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ABSTRACT

We investigate listener preference in multitrack music production using the Mix Evaluation Dataset, comprised of
184 mixes across 19 songs. Features are extracted from verses and choruses of stereo mixdowns. Each observation
is associated with an average listener preference rating and standard deviation of preference ratings. Principal
component analysis is performed to analyze how mixes vary within the feature space. We demonstrate that
virtually no correlation is found between the embedded features and either average preference or standard deviation
of preference. We instead propose using principal component projections as a semantic embedding space by
associating each observation with listener comments from the Mix Evaluation Dataset. Initial results disagree with
simple descriptions such as “width” or “loudness” for principal component axes.

Introduction

Though often overlooked by a lay audience, the mix
engineer is a crucial player in executing a musician’s
vision [1]. A mixing engineer is expected to maintain
expert knowledge of how to apply digital processing
to audio, utilize equipment in a studio, treat sonic ele-
ments in a song so that each stand out, and countless
other things. However, the advent of cheap comput-
ing and the digital audio workstation (DAW) has given
amateur musicians and mixers access to many of the
tools and workflows professionals use, with little to
no guidance [2]. There is a clear and present need to
provide tools to these mixers that can help them mix
more professionally.
The first step in helping guide amateur mixers requires
a model of professional mixing behaviour. The ques-
tion remains, though, of how to model this behaviour.
Over the past decade much research has been published

to address portions of this quandry, such as interroga-
tions of mixing “best practices and common sense.” For
example, [3] demonstrates that suggestions in mixing
literature often conflict with the practice of professional
mixers. Another algorithm, presented in [4], uses least-
squares optimization techniques that can estimate pro-
cessing such as panning position and gain envelopes to
reverse-engineer how a track was mixed.
Furthermore, much work has been published on algo-
rithms for autonomous and assistive mixing [5]. These
include black box algorithms for tonal balance enhance-
ment [6], algorithms to properly group and panning
percussive stems of a song [7], and plugins that aid
users by providing a map of semantic descriptors to
effect settings [8]. These approaches do not attempt
to model the whole mixing process, however, and thus
do not lend themselves to complete characterization of
mixing behaviour.
One approach attempts to answer this behaviour mod-
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elling question by using feature extraction from mix-
downs, and subsequently characterizing the dimenions
of a Principal Component Analysis (PCA) [9] (based
on previous work [10]). This analysis uses a combined
1501 mixes of 10 songs from the Cambridge Multi-
tracks, performing feature extraction on 30 seconds of
each mix’s chorus. The scraped data was somewhat in-
consistent, however. Mixers uploaded their work with
varying audio quality, and the choruses were not guar-
anteed to be the same length or use the same stems
across mixes. Furthermore, the semantic descriptors
provided by the authors of the principal component
axes were based on a cursory reading of the PCA axis
loadings, and not in a more grounded methodology.
Finally, [9] established no framework for evaluating
listener preference.
The work presented here couples the feature extraction
and PCA of [9] with a standardized mixing dataset that
contains text data evaluating each mix in the dataset.
Furthermore, listener preference ratings were collected
for each mix. Results disagree with two of [9]’s as-
sertions: that preference for a mix can be correlated
with PCA embeddings, and that principal component
axes describe aspects of a mix such as “balance” and
“loudness.”

Methods

Dataset and Feature Extraction

The Mix Evaluation Dataset (MED) is comprised of
192 mixes, and approximately 5000 evaluations of
these mixes [11]. A total of 19 songs were mixed by
various university groups globally. Each group was
presented with the same set of stems for each song,
and were instructed not to alter the stems beyond level,
panning, and effects processing. This ensured that
each mix of a given song contained the same content,
and only varied in mixing style. Participants were then
asked to rate their preference for, and comment on,
each mix.
In contrasat to [9] and [10], where features were
extracted only from a chorus of each mix, this analysis
extracts 33 features from each verse and chorus in the
MED. This is done to capture the differences that may
occur between a verse and chorus, such as loudness or
additional instrumentation, and adds an extra richness
to the dataset. Thus a total of 384 observations were
generated for principal component analysis. The
features can be divided into roughly four groups,

measuring the spectral characterstics, sub-band flux,
loudness, and probability mass function (PMF) of the
signal. The PMF is calculated by taking a histogram of
the values a signal takes and normalizing. Statistical
measures of this distribution are taken and can be used
to characterize the distortion profile of a mix [12]. A
full accounting of each feature can be found in Table 1.

Each mix was rendered as a 192kbps mp3 with

Table 1: List of extracted features.

Feature Name Reference
Crest Factor 100ms & 1s -

Sub-Band Flux 0-9 [13]
EBU R128 Loudness Measures [14]

PMF Kurtosis [12]
PMF Skew [12]

PMF Centroid [12]
PMF Spread [12]

Spectral Kurtosis [15]
Spectral Skew [15]

Spectral Centroid [15]
Spectral Spread [15]
Spectral Entropy [15]

Spectral Rolloff 85% & 95% [15]
Stereo Panning Spectrum 0-3 [15]

L/R Balance [16]
Side-Mid Ratio [16]

48kHz sampling rate. Each verse and chorus was
downsampled to 44.1kHz for processing. All audio
loading and processing was handled by the Essentia
library in Python [15]. Principal component analysis
was performed on these 384 observations using the
sklearn library in Python [17].

Principal Component Analysis

Figures 1 and 2 show how the features load the first
three axes of the principal component analysis. These
first three principal components explain a total of 62.7%
of the data’s variance (24.3%, 23.0%, and 15.4% re-
sepctively). Their singular values are 1.04, 1.01, and
0.83 respectively. Three components (rather than the
four proposed in [9]) were chosen for visualization pur-
poses.
Of note in this analysis is how the feature loadings dif-
fer from [9], specifically how the PMF related features
dominate the first principal component. This suggests
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that the PMF features account for much of the variation
in the MED. The authors suspect that these features
dominate because the MED includes genres such as
jazz and folk alongside rock music, whereas the dataset
used in [9] drew only from rock, punk, and metal music.
Distortion and fuzz effects are expected to be found in
punk and metal mixes, but not necessarily expected in
a jazz arrangement with piano and string accompani-
ment. This would mean that values such as PMF skew
or kurtosis would be more varied across the MED than
in [9]’s dataset, as distortion would be less uniformly
applied across the songs of the MED. These results
support the notion that PMF related features are key
to characterizing mixing behaviour, especially when
considering what techniques are applied across genres.

Fig. 1: Feature loadings on the first and second prin-
cipal component axes. PMF features strongly
load the first axis, and spectral features strongly
load the second axis.

Preference Rating and Listener Agreement

Listeners who took part in the creation of the MED
commented on each mix as well as assigning each mix
a preference rating from 0 to 1, with 0 indicating a
mix they disliked, and 1 indicating a mix they liked
very much. Thus for each observation mentioned in
Section 2.1, an average preference rating and standard
deviation of preference rating is assigned. The aver-
age rating describes some notion of how “good” a mix

Fig. 2: Feature loadings on the first and third principal
component axes. Stereo features strongly load
the third axis.

is, and the standard deviation of preference rating de-
scribes whether listeners agreed or disagreed in their
assessment (distinct from whether a mix is “good” or
“bad”).

Results

Linear correlations were separately calculated between
the values observations took in each prinicpal compo-
nent and both average listener preference and standard
deviation of preference. Furthermore, correlations were
calculated for the square value in each principal compo-
nent and both average listener preference and standard
deviation of preference. Finally, a linear correlation
was calculated between the radius of each observation
from the origin of the PCA embedding space and both
average listener preference and standard deviation of
preference. Results are shown in in Tables 2 and 3.

Discussion

The results of the embedding and correlations show
that no clear relationship can be found between a PCA
embedding and listener preference or agreement. In all
cases, the linear regression chooses an intercept close
to the average of preference ratings or standard devi-
ation of preference and applies a small slope to the
independent variable. No R2 value is greater than 4%.
These results disagree with the assessment that “we see
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Fig. 3: Average listener preference for each mix. Results plotted in the first two principal component axes.

Table 2: Linear correlation results for average listener
preference.

Dimension Slope Intercept R2

PC1 0.00915 0.469 1.27×10−5

PC2 -0.0406 0.469 2.26×10−4

PC3 0.0903 0.469 7.62×10−4

PC12 -1.85 0.475 1.44×10−2

PC22 0.0246 0.469 8.07×10−7

PC32 0.0498 0.469 1.56×10−5

Radius -0.00684 0.470 6.95×10−6

that many higher-quality mixes are located in certain
areas of the space [and an] intelligent/automated mix-
ing system could achieve good mixes by “steering” the
mix towards these regions ” made in [10]. Nor do these
results agree with the notion that listener preference
would increase with mixes that hit a “sweet spot” in the
middle of principal component axes that describe spec-
tral characteristics or loudness. Were higher-quality
mixes located centrally within a PCA embedding, one
would expect stronger correlations with squared prinici-

Table 3: Linear correlation results for standard devia-
tion of listener preference.

Dimension Slope Intercept R2

PC1 -0.123 0.197 2.80×10−2

PC2 0.146 0.197 3.56×10−2

PC3 0.0212 0.197 5.11×10−4

PC12 -0.320 0.198 5.23×10−3

PC22 -0.389 0.198 2.46×10−3

PC32 -0.143 0.197 1.55×10−3

Radius -0.0391 0.199 2.765×10−3

ple component value or radius and average listener pref-
erence. Moreover, the lack of correlation with standard
deviation of listener preference could suggest that the
quality of mixes that strike a balance within the feature
space is not agreed upon.
To understand how these principal components relate
to perceptual descriptions, the outliers on each axis
were cross-referenced with comments made by evalu-
ators in the MED. Mixer DU-J, who took the largest
positive value (0.382) in the third principal compo-
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Fig. 4: Standard deviation of listener preference for each mix. Results plotted in the first two principal component
axes.

nent, received many complaints about the imbalance
in its stereo image. Comments included “it feels like
everything comes from the right side” and “felt very
right-heavy”. This aligns with the stereo feature load-
ing on the third principal component. However, mixer
DU-K, who took a small negative value (−0.020) in
the third principal component, also received complaints
regarding panning such as “there must have been some
kind of mistake during mixdown [...] the kick is fully
panned to the left”.
While an outlier analysis may reinforce the notion that
this principal component analysis can isolate character-
istics of a mixdown on each axis, i.e. the stereo image
balance maps to the third axis, the full interaction is
much more complicated. The weighted summing of
33 features is inherently complex, and while a feature
like L/R balance in isolation could point towards ex-
treme panning, the projection to the third axis could
be overpowered by features such as EBU Loudness or
pmf spread.
Similar explorations of where catch-all terms in the
MED are embedded yield similarly complicated re-

sults, though a full treatment is outside the scope of
this paper. With the current feature set, the PCA embed-
ding concentrates the majority of observations about
the origin, making sub-space partitions according to
semantic descriptors difficult. Future explorations of
this dataset may explicitly consider genre in conjuc-
tion with the feature set, or model a specific listener or
university group’s preferences.

Summary

Principal component analysis was performed on the
Mix Evaluation dataset, comprising of 184 mixes
across 19 multitrack songs to interrogate listener pref-
erence and agreement. 33 features were extracted sepa-
rately from a verse and chorus for each mix, and pro-
jected into a three dimensional principal component
embedding space. No strong correlations were found
within the PCA embedding space and either average
listener preference for a mix or standard deviation of
listener preference for a mix. This disagrees with some
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claims made in previous studies that suggested cer-
tain regions within a PCA embedding contain more
highly preferred, or at least agreeable, mixes. Fur-
thermore, text comments made by participants in the
MED disagree with previous studies’ interpretations of
the principal component analysis. Results presented
here suggest that the complex nature of loading 33 fea-
tures onto a single axis prevents PCA axes from fully
characterizing distinct aspects of a mix a listener can
distinguish.
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