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ABSTRACT

Audio post-production for film involves, among other things, the manipulation of large amounts of audio data.
There is a clear need for the automation of many organization and classification tasks that are currently performed
manually and repeatedly by sound engineers, such as grouping and renaming multiple audio recordings. Here, we
present a method to classify such sound files in two categories, ambient recordings and single-source sounds or
sound effects. Automating these organization tasks requires a deep learning model capable of answering questions
about the nature of each sound recording based on specific stereo and monaural features. This study focuses on
identifying these features and on the design of one possible model. The relevant features for this type of audio
classification and the model specifications are discussed. In addition, an evaluation of the model is presented,
resulting in high accuracy, precision and recall values for audio classification.

1 Introduction

Machine learning methods can successfully classify
sound signals using categories such as Noise, Natural
Sounds, Artificial Sounds, Speech or Music [1, 2],
and across them, i.e. the ‘Freesound General-Purpose
Audio Tagging Challenge’1 (2018). The approaches
often used objective labels related to the nature of the
source [3, 4, 5] (i.e. a recording of a chainsaw might
be labelled as man-made since a chainsaw cannot be
found in nature) as discretizers.

This project aims to classify sound signals using
labels linked to the industry of cinema and video-
game audio, such as ambient recordings and textures
from sound effects. The boundaries that separate
ambient sounds from sound effects are well
documented [6]. However, there are no criteria that
differentiate these classes in an objective or absolute
way and can be generalized to all non-musical and
non-speech sound signals.

1 https://www.kaggle.com/c/freesound-audio-tagging

In film audio post-production, an ambient sound is a
non-speech, non-musical signal in which one or more
components or streams corresponding to different
sources, are layered together [6]. A sound effect is a
non-speech non-musical signal that generally
contains a single stream, a sound with a single source.

Previously mentioned models [1-5] are fit for
categorization across different types of sound effects
and capable of classifying different ambient sounds.
However, they are not focused on the discrimination
between the two main non-objective classes.

The relevant audio signals do not always easily fit
into one of these two classes. More than one stream
might be layered in a sound effect to characterise the
sound of a single source, i.e. a car sound effect
contains the sound of the tires, the motor, etc. or due
to practical limitations of the recording process, i.e.
the sound effect of a train approaching the station
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might have a background of traffic sound or
conversations in the station.

This nomenclature, ambient sounds and sound
effects, is also not universal. In other contexts, both
may be referred to as sound effects, e.g. [7-9].
Furthermore, researchers tend not to use the term
sound effects and instead refer to the second category
as single source sounds. We will generally adopt this
term throughout the text, to avoid ambiguity.

Besides, we assume that the original label of the file,
given by the engineer who recorded or generated the
sound, can be considered as ground truth.

2 Related work

Previous research on audio signal classification often
made use of frequency-based features for sound
classification [2, 10]. Either single source sounds or
ambients might produce a large variety of
spectrograms since both might have any possible
source (or combination of sources). Therefore,
features such as the Mel Frequency Cepstral
Coefficients (MFCCs) and Mel Spectrograms, which
can be treated as images that capture the frequency
characteristics of the sound signal, result to be
insufficient and misleading for this research [11, 12].

The class definition conflicts explained in the
previous section, reside in the frequency domain, that
is, Mel Spectrograms might help differentiate the
sound of two different types of vehicle and however
might not succeed in categorising if a sound file is a
single source sound or an ambience recording.

Thus, the features to be extracted for the building of
a Machine Learning model capable of this sort of
classification have to be picked-by-hand out of
different libraries and previous studies, as opposed to
the use of the available feature libraries, which are of
valuable and common use in other types of audio
classification problems.

Fortunately, a lot of previous work in audio signal
classification is still a good reference because it
makes use of complementary features that, although
they may not solve classification problems as
standalone features, can be of great importance in this

2 https://bbcsfx.acropolis.org.uk/

study, i.e. the use of Spectral Bandwidth (SB) feature
as a complement of the Spectral Centroid (SC).

In addition, previous research not directly related to
this study has been revised and used in this classifier
[13]. Stereo width features have been extracted from
Brecht De Man et al. [14], an analysis of valuable
features for multitrack music mixtures. Energy-
Entropy (EE) features, often used in speech detection
problems [15], are adapted to help classify our
signals.

Since entropy is a measure of the uncertainty and
disorganisation of a random variable, it can be a good
indicator of the degree of randomness of an ambient
recording in comparison to less random single source
sounds such as alarms and tone like sounds.

Other more common features were also adapted and
implemented in this model. Zero-Crossing Rate
(ZCR) [16] measures the number of times in a given
time interval that the amplitude of the signal crosses
through a 0 value. Ambient recordings and sound
textures are expected to have a fairly constant
distribution of frame zero-crossing rates, as opposed
to single source sounds which will contain periods
with low ZCRs dispersal and periods with high ZCRs
dispersal.

3 Implementation

3.1 Data

The data used for testing and training the model
consisted of two sets of audio samples commonly
used in movie sound postproduction and the original
audio files of a real feature film.

The BBC Sound Library2 includes 16,000 sound files
available for personal, education or research
purposes. The 6000 Sound Effect banks includes
7,500 sound files containing single source sounds and
ambient recordings.

The original film audio files contain professional
sound from the set recordings of the unreleased movie
‘Emperor (2014)’ and around 1,643 Foley effects.
This material was facilitated by Nick Lowe, a
professional sound designer and sound supervisor
who has worked on more than 64 titles.

3https://www.sound-ideas.com
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The data types range between mono, stereo and multi-
channel wave audio files of different lengths. The
original sampling frequency of the files is 48kHz and
they are quantized at 16 or 24 bits (the 6000 Sound
Effect bank was recorded for CD format). All the files
are either single-source sounds or ambient sounds
including indoors and outdoors recordings.

The data preparation and feature extraction processes
have been implemented in Pythona using the Librosas
and pyAudioanalysiss libraries.

All files were trimmed to the length of one minute,
files shorter than one minute are lengthened by zero-
padding. The trimming function is applied with a one-
second offset to avoid short silences at the beginning
of the audio files.

44.1kHz was chosen as sampling frequency since
preserving the high-frequency content of the signals
is key for a correct classification of the audio files.

Only the first two channels of the multi-channel files
were preserved, taking into account that in the field
of cinema, by convention, the first two channels of a
multi-channel file belong to the 1st and 2nd boom
microphones and the remaining channels belong to
radio microphones (lavalier microphones).

L1 normalization is applied once stereo features are
extracted and the files converted down to mono, to
avoid compromising the amplitude differences
between L and R channels in the case of one-sided
panned stereo single source sounds or ambiences.

As mentioned, the ground truth labels (single source
sound or sound texture) were extracted based on the
judgement of the sound engineer responsible for the
recordings (i.e. the file name or folder origin).

3.2 Stereo features

Two stereo measures from studies on music mix
engineering [14] were implemented.

3.21 Left/Right Imbalance

The Left/right imbalance is obtained by calculating
the Root-Mean-Square (RMS) value of each frame of
each channel of the time-series signal. In the L/R
imbalance ratio, denoted L is the total RMS power of

4 https://www.python.org/
5https://librosa.github.io/librosa/

the left channel, denoted R the total RMS results of
the right channel [14].

3.2.2 Side Mid Ratio

The side/mid ratio measure is the relation between the
power of the side-channel and the power of the mid-
channel. The side-channel is the addition of the left
channel and polarity-reversed right channel divided
by the number of channels. The mid-channel is
obtained by calculating the RMS power of the
addition of the left and right signals divided by the
number of channels.

Stereo Features for Single Source Sounds and Ambients
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Figure 1. Stereo features (SMR and LRI) for single-
source (SSS) and ambient sounds scatter plot.

Taking these two features into consideration,
information about the amount of panning of a stereo
recording is obtained [14]. We can also extract
information about how correlated are the Left and
Right signals in each file. For example, the case of a
recording using two microphones set in the same
exterior location but separated by a considerable
distance indicates a low imbalance and a high
side/mid ratio which gives low values for correlation.

Figure 1 shows the distribution of single-source
sounds and ambient recordings based on their stereo
features.

6 https://github.com/tyiannak/pyAudioAnalysis
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3.3 Mono Features
The following mono features were implemented.

3.3.1 Variance of Zero-Crossing Rate (ZCR)

The zero-crossing value extracted is an average of the
variance of the rate of zero-crossings over the total
number of frames of the audio file. Here, the ZCR [2]
was not used as a pitch tracker as usual, since
previous work showed that ZCR is informative as a
stand-alone feature [17, 18].

Ambient recordings and textures have a normal
distribution of frames with lower and higher ZCRs. In
contrast, single-source sounds contain a much more
uneven distribution; distinct periods with a low
number of zero-crossings and periods with a higher
number of zero-crossings [2].

The variance of ZCR is extracted from the audio files
before zero-padding to avoid the bias of analysing
fixed-length files.

The Standard Deviation (SD) measure resulted in
high deviation values for single-source sounds and
low variance values for constant ambient recordings
and textures.

3.3.2 Root Mean-Square Rate (RMS)

RMS [14] levels are obtained by calculating the root-
mean-square value of the amplitude of each frame.
Although ambient recordings are often used as a
background in sound postproduction, i.e. mixed at
low amplitudes, they show higher RMS values than
single-source sounds, the reason for this is the lack of
discernible peaks on the signal. The low dynamic
range of ambient recordings allows them to achieve
large amplitudes after sound normalization. In
contrast, single-source sounds, with higher dynamic
ranges, are not affected as much by normalization
since their peaks reach clipping levels faster (i.e. after
less amplification).

3.3.3 Spectral Features

The spectral features used for this model are the
Spectral Centroid (SC), the Spectral Bandwidth (SB),
the Spectral Flatness (SF) and Spectral Roll-Off [19,
21, 22].
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Figure 2. SC (x-axis) and SB (y-axis) values of
single-source sounds and ambient sounds.

Although either single source sounds or ambient
recordings may show a large diversity of spectral
centroids, ambient recordings have a richer high-
frequency content, which results in higher values for
SC.

In addition, ambient recordings also present higher
values for Spectral Bandwidth in comparison to
single-source sounds. The Spectral Bandwidth (SB)
or Spread is calculated by taking the frequency
difference of each spectrum in relation to the Spectral
Centroid (SC) [19].

The bandwidth of the spectrum is valuable
information for the reason that single source sounds
are often recordings of a single source, consequent
repetitions of the same sound recorded usually in a
silent environment, in contrast, ambient recordings
contain much more components. This fact leads to
lower values of Spectral Bandwidth for single-source
sounds and higher values for ambient recordings or
textures (figure 2).

Spectral Flatness [19] is a measure of the noisiness of
the spectrum. The definition of SF as a measure of
noisiness has its origins in MIR research [20]. In
equation 1, SF is calculated by taking the geometric
mean of the spectrum and dividing the values by its
arithmetic mean.
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Where k is the band number and K the number of
frequency bands and k band number.

In the case of this study, the data (non-speech non-
musical signals) are rarely tone-like, however, the
amount of noisiness is higher for ambient recordings
than for single-source sounds resulting in higher
Spectral Flatness values.

The Spectral Roll-off (0.9) feature, measures the
frequency below which most of the spectral content
of a signal is located. A 0.9 roll-off value indicates
that 90% of the spectral energy is located below the
measured frequency (i.e. this parameter could be set
to 1.0 to find the highest frequency in the spectrum).
This feature was originally used as a transient
detection method in MIR [21] and it is now popularly
used as a discretizer between voiced and unvoiced
speech [22]. In our context, it is another spectral
measure of the high-frequency content of the data.

3.3.4 Energy (E) and Energy Entropy (EE)

This feature calculates the Energy of each frame of a
signal windowed using a rectangular window.
Various studies use entropy-based algorithms in the
field of speech detection [13] [23]. Entropy is defined
as the amount of uncertainty in a random variable.
Energy Entropy is implemented gathering that single
source sounds will have more organized segments
than noisy ambient recordings, resulting in lower
entropy values. Energy Entropy is defined by
equation 3.

x(n)?

E= @)

EE = — ¥(si - logz(sy) 3)

Where s@ are each of the sub-frame energies
normalized by dividing by the total energy (E) of each
frame. The sub-frame energies are obtained by using
equation (2), after a secondary window with shorter
width is applied.

3.3.5 Mean Onset Strength (OS)

The onset strength of a time-domain signal is
obtained by calculating the spectral flux onset
strength envelope. Onsets are the amplitude peaks in
a signal over a defined threshold. The strength of each
onset is measured by taking two consecutive short-
time spectra and calculating the energy difference
between them, bin by bin. Following that, each non-
negative and non-zero difference is added together
[24].

The audio signal is divided into overlapping frames
of 2048 samples, subsequently, the frames are
windowed by a Hann window of the same sample
length. The signal is transformed to the frequency
domain using the Discrete Fourier transform (DFT)
and the spectra are obtained by taking the Log-power
Mel Spectrogram of the signal using, by default, 256
Mel Frequency Bands. The frame reference is a result
of the local maxima filtering along the frequency axis.
The results of these calculations per each frame take
the shape of an onset envelope describing the signal’s
amplitude changes over time. The mean strength of
all the onsets is calculated and added to the feature
data.

Single source sounds have higher strength onsets
since these are recordings of higher amplitude sounds
i.e., impacts, gunshots. The information provided by
this measure differs from the RMS feature for the
reason that only the amplitude of the onsets is
calculated and the amplitude of the inter-onset frames
is ignored.

3.3.6  Number of peaks

The number of detected peaks in each onset strength
envelope is counted. The parameters of the peak
picking function set the rules that define which onsets
are to be declared peaks.

In this model, a peak is detected under the following
two conditions:

If a sample of the onset envelope (x[n]) has a higher
amplitude than its previous 3 samples (x[n-3]) and its
respective 3 consecutive samples (x[n+3]), i.e., every
sample of higher amplitude than its surrounding 6
samples is listed as a peak.

If a sample has higher or equal amplitude than an
amplitude reference value. Where the reference

AES 148th Convention, Online, 2020 June 2-5
Page 5 of 10



Peeters and Reiss

Sound Textures and Atmospheres Versus Single Source Sounds

amplitude is the mean of its previous three samples
(X[n-3]), its consequent 5 samples (x[n+5]) and the
sample in question (x[n]) added to a threshold value
of 0.5 amplitude.

With these parameters, it is possible to detect peaks
in ambient sound files despite its immanent
continuous characteristics. In contrast, slightly fewer
peaks are detected in single-source sounds.

The number of peaks is averaged over the length of
the files to avoid longer signals biasing the results due
to having more peaks.

3.4 Classification Model

A Neural Network was used for classification. The
algorithm decides the most accurate combination of
parameters to increase classification accuracy when
categorising the test data. After the model is trained,
the unseen prediction dataset is given as the input to
the model, now capable of classifying each of its rows
by using labels.

Previous work on automated sound classification
often implements Convolutional Neural Networks
(CNNs) and categorical cross-entropy methods for
multi-class classification [25], Fully Connected
Neural Networks such as 3-layer feed-forward
structures are also effectively used for audio
clustering by using radial basis functions and K-
Means classification [26].

A Fully Connected Neural Network has a simpler
architecture that better fits the binary classification
problem proposed in this study and was therefore
implemented.

3.4.1 Input Layer

For the model to work correctly, each column of the
input data matrix, representing each feature, must be
on a similar scale. To accomplish this, a
standardization function [27] was applied to the
feature vectors. This function removes the mean of
the data and scales it to unit variance (SD=1).

3.4.2 Hidden Layers

The first hidden dense layer contains 128 neurons and
the second layer 64 neurons. The weights in this

7https://arxiv.org/abs/1803.08375.pdf
8 https://github.com/fchollet/keras

model are initialized using the Glorot Uniform
initializer developed by Xavier Glorot [28]. The
activation functions used in this model are Rectified
Linear Activation Units (ReLU)7.

3.4.3 Output Layers

The output layer’s activation function is the Softmax
Activations[29], capable of outputting a tensor with a
softmax classification. Softmax classification
calculates the probabilities of a single event over the
rest of possible events causing all the probabilities in
the sample space to add to 1.

3.4.4  Optimization

The predictions obtained during the forward-pass are
compared to the actual classes using a loss function.
The log-loss is calculated by the binary cross-entropy
function. It outputs higher loss values as the predicted
probability diverges from the actual label.

During backward propagation of errors, the weights
are updated using the stochastic gradient descent
algorithm (SGD), which iteratively optimizes the
error by finding its minimum.

3.4.5 Regularization

A Dropout (0.2) layer is located between the two
hidden layers. Dropout layers are regularization
methods, used to stop the model from overfitting.

The probability dropouts caused by this layer, result
in alterations in the architecture of the network due to
the changes in the responsibilities of all the ‘non-
dropped-out’ neurons, which are forced to maintain
the unit probability space. In our case, the probability
of 2 out of 10 inputs will be set to 0 (probability rate
=0.2).
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Act. Act. #

Shape Size | Parameters
Input (12, 1) 12 0
Dense (relu) (None, 128) | 128 1664
Dropout 0.29 | (None, 128) - 0
Dense (relu) (None, 64) 64 16512
Dense (softmax) (None, 2) 2 258

Table 1. The architecture of the model: Layers,
activation outputs, size of the activations and
number of learnable parameters.

4 Evaluation

Different variations of the model, related to the
training data balance, features and parametrization
(such as learning rate, number of layers,
regularization) have been tested during the design
process of the classifier. The results and performance
of the model were compared using common
evaluation metrics in the field of audio classification.

4.1 Evaluation Metrics

The classifier splits the data into two classes, single-
source sounds (label 0) and ambient sounds (label 1).
Thus, true negatives are all the correctly predicted
single sound sounds, and true positives are the
correctly predicted ambient sounds. The term False
positives refers to the predicted ambient recordings
that are actually labelled as single source sounds and
false negatives refers to the predicted single sound
sounds labelled as ambient recordings.

Accuracy refers to the percentage of correct answers.
Namely, the ratio of true positives and true negatives
over all the predicted data.

Recall or True Positive Rate (TPR) refers to the
sensitivity of the model, the number of correctly
identified ambient recordings (TP) over the total
actual ambient recordings in the dataset, it is defined
by the expression, TPR = TP / (TP + FN).

Specificity or True Negative Rate (TNR) defines the
number of correctly predicted single sound sounds
(TN) over the number of actual single sound sounds
files: TNR =TN/ (FP + TN).

The Precision of the model is the number of correctly
identified ambient recordings (TP) over the number

of identified ambient recordings, it is calculated by
TP/ (TP + FP).

The False Positive Rate (FPR) or Type | Error is the
number of incorrectly predicted ambient recordings
(FP) over the total number of actual single sound
sounds, FP / (FP + TN).

Finally, the False Negative Rate (FNR) or Type Il
Error refers to the number of wrongly identified
single sound sounds (FN) over the total number of
actual true ambient recordings, FNR = FN /
(FN+TP).

4.2 Results

The results shown in this section have been replicated
by shuffling the data, training the model and making
new predictions from scratch. The optimisation for
the gradient descent is set to a learning rate of 0.01
and the batch size of the model is set to 32. The length
of the training data was 1000 samples (audio files)
divided into 500 single source sounds and 500
ambient recordings. Using a batch of 32 samples
means dividing the dataset into 31 batches; as a result,
each epoch will update the weights of the model 31
times. Table 2 shows the results where 500 epochs
were set for the training process.

Precision | Recall | fl-score |Support
SSS 0.83 0.89 0.86 175
Ambient 0.86 0.80 0.83 158
Micro | g5 | 085 | 085 333
average
Macro | o5 | 084 | 085 333
average
Weighted | 05 | g5 | 085 333
average
Confusion  Matrix
155 20
31 127

Table 2. Precision, recall, f1-Score and Confusion
Matrix for Model 1.
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The accuracy of this model is 84.68%: 282 files were
correctly found amongst all the predicted files (333
files). These 333 files are divided into 158 ambient
recordings and 175 single source sounds.

The Fl1-score and the recall measure were slightly
higher for single-source sounds, whereas ambient
recordings showed higher values for the precision
measure.

ROC Curve
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Figure 3. ROC AUC curve showing the
performance of the classifier.

ROC AUC curves, shown in figure 3, represent the
performance curve of the model at different
probability thresholds. This does not take into
consideration the prior of probabilities inherent on an
imbalanced dataset. However, in this analysis there is
only imbalance of prediction data. The train and test
data used are exactly balanced about classes. The
ROC AUC value is 0.912, the size of the area below
the blue line represents how well the model can
separate the two classes.

Simpler network structures were attempted by
deleting hidden layers from the network and by
deleting the less important features. In addition,
attempts to avoid overfitting, such as adding more
dropout layers, decreasing the gradient descent
learning rate and decreasing the Batch Size did not
improve the performance of the model in any aspect.

5 Discussion

Though the number of epochs chosen for the Model
was 500, each training process was first attempted
using the early-stop technique. This method stops the
process once the decrease of the loss values,
calculated by the loss function, becomes stable. It
avoids overtraining since it stops the model once it
stops learning. The results using early-stop did not
alter the performance of the model and, therefore, the
default number of epochs is set to 500.

Starting from a simple model with a structure of only
1 hidden dense layer, formed by 24 nodes, and 1
dense output layer of 2 nodes, the classifier was
gradually improved by adding deeper layers capable
of better understanding the data and improving its
performance. These intermediate models have not
been described in the evaluation section since they are
all considered drafts of the presented model.

Figure 4, shows the PRC (Prediction-Recall curve) of
the Model. It gives a more accurate insight on the
performance of the model, taking into account that
there is a slight class imbalance of prediction data.
Namely, PRC plots compensate for the previous
probabilities of each class by not taking the True
Negative Rate (or specificity) into account. However,
both PRC and ROC graphs show a similar response
of the Model. Thus, the imbalance of the prediction
data is not biasing the results of the classifier.

SFX - Ambient Precision-Recall curve: AP = 0.90
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Figure 4. Prediction Recall curve of the Single
Source Sound/Ambient Sound classifier.
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6 Summary and further work

We proposed a model for the categorisation of audio
files into two classes, ambient recordings and single-
source sounds, based on analysis of signal features.
The features were picked by hand, from previous
research in sound classification. Some of the features
performed successfully without further adaptation,
though many were adapted since they had not been
implemented before in the context of this type of non-
objective class categorization.

A Fully Connected Neural Network capable of
interpreting the features was designed. It departed
from a simple structure by adding more layers and
parameters to its architecture without losing sight of
different evaluation metrics. Once the performance of
the model stopped to improve in relation to its
complexity, other techniques such as regularisation
and elimination of features were explored.

The resulting model outperformed the rest of
implementations on the classification task with an
accuracy of 84.68% and an f1 score of 0.83. These
evaluations are positive and the results should be
replicated using larger datasets.

The recording techniques of each sound engineer and
the type of microphones used, affect the
characteristics of the recordings. So, though the
training, test and prediction materials were extracted
from three different sources, more evaluations of the
model should be done using data from other films and
different sound banks.

Further work could be done in exploring the
categorisation of other types of cinema sound files
such as categorising the audio files by location or in
the case of speech audio files by speaker (or actor).
Together, these classifiers could result in a more
intelligent sound classifier capable of organizing all
the pre-processed sound material of a feature film or
videogame.

Another application to be explored is using the model
for sound segmentation. This would help extract
ambient tracks out of long clips recorded on a film,
i.e. segments within the moments of speech in the
recording of a scene. These extracts could be useful
tools for solving continuity problems caused by the
image editing of a film.
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