AUDIO Audio Engineering Society

‘% Convention Paper 10184

® Presented at the 146" Convention
2019 March 20 — 23, Dublin, Ireland

This paper was peer-reviewed as a complete manuscript for presentation at this convention. This paper is available in the AES
E-Library (http://www.aes.org/e-lib) all rights reserved. Reproduction of this paper, or any portion thereof, is not permitted
without direct permission from the Journal of the Audio Engineering Society.

Real-time synthesis of sound effects caused by the
interaction between two solids
Pedro Sanchez! and Joshua D. Reiss!

YQueen Mary University of London

Correspondence should be addressed to Joshua D. Reiss (joshua.reiss@gmul.ac.uk)

ABSTRACT

We present the implementation of two sound effect synthesis engines that work in a web environment. These are
physically driven models that recreate the sonic behaviour of friction and impact interactions. The models are
integrated into an online project aimed at providing users with browser-based sound effect synthesis tools that can
be controlled in real time. This is achieved thanks to a physical modelling approach and existing web tools like
the Web Audio API. A modular architecture was followed, making the code versatile and easy to reuse, which
encourages the development of higher-level models based on the existing ones, as well as similar models based on
the same principles. The final implementations present satisfactory performance results despite some minor issues.

1 Introduction

Research advances have started to make the synthesis
of sound effects a viable alternative to Foley and sam-
ple libraries. In the last couple of decades, physical
modeling engines have become relevant in the study
of sound [1]. This type of synthesis provides natu-
ral dynamics and relevant controls that help: studying
aspects like expressiveness in human-driven acoustic
phenomena [2] (which includes music); building au-
ditory based interactive systems, in which real-time,
precise feedback is required [3], and studying sound
perception from a more ecological perspective that de-
viates from classical, signal-processing-based studies
[4]. On the other hand, books like Designing sound
[5] and tools like Pd! or Max/MSP?, are encouraging
sound designers to explore and interpret the mechanics
of sound generation, and build their own sound effect

'Pd website: puredata.info/
2Max/MSP website: cycling74.com/

synthesizers. This leads to the development of com-
putationally efficient synthesis engines, that follow an
approach to sound generation more suitable for the cre-
ation of sound effects than the ones used by traditional
synthesizers.

An important part of research in sound synthesis nowa-
days consists on creating sound effect synthesis models
that work in real time. These models would allow
sound designers to work by directly controlling the
synthesizer to make it fit the visuals, rather than try-
ing to find a previously recorded sound or recording
it from real sources. This eliminates the need of ex-
pensive equipment and sound libraries, as well as the
process of searching through thousands of individual
recordings. Moreover, such engines can be adapted
for videogames so that they can be controlled by the
game interactions (just like in any other interactive ap-
plication). This allows using a few synthesis models
to create thousands of sounds that interact in real time



Sanchez and Reiss

Synthesis of Solid-Solid Interactions

with the user, instead of using thousands of samples
that take large amounts of storage and must be modi-
fied to provide effective interaction. Implementations
of this can already be seen in Rockstar’s Grand Theft
Auto videogame® and the FXive website®.

This work involves development of a synthesis model
of sound effects produced by the interaction between
solids. The intention is to create a synthesis engine
that works in real time, responds to live user input and
provides a realistic sound. To achieve this, the imple-
mentation will follow the design of the Sound Design
Toolkit (SDT) [6], a library of physics-based models
that share some of the same requirements as this project.
At the same time, the target is to achieve a convincing
rather than accurate sound reproduction. Consequently,
the design of the model will use simplification of the
physics mechanisms in order to: develop more efficient
algorithms, and obtain “cartoonification”, i.e., an exag-
gerated effect that might end giving a more convincing
result (despite being inaccurate). Ultimately, the aim
of this work is to include the model in FXive [7], a
website storing over 40 procedural sound effect models.
Consequently, to be able to use it as a web tool and
fit the standards of the mentioned website, the model
will be developed in JavaScript, making use of the Web
Audio API, intended to facilitate the creation of audio
applications for the web. Therefore, this project intends
to contribute in this area of research, to provide realis-
tic, precise and useful tools for sound designers, that
will help them focus on the creative aspects of their
crafts (i.e., composing soundscapes and effects) rather
than getting lost on the technical apects.

This paper is organised as follows. Section 2 describes
the frameworks used for constructing the real-time web-
based synthesis of solid-solid interaction sounds. Sec-
tion 3 goes into detail on the modeling method, consol-
idating and formalising the approach from [1, 6]. First,
modal synthesis is presented. Then, solid-solid inter-
action is described. This consists of formalising the
sound production mechanism of a modal resonator, and
then showing how this is implemented for both friction
and impact interactions. Section 4 shows how the the-
ory of section 3 is constructed into a synthesis model
and implemented in real-time with the web audio APL
Section 5 then provides results, including comparison
against related implementations especially in regards

3www . youtube . com/wat ch?v=L4GuM15Q0FE
4fxive.com/\#home

to control parameters, and performance in emulating
interaction scenarios from recorded samples, namely a
creaking door and rubbing a wine glass. Finally, section
6 summarises and discusses the work.

2 Frameworks

The models designed throughout this project came from
the Sound Design Toolkit and were reimplemented to
fit the requirements of FXive. This section introduces
both frameworks, in order to provide some familiarity
with concepts used throughout the rest of the article.

2.1 Sound Design Toolkit

The Sound Design Toolkit is an open source software
package that provides a virtual library of sound effects
synth engines [6]. The aim of this toolkit is to develop
a set of physics-based models that can be used in re-
search and education in the field of Sound Interaction
Design. The developed algorithms are computationally
affordable for real-time applications and facilitate the
interaction of sound models with physical objects. The
implementations aim for auditory perceptual relevance,
simplification of the underlying physics, i.e. cartoonifi-
cation, and natural and expressive parametric temporal
control [6].

The Sound Design Toolkit is organised according to
a hierarchy that goes from low-level sound events
to more complex and compound processes. At the
same time, most models follow a modular structure
of resonator-interactor-resonator (more in Section 4.2),
that represents the interaction between two objects. The
friction, impact and rolling models that are presented
in this work follow the implementation included in the
Sound Design Toolkit, turning them from Max/MSP
patches into JavaScript. At the same time, the inner
structure of the model (i.e., the resonator-interactor
model) has been kept, in order to facilitate the imple-
mentation of other low level or friction/impact-derived
(e.g., braking) models.

2.2 FXive

FXive is an online hub that stores several sound ef-
fect synthesis engines designed to be used from the
browser. This project intends to create a framework
that allows users to create a wide range of sound ef-
fects (impact sounds, harmonic sounds, sound textures,

AES 146t Convention, Dublin, Ireland, 2019 March 20 — 23
Page 2 of 10



Sanchez and Reiss

Synthesis of Solid-Solid Interactions

soundscapes...) from scratch. Apart from the men-
tioned sound effect models, it also includes audio pro-
cessing effects and spatialisation functionality, enabling
post-processing of the synthesized sounds. The models
in this site work in real time and provide high-level
controls, contributing to an intuitive and simple manip-
ulation [7].

In order for these engines to work on the web, imple-
mentation is done in JavaScript using the functions
provided by the Web Audio API [8], the NexusUI API
[9] for UI elements and the JSAP [10] plugin standard
to encapsulate each model.

3 Theoretical Models

Physical modeling aims at reproducing the physical
mechanisms of sound production, using models that de-
scribe the mechanical and acoustical behaviour of the
sound sources. The power of this kind of synthesis is
its ability to model the coupled behaviour of an exciter
(i.e., the object that causes vibration) and a resonator
(i.e., the body of the instrument or object that responds
to the excitation), that recreates the complexity and
nuances of real sounds, while keeping a direct corre-
spondence between software processes and physical
components.

Generally speaking, physical approaches attempt to
model the propagation and resonances of sound by
using delays and filters, which usually derive in high
computational cost, potential instability and memory
use for delay buffers. Consequently, for real time appli-
cations, algorithms that are not fully physically based,
like modal synthesis, might be considered. This sec-
tion gives a brief overview of the theoretical principals
behind modal synthesis, explaining how it is applied to
solid-solid interactions,and specifying the differences
between impact and friction interactions.

3.1 Modal Synthesis Theory

Modal synthesis theory assumes that a vibrating ob-
ject can be described by its normal modes of vibration,
each of them causing oscillation at a particular fre-
quency [1]. Consequently, an approach to synthesizing
the sound coming from solid objects is modeling their
resonant frequencies as a bank of physically based os-
cillators, that are excited by an external stimulus. This
model is physically well motivated for two main rea-
sons: the differential equations for a vibrating system

(given appropriate boundary conditions) have a sum of
exponentially decaying sinusoids as a solution (which
is the behaviour of a bank of mechanical oscillators),
and the synthesizer is driven by the contact forces (i.e.,
it responds to physically based inputs), assuming that
the sound producing phenomena are linear. Moreover,
a modal resonator bank can be efficiently computed

[11].
3.2 Solid-Solid Interactions

3.2.1 Modal Resonators

The building block of the modal resonator is the driven
harmonic oscillator, which models the motion of a mass
attached to a spring and a damper, and is defined by the
equation

F,
it gitopr= "%, (1)

where x represents the position of the mass or displace-
ment, x and X, respectively, the first and second deriva-
tives of x with respect to time, k the stiffness of the
spring, @y the centre frequency of the oscillation, m the
mass and g the damping coefficient. A modal resonator
is represented by a bank of N oscillators, that is, a sys-
tem of N equations like the one described in (1). Fpy
is the external force on the oscillator, defined as the
sum of the force applied by the user and the interaction
force f, described in Sections 3.2.2 and 3.2.3. The
oscillator displacement x at each discrete time instant n
is defined by the difference equation

x[n+ 1] = b1 Fy5c — a1x[n] — ax[n—1], 2)

where F,. is the internal force of the resonator at in-
stant n, obtained as the sum of the external and oscilla-
tor’s forces. The coefficients by, a; and a, are defined
as

Te 85
by =( jna)o )sin(anTy), 3)
a; = —267”’Tscos(a)oTs)7 4
a=e 0, 5)

where T is the sampling rate, and they are obtained
by the Impulse Invariance Method applied to the
continuous-time function of the oscillator.

The vibration of the surface at a specific point is calcu-
lated as a weighted sum of the displacements calculated
in (2) for each oscillator in the resonator. The equation
of the displacement of the surface of the resonator at a
point j is

AES 146t Convention, Dublin, Ireland, 2019 March 20 — 23
Page 3 of 10



Sanchez and Reiss

Synthesis of Solid-Solid Interactions

N
xj =Yt (6)
=1

where x; represents the displacement of oscillator / and
t;; the weight applied on oscillator / for surface point j
[1, p. 140]. This displacement x; is sent to the audio
output to generate the sound.

3.2.2 Friction interaction equations

Different approaches have been taken to describe the
behaviour of friction interactions [12, 13]. For this
implementation, an elasto-plastic model proposed in
Dupont et al. [14] has been followed. This model de-
scribes the interaction as a single state system that
represents average bristle behaviour, i.e., the tangential
force affects the average deflection, and bristles slip
when a certain threshold is reached (see Figure 1).

Sliding body

.

Stationary
i o1

surface
77 Z

(a) (b)

Fig. 1: Bristle interpretation of friction (a) and the av-
eraged bristle behaviour LuGre model (b)[1, p.
152]

The elasto-plastic modelling approach can be sum-
marised by the pair of equations

2(vz) =v[l —a(z, v)ﬁ], )

f(z,2,v, @) = 6oz + 012+ 02V + C3 . 8)
Equation (7) describes the behaviour of z, which can
be interpreted as the mean bristle displacement (and
therefore, 7 as the mean bristle velocity). Variable v is
the relative velocity between the interacting surfaces at
a specific point and is defined as

N N©®) o b
v=Y ae) = You i, ©)
m=1 =1

This is derived from the relative displacement described
in (6), with b and r identifying each of the resonators,
and m and [ each of the oscillators in the resonators.
Functions a and zg can be parametrized in various
ways, and in this case the ones followed by [15] are
used. Equation (8) defines the friction force f, which is

the result of summing three components: 6ypz , which
is an elastic term; o1z, that is an internal dissipation
term; the viscosity term o,v, and a fourth component
03, introduced by [15], that models surface roughness
by introducing noise to the signal. The term @(¢) is
a pseudo-random function, modeled as fractal noise,
which is noise with a power spectrum W () ~ @F.

Therefore, friction force f can be obtained by calculat-
ing Z in (7) and then using it in (8). Both equations use
v, which is obtained via (9), that uses the results from
2).
3.2.3 Impact interaction equations

For the impact engine, a model that takes into account
complex, hysteretic behaviour has been followed. This
model [16], defines the interaction force f as

Fo kxV(1+uv) x>0
10 x<0’

with A being the surface’s damping weight, k being
the stiffness, 4 = A /k being a mathematically conve-
nient term and Y being a parameter dependent on the
geometry (see [17] for a detailed analysis). Variable x
is the relative displacement between resonators and is
defined as

(10)

N N©®)
YO ey
m=1 =1

This term is derived from (6). On the other hand, v is
the relative velocity defined in (9). As in the case of
friction, force f is added to the user input force in (1)
and (2). With those equations, the displacement of the
resonator at a specific point of its surface is calculated.

4 Model Design and Implementation

4.1 Requirements

The main intention of this work is to develop an in-
teractive tool that can be used as an instrument and is
efficient enough to run from the browser. To meet this
goal, the model must:

e Produce a convincing sound effect

e Be developed in JavaScript, in order to use it as a
web tool

e Produce sound in real time

e Respond to live user input, producing the sound
as feedback

AES 146t Convention, Dublin, Ireland, 2019 March 20 — 23
Page 4 of 10



Sanchez and Reiss

Synthesis of Solid-Solid Interactions

| User input |
|_ _R_ -_—— _| 1 Interactor 1 |_ ————— I
esonator ! 1 Resonator
| I<—|—| Apply external forces |==— | |
Apply I I Apply I
1 force I C - N | | force
te interaction
I I— Ompu *I I
I 1 force I 1
I | |
| | Apply interaction | | !
| 1 t I force 1 | |
Apply I Apply
| force | 1 1 | force 1
I |—|—-D| Set Output — | |

Fig. 2: Block diagram of the Interactor-Resonator architecture

The first requisite addresses the need of creating a
model that sounds subjectively close enough to the
real sound effect, without being a recreation. There-
fore, simplification, exaggeration and “cartoonification”
are encouraged. The second requirement is a purely
technical one. The goal of the third and fourth requi-
sites is to achieve an interactive application that can be
controlled seamlessly.

4.2 Resonator/Interactor architecture

An object-oriented approach was taken in the imple-
mentation of the SDT, facilitating the development of
complex synthesis engines using simpler models as
building blocks and allowing reuse of code in differ-
ent models. In order to support modularity and set the
basis for a full Web implementation of the Sound De-
sign Toolkit, it was considered necessary to keep this
structure.

Therefore, the basic building blocks for these engines
are the Resonator objects. They hold the data about
the resonating bodies, such as the physical properties
of the material, the contact points with other resonators,
and the bank of damped oscillators. The functions
related to this object are mainly oriented to set, retrieve
or calculate these values.

Once the Resonator objects are defined, interactions
between them can be created with Interactor ob-
jects. These objects act as an interface: they store the
Resonators involved in the interaction, the contact
points, the energy of the interaction and the state vari-
ables that are related to the specific type of interaction
(i.e., friction, impact, etc.). The main function executes
the following actions, also shown in Figure 2:

1. Apply external forces (user input) to each of the
resonators (equation (1))

2. Calculate the force caused by the interaction (i.e.,
the non-linearities of the model)

3. Apply the calculated force to each of the res-
onators

4. Calculate the displacement and set it as an audio
output

Therefore, steps 1 and 3 compute equation (1) on both
of the Resonator objects. The second step calculates
the force by computing 7 and 8 for friction, and (10)
for impact. (9) and (11) are also required in this step.
The last step uses (6) to calculate the displacement of
one of the Resonator objects at a specific point and
set it the audio output.

Finally, the sound is produced when the user manip-
ulates two parameters in the friction model, and one
parameter in the impact model. For the friction sound,
the user controls the external forces, tangential and
normal, that are applied by one object onto the other.
In the impact model, every time the user strikes, the
displacement of the hitting object is set to zero and the
velocity to a specified value. It is important to highlight
that these are not the only parameters that might be
shown to the user, though they are the ones responsible
for sound generation.

4.3 Implementation
4.3.1 Javascript Implementation

The models released with the Sound Design Toolkit
consisted of a collection of Max/MSP objects coded in

AES 146t Convention, Dublin, Ireland, 2019 March 20 — 23
Page 5 of 10



Sanchez and Reiss

Synthesis of Solid-Solid Interactions

JSAP unit
Interactor
scriptProcessor
node

Parameter Audio I/O
control input

Fig. 3: Block diagram of the script architecture

C, intended to be used in patch design, and they had to
be translated to JavaScript.

The main consequence of moving from Max/MSP to
JavaScript is audio management. In principle, both
Max/MSP and JavaScript’s Web Audio API follow the
same approach [8]: creating audio chains by using sev-
eral modules with specific functions. However, this
model requires sample-wise audio generation. Con-
sequently, the original code from the Sound Design
Toolkit relied on developing the necessary audio gen-
erating modules from scratch in C [6]. The alternative
offered by the Web Audio API used for this imple-
mentation was the scriptProcessor node. This
is a node type that was included as a way to create
customised audio-processing code and easily incor-
porate it into a Web Audio chain [8]. Therefore, all
the described functions were implemented inside one
scriptProcessor node, that was later connected
to an audio output.

The scriptProcessor node is a sub-optimal
workaround to enable inclusion of user audio scripts
and is deprecated. However, at the time of writing this
article, it is in full use and its main alternative, the Au-
dioWorklet, is unstable. This led to the decision to use
the scriptProcessor for the implementation.

Another minor deviation is the noise generator used
in the friction model. In [1] and [15], a noise compo-
nent is added to the friction force by a fractal noise
generator. However, this caused stability issues when
translated to Javascript, often leading to infinite outputs.
Consequently it was decided to use simple white noise
from [-1, 1] instead.

4.4 FXive Implementation

The JSAP plugin format was used to allow effi-
cient incorporation of the model into the FXive
website. To do this, it was necessary to incorpo-
rate a script that holds the plugin variable, called
frictionPlugin. js for the friction model and
impactPlugin. js for the impact model. This
script contains the scriptProcessor node decla-
ration, including its audio processing code, and it com-
municates with the external elements via audio inputs
and outputs (in this case only outputs are necessary)
and plugin parameters, used to control audio param-
eters. Moreover, it contains an object that stores the
Interactor used by the engine. The Interactor
contained in this object is the one manipulated in the
scriptProcessor node’s audio processing func-
tion, which sends it to the function that runs the model’s
DSP (see Figure 3).

In order to have control over the model, it was neces-
sary to add GUI elements that respond in real time and
are able to modify parameters simultaneously as they
are being manipulated. This allows the user to control
the synthesis engine seamlessly, as if it was a musical
instrument. In the FXive website, this is done using
the NexusUI API. This means, in essence, that these
UI elements have been designed to face the specific
interaction problems that arise when creating software
musical instruments (which are mainly related to la-
tency and instantaneous response and feedback). That
makes them an appropriate choice to control these type
of synthesis engines, that intend to generate realistic
sound effects from real-time inputs. In this implemen-
tation, the NexusUI elements are added into the main
HTML file that contains every script and the layout of
the webpage. Also in this script are included the func-
tions that are called when each Ul object is modified.
The code inside these functions is essentially the JSAP
parameter changing function, which sets the value of a
specific plugin parameter.

5 Results

After building the models, we needed to ensure they
fitted the specifications and performed as their prede-
cessors in the SDT implementation. This was done
in two stages for the friction model, and only the first
stage was done for the impact model.

AES 146t Convention, Dublin, Ireland, 2019 March 20 — 23
Page 6 of 10



Sanchez and Reiss

Synthesis of Solid-Solid Interactions

Parameter Description Performance Compared analysis
Stiffness affects the evolution of mode lock-in Good Similar

Dissipation affects the sound bandwidth Good Similar

Viscosity affects the speed of timbre evolution and pitch ~ Good Similar

Noisiness affects the perceived surface roughness Good Similar

Dynamic Coeff.  high values reduce the sound bandwidth Good Similar

Static Coeff. affects the smoothness of sound attack Mediocre Similar

Stribeck affects the smoothness of sound attack Mediocre Similar

Weight affects pitch Not good Not similar

Size affects low frequency content Good Similar

Table 1: Friction model parameter evaluation results. Descriptions extracted from Rocchesso and Fontana [1].

5.1 Parameter evaluation

The first stage of the evaluation process was comparing
the current implementation with the original. This was
done by comparing how modifications on each param-
eter affected the sound in both implementations, and
analysing whether they fitted the phenomenological
descriptions (see [1] and Tables 1 and 2). A two step
process was followed. First, one parameter was tested
on the web model by trying different settings (including
extreme values). The performance of each parameter
was labeled as: good, if the effect of the parameter
could be clearly heard and/or seen in the spectrum;
mediocre, if the effect could not be clearly noticed, or
only noticed at extreme values, and not good, if the
effect was not heard or seen, or a different effect re-
sulted. In the second step, the same settings were tried
on the original implementation, to check whether they
affected the sound in the same way. If the resulting
sound was perceived as identical in both implementa-
tions, the parameter comparison was marked as similar;
if there was a perceptual difference, it was marked as
not similar. The resulting sounds on each step were
examined using auditory analysis and visual inspection
of the spectrograms. This process was repeated on
each of the inertial resonator and interaction-specific
parameters.

5.1.1 Friction model evaluation

In general, the web model performed similar to the
original implementation, as can be seen in Table 1 (the
phenomenological description for each parameter is
described in Rocchesso and Fontana [1, p. 162]). Nev-
ertheless, there are a couple of malfunctions that must
be mentioned.

The first issue is that the sound tends to acquire a “tonal”
texture, i.e., it sounds pitched. One possible explana-
tion is that the normal force control parameter requires
a higher degree of sensitivity. If this parameter is not
sensitive enough, the model might not be changing
pitch fast enough, and therefore develop an undesired
tonal quality.

The second issue is that the inertial weight parameter
(weight of the bow) does not work with high values.
Again, this might be a problem of parameter sensitivity,
caused by differences in the slider curve between the
web implementation and the original. However, this is
unlikely, because the model still presents differences at
extreme values. Unfortunately, this parameter seems to
work fine in the impact model, meaning that the issue
must have to do with how the parameter relates to the
interaction and, therefore, making it more difficult to
debug.

5.1.2 Impact model evaluation

A shown in Table 2, the web implementation of the
model seems to perform properly on almost every as-
pect. Nevertheless, the shape parameter presented some
problems, since it does not completely behave as in the
description, and it does not match the original imple-
mentation’s behaviour. Finally, as mentioned before,
the inertial weight (i.e., “hammer weight” parameter)
performs as expected on this model, which means the
issue in the friction model is specific of that implemen-
tation.

5.2 High level models

The second stage of the evaluation process was using
the models to create presets that emulate specific inter-
action scenarios, and comparing the resulting effects

AES 146t Convention, Dublin, Ireland, 2019 March 20 — 23
Page 7 of 10



Sanchez and Reiss

Synthesis of Solid-Solid Interactions

Parameter Description Performance Compared analysis
Hammer weight  affects duration, brightness and loudness Good Similar

Dissipation affects attack brightness Good Similar

Stiffness affects attack brightness Good Similar

Shape affects attack loudness Mediocre Not similar

Strike velocity affects duration, brightness and loudness Good Similar

External force generates hits Good Similar

Inertial size affects attack loudness Good Similar

Modal Size affects pitch Good Similar

Table 2: Impact model parameter evaluation results. Descriptions extracted from Rocchesso and Fontana [1].

with recorded samples using their spectrograms. More-
over, some informal user evaluations, done with three
participants with no experience in sound design, were
performed in order to obtain some qualitative informa-
tion.

The tests were run by having each participant identify
synthesized sounds and recorded sounds from a re-
duced number of samples. Each test was run separately
(i.e., one participant at a time), in a silent room, with
participants listening through headphones. The exam-
iner played each sound once, and asked each participant
to identify which one was real and which synthesized.
Once they had responded, they were asked which cues
had led them to their answers. After that, the examiner
told the actual answer and asked for any comments.
Samples for this evaluation stage were extracted from
Freesound>. To select the samples, the target sound had
to be recognizable in the recording, and heard with little
or no background noise. This stage was only done on
the friction model, developing two presets: a creaking
door, and rubbing a glass of wine.

5.2.1 Creaking door

For the creaking door sound effect, three presets were
designed: two of them were obtained by ear, and the
third one was done by trying to match the spectrogram
of a real sample. The spectrograms are showed in
Figure 4.

The preset was designed trying to recreate the most
prominent modes in the original spectrogram. In order
to compare them, it should be advisable not to focus
too much on the long-term time evolution of the signal,
since the intention was not copying the sample, but the
source that produced the sample. Consequently, the

Sfreesound.org/

synthesized version was not controlled trying to imitate
the behaviour of the original one.

The main difference is the harmonic content. It can be
seen that, in Figure 4a, the signal is richer in harmonics,
these present a smoother short-term evolution than in
Figure 4b and the main components are less prominent.
This could be due to many factors. First of all, the
model only uses three modes, making them harmoni-
cally simpler than the recording. It might be possible
to recreate some of that richness by using modes that
modulate each other creating components within the
audio range. Another reason why modes in the original
spectrogram are a bit more diffuse is the presence of re-
verb and ambience in the recording, and the recording
gear’s internal noise.

However, over a very short time span, both signals
behave similarly: emitting continuous streaks of short
impulses. This might be one of the main features that
helps identify this sound, meaning that the synthesized
model creates a “cartoonification” of the real sound.

When presented to users, participants were asked to
identify from four sounds: three synthesized and the
recording. Every participant considered the sounds
coming from the presets configured by ear were the
most realistic, while they stated that the sample was
fake, and its imitation was the worst sounding of them.
Therefore, these observations suggest that the resulting
model fulfills its function of providing a simplified yet
identifiable sound (i.e., “cartoonification”).

5.2.2 Wine glass rubbing

For this model only one preset was defined, using the
imitative process followed with the creaking door. The
sound that is pursued is the one obtained by rubbing the
rim of a glass of wine with a moist finger. As it can be

AES 146t Convention, Dublin, Ireland, 2019 March 20 — 23
Page 8 of 10



Sanchez and Reiss

Synthesis of Solid-Solid Interactions

43

o
>
o o

Sl YY)
=R > 1< oo ~
ST o1 [ B
i Ko 63 [o»

@& oo =4 &l

0734

oo (@
=

7828

s no 2062 | Jon o>
558 [© i o o
==Y =1
waelsBaie

=
38
> &

=]
©
2]
]

o
2
S

]

REE
B[R S
53

(a) Original spectrogram

(b) Synthesized spectrogram

Fig. 4: Spectrograms of a creaking door recording (12s long) and a synthesized version (15s long)

seen in Figure 5, several differences can be appreciated
between the signals. Once again, spectral richness is
lacking in the modeled sound compared to the real
one. This time, this difference is even more significant
than in the creaking door example, since harmonics in
the recorded sound are clear. Nevertheless, the model
still presents some frequency components that do not
come directly from the resonator modes. An interesting
feature of the recorded sample is the vibrato happening
at high frequencies.

When this was shown to users, they stated that none of
the two samples sounded more artificial or fake than the
other (they said neither of them sounded particularly
real), but that the one in Figure 5b seemed like a worse
recorded sample, inducing them to think that was the
modeled one. That might be due to the lack of high
frequency content in the synthesized sound, that made
it feel like a low quality recording. Therefore, it could
be said that this preset did not perform as well as the
creaking door. Consequently, even though stating that
a good “cartoonification” has been achieved would be

inappropriate, it can be considered a solid base to build
a better model.

6 Summary

The development process of two sound effect synthesis
engines for the web has been presented. These two
models, extracted from the Sound Design Toolkit [6],
recreate the sound produced by two types of interac-
tion between solids: friction and impact. The mod-
els are physically driven, allowing a sound generation
process that moves away from more classical signal
based-methods. At the same time, it provides real-time
control, enabling the user to naturally interact with the
interface, that gives instantaneous sound feedback. The
destination of the implementations of these two mod-
els is the FXive webpage®’, where both models have
been uploaded. In addition, a rolling model®, imple-
mented using the impact model, can also be found in
the website.

SFriction: fxive.com/app/main-panel/friction.html
TImpact: fxive.com/app/main-panel/Impact.html
8Rolling: fxive.com/app/main-panel/rolling.html

AES 146t Convention, Dublin, Ireland, 2019 March 20 — 23
Page 9 of 10



Sanchez and Reiss

Synthesis of Solid-Solid Interactions

=
=9
I}

c | ~ (0o I NE N
1] ] S (D |
B4 R R{N] 5 (o foa (2
D (M X} (< M (D (O

7

(=2

]
L]
(]
w

=
=
{2
=

(a) Original spectrogram

B

&
<3
=
i

=

h7528 #
13824
13264 &
[11164 &
10637 &
o120
(96033
[8527 &
[8010%
[7493%y
[63738
(53408
(42638
[37468
[2713%
[21538
[1636 &
[1mad

(b) Synthesized spectrogram

Fig. 5: Spectrograms of a rubbed glass of wine record-
ing and a synthesized version (both 5s long)

Although the mechanics behind the model have been
explained, this paper also focused on creation of a new
implementation in a more limited environment. The
issues that arose could be overcome, achieving a result
that keeps the modular and versatile approach of the
original implementation. As a consequence, two differ-
ent models have been designed, sharing a significant
portion of code. Therefore the main objective of build-
ing a convincing web implementation of these models
was achieved.

References

[1] Rocchesso, D. and Fontana, F., The sounding object,
Mondo estremo, 2003.

[2] Turchet, L. et al., “What do your footsteps sound like?
An investigation on interactive footstep sounds adjust-
ment,” Applied Acoustics, 111, pp. 77-85, 2016.

[3] Selfridge, R. et al., “Creating Real-Time Aeroacous-
tic Sound Effects Using Physically Informed Models,”
Journal of the Audio Engineering Society, 2018.

[4] Peng, H. and Reiss, J. D., “Why Can You Hear a Differ-
ence between Pouring Hot and Cold Water? An Investi-
gation of Temperature Dependence in Psychoacoustics,”
in Audio Engineering Society Convention 145, 2018.

[5] Farnell, A., Designing sound, Mit Press, 2010.

[6] Monache, S. D., Polotti, P., and Rocchesso, D., “A
toolkit for explorations in sonic interaction design,” in
Proceedings of the 5th audio mostly conference: a con-
ference on interaction with sound, p. 1, ACM, 2010.

[7] Bahadoran, P. et al., “FXive: A Web Platform for Proce-
dural Sound Synthesis,” in Audio Engineering Society
Convention 144, 2018.

[8] Adenot, P, Wilson, C., and Rogers, C., “Web audio
API, W3C working draft,” Technical report, Dec 08
2015. Technical Report, W3C, 2015.

[9] Taylor, B. et al., “Simplified Expressive Mobile Devel-
opment with NexusUI, NexusUp, and NexusDrop.” in
NIME, pp. 257-262, 2014.

[10] Jillings, N. et al., “JSAP: A Plugin Standard for the
Web Audio API with Intelligent Functionality,” in Audio
Engineering Society Convention 141, 2016.

[11] Van Den Doel, K., Kry, P. G., and Pai, D. K., “FoleyAu-
tomatic: physically-based sound effects for interactive
simulation and animation,” in Proceedings of the 28th
annual conference on Computer graphics and interac-
tive techniques, pp. 537-544, ACM, 2001.

[12] De Wit, C. et al., “A new model for control of systems
with friction,” IEEE Transactions on automatic control,
40(3), pp. 419-425, 1995.

[13] Olsson, H. et al., “Friction models and friction compen-
sation,” Eur. J. Control, 4(3), pp. 176-195, 1998.

[14] Dupont, P. et al., “Single state elastoplastic friction mod-
els,” IEEE Transactions on automatic control, 47(5),
pp- 787-792, 2002.

[15] Avanzini, F., Serafin, S., and Rocchesso, D., “In-
teractive simulation of rigid body interaction with
friction-induced sound generation,” IEEE transactions
on speech and audio processing, 13(5), pp. 1073-1081,
2005.

[16] Hunt, K. H. and Crossley, F. R. E., “Coefficient of resti-
tution interpreted as damping in vibroimpact,” Journal
of applied mechanics, 42(2), pp. 440-445, 1975.

[17] Marhefka, D. W. and Orin, D. E., “A compliant contact
model with nonlinear damping for simulation of robotic
systems,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 29(6), pp.
566-572, 1999.

AES 146t Convention, Dublin, Ireland, 2019 March 20 — 23
Page 10 of 10



