. The low dynamic 

range of ambient recordings allows them to achieve 

large amplitudes after sound normalization. In 

contrast, single-source sounds, with higher dynamic 

ranges, are not affected as much by normalization 

since their peaks reach clipping levels faster (i.e. after 

less amplification).  

3.3.3 Spectral Features 

The spectral features used for this model are the 

Spectral Centroid (SC), the Spectral Bandwidth (SB), 

the Spectral Flatness (SF) and Spectral Roll-Off [19, 

21, 22]. 

Figure 2.  SC (x-axis) and SB (y-axis) values of 

single-source sounds and ambient sounds. 

Although either single source sounds or ambient 

recordings may show a large diversity of spectral 

centroids, ambient recordings have a richer high-

frequency content, which results in higher values for 

SC. 

In addition, ambient recordings also present higher 

values for Spectral Bandwidth in comparison to 

single-source sounds. The Spectral Bandwidth (SB) 

or Spread is calculated by taking the frequency 

difference of each spectrum in relation to the Spectral 

Centroid (SC) [19].  

The bandwidth of the spectrum is valuable 

information for the reason that single source sounds 

are often recordings of a single source, consequent 

repetitions of the same sound recorded usually in a 

silent environment, in contrast, ambient recordings 

contain much more components. This fact leads to 

lower values of Spectral Bandwidth for single-source 

sounds and higher values for ambient recordings or 

textures (figure 2).  

Spectral Flatness [19] is a measure of the noisiness of 

the spectrum. The definition of SF as a measure of 

noisiness has its origins in MIR research [20]. In 

equation 1, SF is calculated by taking the geometric 

mean of the spectrum and dividing the values by its 

arithmetic mean. 
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(1) 

𝑆𝐹(𝑚) =
(∏ |𝑋(𝑚, 𝑘)|𝑘 )

1
𝑘

1
𝑘

∑ |𝑋(𝑚, 𝑘)|𝑘

Where k is the band number and K the number of 

frequency bands and k band number.  

In the case of this study, the data (non-speech non-

musical signals) are rarely tone-like, however, the 

amount of noisiness is higher for ambient recordings 

than for single-source sounds resulting in higher 

Spectral Flatness values. 

The Spectral Roll-off (0.9) feature, measures the 

frequency below which most of the spectral content 

of a signal is located. A 0.9 roll-off value indicates 

that 90% of the spectral energy is located below the 

measured frequency (i.e. this parameter could be set 

to 1.0 to find the highest frequency in the spectrum). 

This feature was originally used as a transient 

detection method in MIR [21] and it is now popularly 

used as a discretizer between voiced and unvoiced 

speech [22]. In our context, it is another spectral 

measure of the high-frequency content of the data.  

3.3.4 Energy (E) and Energy Entropy (EE) 

This feature calculates the Energy of each frame of a 

signal windowed using a rectangular window. 

Various studies use entropy-based algorithms in the 

field of speech detection [13] [23]. Entropy is defined 

as the amount of uncertainty in a random variable. 

Energy Entropy is implemented gathering that single 

source sounds will have more organized segments 

than noisy ambient recordings, resulting in lower 

entropy values. Energy Entropy is defined by 

equation 3. 

𝐸 =
𝑥(𝑛)2

𝑊
(2) 

𝐸𝐸 =  − ∑ (𝑠𝑖 ·  log2(𝑠𝑖))𝑖      (3) 

Where s(i) are each of the sub-frame energies 

normalized by dividing by the total energy (E) of each 

frame. The sub-frame energies are obtained by using 

equation (2), after a secondary window with shorter 

width is applied. 

3.3.5 Mean Onset Strength (OS) 

The onset strength of a time-domain signal is 

obtained by calculating the spectral flux onset 

strength envelope. Onsets are the amplitude peaks in 

a signal over a defined threshold. The strength of each 

onset is measured by taking two consecutive short-

time spectra and calculating the energy difference 

between them, bin by bin. Following that, each non-

negative and non-zero difference is added together 

[24]. 

The audio signal is divided into overlapping frames 

of 2048 samples, subsequently, the frames are 

windowed by a Hann window of the same sample 

length. The signal is transformed to the frequency 

domain using the Discrete Fourier transform (DFT) 

and the spectra are obtained by taking the Log-power 

Mel Spectrogram of the signal using, by default, 256 

Mel Frequency Bands. The frame reference is a result 

of the local maxima filtering along the frequency axis. 

The results of these calculations per each frame take 

the shape of an onset envelope describing the signal’s 

amplitude changes over time. The mean strength of 

all the onsets is calculated and added to the feature 

data. 

Single source sounds have higher strength onsets 

since these are recordings of higher amplitude sounds 

i.e., impacts,  gunshots. The information provided by

this measure differs from the RMS feature for the

reason that only the amplitude of the onsets is

calculated and the amplitude of the inter-onset frames

is ignored.

3.3.6 Number of peaks 

The number of detected peaks in each onset strength 

envelope is counted. The parameters of the peak 

picking function set the rules that define which onsets 

are to be declared peaks. 

In this model, a peak is detected under the following 

two conditions:  

If a sample of the onset envelope (x[n]) has a higher 

amplitude than its previous 3 samples (x[n-3]) and its 

respective 3 consecutive samples (x[n+3]), i.e., every 

sample of higher amplitude than its surrounding 6 

samples is listed as a peak.  

If a sample has higher or equal amplitude than an 

amplitude reference value. Where the reference 
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amplitude is the mean of its previous three samples 

(x[n-3]), its consequent 5 samples (x[n+5]) and the 

sample in question (x[n]) added to a threshold value 

of 0.5 amplitude.   

With these parameters, it is possible to detect peaks 

in ambient sound files despite its immanent 

continuous characteristics. In contrast, slightly fewer 

peaks are detected in single-source sounds. 

The number of peaks is averaged over the length of 

the files to avoid longer signals biasing the results due 

to having more peaks. 

3.4   Classification Model 

A Neural Network was used for classification. The 

algorithm decides the most accurate combination of 

parameters to increase classification accuracy when 

categorising the test data. After the model is trained, 

the unseen prediction dataset is given as the input to 

the model, now capable of classifying each of its rows 

by using labels.  

Previous work on automated sound classification 

often implements Convolutional Neural Networks 

(CNNs) and categorical cross-entropy methods for 

multi-class classification [25], Fully Connected 

Neural Networks such as 3-layer feed-forward 

structures are also effectively used for audio 

clustering by using radial basis functions and K-

Means classification [26].    

A Fully Connected Neural Network has a simpler 

architecture that better fits the binary classification 

problem proposed in this study and was therefore 

implemented. 

3.4.1 Input Layer 

For the model to work correctly, each column of the 

input data matrix, representing each feature, must be 

on a similar scale. To accomplish this, a 

standardization function [27] was applied to the 

feature vectors. This function removes the mean of 

the data and scales it to unit variance (SD=1). 

3.4.2 Hidden Layers 

The first hidden dense layer contains 128 neurons and 

the second layer 64 neurons. The weights in this 

7 https://arxiv.org/abs/1803.08375.pdf 

8 https://github.com/fchollet/keras 

model are initialized using the Glorot Uniform 

initializer developed by Xavier Glorot [28]. The 

activation functions used in this model are Rectified 

Linear Activation Units (ReLU)7. 

3.4.3 Output Layers 

The output layer’s activation function is the Softmax 

Activation8[29], capable of outputting a tensor with a 

softmax classification. Softmax classification 

calculates the probabilities of a single event over the 

rest of possible events causing all the probabilities in 

the sample space to add to 1. 

3.4.4 Optimization 

The predictions obtained during the forward-pass are 

compared to the actual classes using a loss function. 

The log-loss is calculated by the binary cross-entropy 

function. It outputs higher loss values as the predicted 

probability diverges from the actual label.

During backward propagation of errors, the weights 

are updated using the stochastic gradient descent 

algorithm (SGD), which iteratively optimizes the 

error by finding its minimum. 

3.4.5 Regularization 

A Dropout (0.2) layer is located between the two 

hidden layers. Dropout layers are regularization 

methods, used to stop the model from overfitting.  

The probability dropouts caused by this layer, result 

in alterations in the architecture of the network due to 

the changes in the responsibilities of all the ‘non-

dropped-out’ neurons, which are forced to maintain 

the unit probability space. In our case, the probability 

of 2 out of 10 inputs will be set to 0 (probability rate 

= 0.2). 
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Act. 

Shape 

Act. 

Size 

# 

Parameters 

Input (12, 1) 12 0 

Dense (relu) (None, 128) 128 1664 

Dropout (0.2) (None, 128) - 0 

Dense (relu) (None, 64) 64 16512 

Dense (softmax) (None, 2) 2 258 

Table 1. The architecture of the model: Layers, 

activation outputs, size of the activations and 

number of learnable parameters. 

4 Evaluation 

Different variations of the model, related to the 

training data balance, features and parametrization 

(such as learning rate, number of layers, 

regularization) have been tested during the design 

process of the classifier. The results and performance 

of the model were compared using common 

evaluation metrics in the field of audio classification. 

4.1   Evaluation Metrics 

The classifier splits the data into two classes, single-

source sounds (label 0) and ambient sounds (label 1). 

Thus, true negatives are all the correctly predicted 

single sound sounds, and true positives are the 

correctly predicted ambient sounds. The term False 

positives refers to the predicted ambient recordings 

that are actually labelled as single source sounds and 

false negatives refers to the predicted single sound 

sounds labelled as ambient recordings.  

Accuracy refers to the percentage of correct answers. 

Namely, the ratio of true positives and true negatives 

over all the predicted data.  

Recall or True Positive Rate (TPR) refers to the 

sensitivity of the model, the number of correctly 

identified ambient recordings (TP) over the total 

actual ambient recordings in the dataset, it is defined 

by the expression, TPR = TP / (TP + FN). 

Specificity or True Negative Rate (TNR) defines the 

number of correctly predicted single sound sounds 

(TN) over the number of actual single sound sounds 

files: TNR = TN / (FP + TN).  

The Precision of the model is the number of correctly 

identified ambient recordings (TP) over the number 

of identified ambient recordings, it is calculated by 

TP / (TP + FP).  

The False Positive Rate (FPR) or Type I Error is the 

number of incorrectly predicted ambient recordings 

(FP) over the total number of actual single sound 

sounds, FP / (FP + TN).  

Finally, the False Negative Rate (FNR) or Type II 

Error refers to the number of wrongly identified 

single sound sounds (FN) over the total number of 

actual true ambient recordings, FNR = FN / 

(FN+TP). 

4.2   Results 

The results shown in this section have been replicated 

by shuffling the data, training the model and making 

new predictions from scratch. The optimisation for 

the gradient descent is set to a learning rate of 0.01 

and the batch size of the model is set to 32. The length 

of the training data was 1000 samples (audio files) 

divided into 500 single source sounds and 500 

ambient recordings. Using a batch of 32 samples 

means dividing the dataset into 31 batches; as a result, 

each epoch will update the weights of the model 31 

times. Table 2 shows the results where 500 epochs 

were set for the training process. 

Precision Recall f1-score Support 

SSS 0.83 0.89 0.86 175 

Ambient 0.86 0.80 0.83 158 

Micro 

average 
0.85 0.85 0.85 333 

Macro 

average 
0.85 0.84 0.85 333 

Weighted 

average 
0.85 0.85 0.85 333 

Confusion Matrix 

155 20 

31 127 

Table 2. Precision, recall, f1-Score and Confusion 

Matrix for Model 1. 
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The accuracy of this model is 84.68%: 282 files were 

correctly found amongst all the predicted files (333 

files). These 333 files are divided into 158 ambient 

recordings and 175 single source sounds. 

The F1-score and the recall measure were slightly 

higher for single-source sounds, whereas ambient 

recordings showed higher values for the precision 

measure.  

Figure 3.  ROC AUC curve showing the 

performance of the classifier. 

ROC AUC curves, shown in figure 3, represent the 

performance curve of the model at different 

probability thresholds. This does not take into 

consideration the prior of probabilities inherent on an 

imbalanced dataset. However, in this analysis there is 

only imbalance of prediction data. The train and test 

data used are exactly balanced about classes. The 

ROC AUC value is 0.912, the size of the area below 

the blue line represents how well the model can 

separate the two classes. 

Simpler network structures were attempted by 

deleting hidden layers from the network and by 

deleting the less important features. In addition, 

attempts to avoid overfitting, such as adding more 

dropout layers, decreasing the gradient descent 

learning rate and decreasing the Batch Size did not 

improve the performance of the model in any aspect. 

5 Discussion 

Though the number of epochs chosen for the Model 

was 500, each training process was first attempted 

using the early-stop technique. This method stops the 

process once the decrease of the loss values, 

calculated by the loss function, becomes stable. It 

avoids overtraining since it stops the model once it 

stops learning. The results using early-stop did not 

alter the performance of the model and, therefore, the 

default number of epochs is set to 500.  

Starting from a simple model with a structure of only 

1 hidden dense layer, formed by 24 nodes, and 1 

dense output layer of 2 nodes, the classifier was 

gradually improved by adding deeper layers capable 

of better understanding the data and improving its 

performance. These intermediate models have not 

been described in the evaluation section since they are 

all considered drafts of the presented model.  

Figure 4, shows the PRC (Prediction-Recall curve) of 

the Model. It gives a more accurate insight on the 

performance of the model, taking into account that 

there is a slight class imbalance of prediction data. 

Namely, PRC plots compensate for the previous 

probabilities of each class by not taking the True 

Negative Rate (or specificity) into account. However, 
both PRC and ROC graphs show a similar response 

of the Model. Thus, the imbalance of the prediction 

data is not biasing the results of the classifier. 

Figure 4. Prediction Recall curve of the Single 

Source Sound/Ambient Sound classifier. 
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6 Summary and further work 

We proposed a model for the categorisation of audio 

files into two classes, ambient recordings and single-

source sounds, based on analysis of signal features. 

The features were picked by hand, from previous 

research in sound classification. Some of the features 

performed successfully without further adaptation, 

though many were adapted since they had not been 

implemented before in the context of this type of non-

objective class categorization. 

A Fully Connected Neural Network capable of 

interpreting the features was designed. It departed 

from a simple structure by adding more layers and 

parameters to its architecture without losing sight of 

different evaluation metrics. Once the performance of 

the model stopped to improve in relation to its 

complexity, other techniques such as regularisation 

and elimination of features were explored. 

The resulting model outperformed the rest of 

implementations on the classification task with an 

accuracy of 84.68% and an f1 score of 0.83. These 

evaluations are positive and the results should be 

replicated using larger datasets. 

The recording techniques of each sound engineer and 

the type of microphones used, affect the 
characteristics of the recordings. So, though the 

training, test and prediction materials were extracted 

from three different sources, more evaluations of the 

model should be done using data from other films and 

different sound banks.  

Further work could be done in exploring the 

categorisation of other types of cinema sound files 

such as categorising the audio files by location or in 

the case of speech audio files by speaker (or actor). 

Together, these classifiers could result in a more 

intelligent sound classifier capable of organizing all 

the pre-processed sound material of a feature film or 

videogame.  

Another application to be explored is using the model 

for sound segmentation. This would help extract 

ambient tracks out of long clips recorded on a film, 

i.e. segments within the moments of speech in the

recording of a scene. These extracts could be useful

tools for solving continuity problems caused by the

image editing of a film.
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