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Abstract

By processing audio signals in the time-domain with randomly weighted temporal
convolutional networks (TCNs), we uncover a wide range of novel, yet controllable
overdrive effects. We discover that architectural aspects, such as the depth of
the network, the kernel size, the number of channels, the activation function, as
well as the weight initialization, all have a clear impact on the sonic character
of the resultant effect, without the need for training. In practice, these effects
range from conventional overdrive and distortion, to more extreme effects, as the
receptive field grows, similar to a fusion of distortion, equalization, delay, and
reverb. To enable use by musicians and producers, we provide a real-time plugin
implementation. This allows users to dynamically design networks, listening to the
results in real-time. We provide a demonstration and code at https://ronn.ml.

1 Introduction

Throughout the history of audio technology, engineers, circuit designers, and particularly guitarists,
have searched for novel sonic effects as a result of clipping or distorting audio signals. These
distortion effects were first discovered by pushing early guitar amplifiers beyond their operating
range, or, in some cases, from the accidental damage to amplifiers or speakers [13]. These pursuits
are a clear example of creators taking advantage of the limitations of their tools for creative effect.
Distortion effects have permeated many genres such as blues, jazz, rock, and metal, and also play a
central role in modern pop and hip-hop styles. Whether it be vacuum tubes, diodes, integrated circuits,
or software-based digital models, it appears as if nearly all the methods of generating distortion-based
effects have been exhausted. We claim this may not be the case, as we will examine the potential of
neural networks for audio signal processing to generate a new class of distortion-based effects.

Neural networks are far from new. In fact, they arose in the same era that blues guitarists began
their experiments with distortion [11]. Yet, only more recently, following the emergence of modern
deep learning approaches, have neural networks become feasible for audio signal processing [10].
Interestingly, these methods have shown to be successful in emulating the characteristics of amplifiers
and distortion effects [12, 14, 2, 6]. While these approaches have been successful in the emulation
task, our aim deviates from these virtual analog effect modeling approaches. In a similar spirit to
the guitarists who used their amplifiers in a fashion unintended by the original designer, we propose
the apparent abuse of neural networks. By utilizing randomly initialized networks as complex signal
processing devices, we aim to distort, transform, and warp audio signals for creative effect.

2 Method

2.1 Architecture

We select a convolutional architecture as it provides a parameter efficient method for processing
arbitrary length sequences. From the perspective of audio signal processing, it can be considered a
series of filters and nonlinear waveshapers. The temporal convolutional network (TCN) formalizes
the application of convolutional models operating on 1-dimensional sequences, and outlines a set
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of design choices ideal for various sequence modeling tasks [1]. Causal convolutions are a core
component of this formulation, in which outputs are predicted considering only past values, so
information from the future does not "leak" into current predictions. Additionally, these networks are
generally built to be fully convolutional, so they can process input signals of arbitrary length, and
will produce an output signal with length proportional to the input length [5].

With standard causal convolutions the receptive field grows linearly as the depth of the network
increases. This makes it challenging to achieve models that are able to consider larger time contexts.
To address this, the TCN incorporates dilated convolutions, which inserts zeros within the taps of the
convolutional kernels, effectively increasing the size of the kernel without additional computation [8].
To increase the receptive field more rapidly, an exponentially increasing dilation factor is generally
applied at each layer in the network. We omit residual connections since they are generally used at
each layer to stabilize gradient flow, and we do not aim to train these networks [3]. This simplifies
the overall architecture, which can then be viewed as a series connection of blocks containing
1-dimensional convolutions followed by a nonlinear activation, as shown in Figure 2.

2.2 Implementation

For the real-time implementation, ronn, we utilize the JUCE framework1, which enables us to create
a VST/AU plugin for use in popular digital audio workstations (DAWs). In order to construct the
TCN models, we utilize PyTorch [9], which features a C++ API. This enabled us to develop our own
parameterized neural network module class that can be instantiated within the main JUCE plugin. By
connecting this class with the user interface, the on-screen controls, as shown in Figure 1, can be
used to dynamically construct new networks, all in a paradigm that allows for real-time interaction.

A challenge arises since these models are fully convolutional, yet the plugin requires that all processing
occur on a block-by-block basis. To address this, we construct a look-back buffer large enough so
that the output sequence matches the length of the input block, as demonstrated in Figure 2. In
practice, we found this approach produces no perceivable discontinuities at the frame boundaries. As
expected, as the size of the receptive field increases, the computational load increases, causing the
plugin to perform in less than real-time. We introduce the ability to swap traditional convolutions
with depthwise convolutions [4], which reduce the computational overhead by convolving K filters
with a single channel each. Using this approach, we were able to run models with larger receptive
field, up to 4 seconds, in real-time on the CPU, making a wider range of effects achievable on general
purpose hardware utilized by musicians and producers.

Using only a few layers, we achieve subtle to heavy distortion effects similar to traditional approaches,
but by stacking more layers and expanding the kernel size, delay-like effects emerge. Using even
larger receptive fields produces extreme temporal smearing, similar to reverberation. Adjusting the
shape of the nonlinearities also has a significant effect on the timbre of the distortion produced. We
found that sigmoid activations often produced very harsh and gritty results, while ReLU activations [7]
produced fuzz-like effects. Depending on the depth of the network, we found the weight initialization
scheme also impacts the timbre of distortion. Since the TCN can produce any number of output
channels, we can generate a stereo output signal, given only a mono input signal. This also enables
cross-channel interactions for stereo inputs. We found that these configurations often produced
interesting spatialized results. Finally, a global seed control enables effect recallability and presets.

3 Discussion

We propose the use of randomly weighted TCNs as complex, time-domain audio signal processing
devices. We find that adjusting various architectural aspects results in the ability to generate a wide
range of compelling sonic effects. This presents a new paradigm for designing audio effects. Instead
of adjusting the controls of traditional processors, users can explore a wider space of effects by
adjusting the architecture of a neural network. While deep networks pose a challenge for real-time
implementation due to significant compute overhead, we overcome this with some careful design
choices. With a simplified interface, musicians and producers without machine learning experience
can easily take advantage of these effects. While we have only investigated feedforward architectures,
it reasons that we could achieve a wider range of effects with the addition of recurrent pathways.

1https://github.com/juce-framework/JUCE
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Broader Impact

In this work, we applied existing neural network approaches for processing audio signals in a creative
context. Since we did not utilize any training data in this process, there is a relatively low risk
of bias arising here. Potential biases in the processing of signals may arise from the randomized
network weights, which are sampled from various common distributions. Any current biases reflect
the underlying characteristics of these generated effects. Future work could investigate potential
biases in different weight initialization schemes used when processing different sources.
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Supplementary materials

Figure 1: The real-time plugin user interface featuring a series of sliders and selection boxes, enabling
users to dynamically construct various temporal convolutional network (TCN) architectures while
listening to the results. When the user adjusts any of the on-screen controls, a callback will run,
constructing a neural network with the new architectural design. On the bottom right, indicators show
the receptive field in milliseconds, the number of parameters in the network, and the global seed.
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Figure 2: Block diagram outlining the block-based processing as well as a 3-layer network in a
stereo input-output configuration. Each block within the network consists only of a 1-dimensional
convolution followed by an activation function, where c is the number of output channels, k is the
kernel size, and d is the dilation growth factor. The look-back buffer is shown at the top, which
consists of N samples from the current input block, concatenated with M past input samples. The
number of stored past samples M is a function of the receptive field of the TCN, shown in the dotted
box, and the block size N . M is selected such that the entire buffer of size M +N will produce an
output of N samples. Recall that since padding is not used, the output of each convolutional block
will be smaller than the input. When the receptive field is quite large, producing the output block (e.g.
≈ 10 ms) may require processing multiple seconds of audio.
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