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Design of Audio Parametric Equalizer Filters
Directly in the Digital Domain

Joshua D. Reiss, Member, IEEE

Abstract—Most design procedures for a digital parametric equalizer
begin with analog design techniques, followed by applying the bilinear
transform to an analog prototype. As an alternative, an approximation to
the parametric equalizer is sometimes designed using pole-zero placement
techniques. In this paper, we present an exact derivation of the parametric
equalizer without resorting to an analog prototype. We show that there are
many solutions to the parametric equalizer design constraints as usually
stated, but only one of which consistently yields stable, minimum phase
bbehaviorwith the upper and lower cutoff frequencies positioned around
the center frequency. The conditions for complex conjugate poles and
zeros are found and the resultant pole zero placements are examined.

Index Terms—Filter design, parametric equalizers, peaking and notch
filters, pole zero placement.

I. INTRODUCTION

Many signal processing applications involve enhancing or atten-
uating only a small portion of a signal’s frequency spectrum, while
leaving the remainder of the spectrum unaffected. This effect is com-
monly obtained in audio applications by using a biquadratic filter that
has a frequency response which is characterized by a boost or cut �
around a specified center frequency ��. In digital audio equalization,
any desired frequency response may be realized by cascading such
filters with different center frequencies, which are then often referred
to as parametric equalizer filters.

Apart from the center frequency, a parametric equalizer filter is also
characterized by its bandwidth. Filters having a small bandwidth �
relative to their center frequency (i.e., having a high Q-factor, defined
as � � ����), are better known as notch and peaking (or resonance)
filters.

The most common approach to digital filter design [1], [2] starts
from the design of an analog filter, followed by a bilinear transform
that maps the analog frequency axis ��� �� onto the digital frequency
axis ��� �����, with �� the sampling frequency in radians. Many para-
metric equalizer design techniques use this approach with the digital
design variables �� and � “prewarped” to analog variables, and are
now well-established in the literature [3], [4]. These include the Direct
form I (or Direct form II) [5], [6], and Allpass with feedforward form
(using the Lattice or Normalized Ladder design) [7], [8]. In [9], it was
shown that these methods all yield the same filter coefficients provided
that the same definition of bandwidth is used in the design constraints.
Thus filter performance, such as sensitivity to coefficient quantization
or the susceptibility to limit cycles, is dependent on the implementa-
tion architecture, but not the derivation of the parametric equalizer’s
coefficients.

Both the generalized parametric equalizer [10] and the parametric
equalizer with prescribed Nyquist frequency gain[11] attempt to intro-
duce new parametric controls to compensate for asymmetric warping,
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Fig. 1. Transfer functions for digital parametric equalizers designed using an
exact solution based on an analog prototype, and an approximate solution using
pole zero placement techniques. The normalized center frequency was ����,
bandwidth ����, and gain of 0.5 or 2. For all cases, bandwidth was defined as
in [17].

but both methods continue to use analog design techniques to deter-
mine the target frequency response.

As an alternative to transformation of an analog design, filters are
sometimes designed directly in the digital domain. For instance, an
exact solution for digital Butterworth filter designs, without the need
for an analog prototype, was achieved in [12]. Towards this goal, the
parametric equalizer filter may be designed using pole-zero placement
techniques. However, many of the solutions do not specify bandwidth
[13], [14] and hence are not considered parametric, and some are lim-
ited only to ideal notch filter designs where the gain is set to zero [13],
[15], [16]. To the best of this author’s knowledge, only one fully digital
parametric equalizer design technique has been presented [17]. Unfor-
tunately, the approximations taken in this approach imply that the con-
straints are not exactly satisfied. In particular, this method places both
poles and zeros at an angle ��, which ensures a poor approximation of
both poles and zeros for high bandwidth, and poor approximation of the
zeros for high gain. This is demonstrated in Fig. 1, which depicts the
resultant transfer functions for parametric equalizers designed using
the bilinear transform of an analog prototype, and using the approx-
imate pole zero placement technique of [17]. It is clear that the pole
zero placement technique produces a transfer function which does not
accurately satisfy the constraints on bandwidth and gain.

In this paper, we derive the filter coefficients for the parametric
equalizer directly in the digital domain, without the need for the
bilinear transform or for any approximations. This approach has the
benefits of being less cumbersome and more intuitive than to design
a digital filter by first designing an analog one, and yet does not
suffer from the errors introduced due to approximations introduced in
existing pole zero placement techniques.

The paper is organized as follows. Section II presents the derivation
of the parametric equalizer, leading to a large number of possible solu-
tions. In Section III, the solutions are examined. We show that there are
actually 32 possible solutions to the parametric equalizer design con-
straints as usually stated, but only one of these solutions consistently
yields stable, minimum phase behavior with the upper and lower cutoff
frequencies positioned around the center frequency. The conditions for
which each solution is possible are explained, and the preferred solu-
tion is identified. In Section IV, this preferred solution is analyzed. The
conditions for complex conjugate poles and zeros are found and the ef-
fect of modifying the gain, center frequency or bandwidth is explained
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in terms of movement of poles and zeros on the complex plane. Con-
clusions and directions for future work are given in Section V.

II. PARAMETRIC EQUALIZER DESIGN

A second-order biquadratic filter may be given in pole zero form as
follows:

���� � �
�� � ����� � ���

�� � ������ ���

� �
�� ��� � ����
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(1)

where in this form we have not specified whether the poles and zeros
exist as real values or complex conjugate pairs. Traditionally, the five
filter coefficients are calculated so as to satisfy a set of five design
equations
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In other words, the gain at DC and Nyquist is set to 1, there is a max-
imum or minimum of the magnitude response at the center frequency
with corresponding gain 	 and there is a bandwidth 
 which is the
distance between an upper and lower frequency where the gain is 	� .
Setting the DC and Nyquist gain to be 1 facilitates the cascading of
several parametric equalizer filters, and ensures that for narrow band-
width, the frequency components far from the center frequency are un-
changed. 	� is not an adjustable parameter. Instead there are several
definitions which are used, some of which depend on 	.

We thus have five constraints and an equation with five unknowns.
We proceed by applying each constraint in (2) in turn to this filter, re-
moving one unknown as each constraint is applied.

The first two constraints give
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� (3)

In other words, you can completely define the poles in terms of the
zeros, or vice versa.

The square magnitude of the filter may be given by
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Using the chain rule, the third constraint reduces to
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So we have four conditions that can lead to the derivative being 0.
But if � equals 1 or ��������, then the square magnitude of the transfer
function becomes uniformly one. So in general, these are not solutions.

We will now deal separately with the two remaining solutions to the
third constraint.

Case 1:

�� � ����� �	
�� � �� � ��

From (4), the fourth constraint becomes
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and hence this gives two possible solutions:
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We retain the plus-minus sign and consider both solutions simulta-
neously. The� signs are denoted with subscript � so that it is clear here
and in the following formulas when they are dependent.

Using (7) to eliminate dependence on the zeros from (6), we find
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We define

� �
	� �	�

�

	�

� � �
� � � �

�� �

	�� �
� (9)

So from (8) and the definition of the upper and lower cutoff frequen-
cies in the fifth constraint of (2)
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Note that this also gives a constraint on the definition of 	� , 	� �
	�

� � � or � � 	�

� � 	�.
If 	� is defined using the arithmetic mean of the extremes of the

square magnitude response,	�

� � ���	����, then	�

��� � �	��
���� � 	� �	�

� , and thus the square root term � in the definition of
� is equal to 1. This is thus the simplest definition, which also has the
benefit that a boost and a cut by equal and opposite gains in dB, and
equal bandwidth, cancel exactly, as described in [4] and [9].

Solving for � in the definition of � gives

� � ����

�� �
� (11)

Equation (10) implies that there are four possible choices for the
relationship between � and the upper and lower cutoff frequencies We
deal with these as two separate cases, each involving a � sign.

Case 1.1:
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The �� term can be eliminated to give
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where we assumed 
�
�� �� � 
�
��. Using trigonometric sum to
product formulas
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On the other hand, if 
�
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�
��, then �� � ���. Mapping
�� to ��� ���, either �� is less than or greater than �. If �� � �, our
definition of bandwidth 
 implies �� � 
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If �� � �, then �� � � � ���. So
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Case 1.2:
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Here, the approach used in Case 1.1 does not work, since trigono-
metric sum to product formulas do not reduce to terms involving band-
width. Instead, we replace �� with �� � �, and use sum of two angle
formulas to break up terms involving the upper cutoff frequency. This
case then becomes
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We can rewrite (16) as follows:
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Then, using ���� �� � ���� �� � �
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Solving for � gives

� � �
���� �� � ���� �

�

��� �

�

� (19)

Note that the � sign in (19) is different from the � sign used to
describe this case. However, we get the same two solutions, (19), re-
gardless. Also, for � to be real, ���� �� � ����	���
. So, for �� � �,
� � ��� for this solution to hold.

Case 2:

	�� � ��
 ����� � � � �����

The solutions to this case can be found using a similar procedure to
that provided in Case 1, although the derivation becomes slightly more
complicated. However, it is more illuminating to consider this case in
terms of poles and zeros.

Suppose we consider one of the solutions to Case 1, and reflect a pole
and a zero around the unit circle, and normalize the transfer function
by this operation. Since complex poles or zeros occur only in complex
conjugate pairs, this is only possible if the poles and zeros lie on the
real axis. The new transfer function becomes
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It can be seen that 	 � obeys the first two constraints, and the square
magnitude response reduces to
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Therefore, since the last three constraints only describe the magni-
tude response, and 	 and 	 � have the same (square) magnitude re-
sponse, it follows that 	 � must also be a solution to the parametric
equalizer.

If we divide the condition for Case 1 by ��, we have

���
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� ��� (22)

and hence Case 2 holds for 	 �. Similarly, if we reflect a pole and a
zero for a Case 2 solution, then this represents a solution to Case 1.
That is, this operation represents a bijective mapping between the sets
of solutions to the two cases. So Case 2 must consist of all solutions
to Case 1 where one pole and one zero are reflected through the unit
circle.

III. EXPLICIT DESCRIPTION OF THE SOLUTIONS

Our formulas for deriving the parametric equalizer are determined
from the boxed equations previously. Equation (11) gives the gain term.
Then from the condition for Case 1 and (7), we find the zeros:
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Then from (3) and (11) we find the pole positions
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And � is given in any of the following forms:
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At this point, we should note that a similar procedure to that used
above could have been applied to direct form, yielding the coefficients
of the filter as functions of center frequency, gain, and bandwidth. How-
ever, the direct form derivation does not lend itself to easily explaining
the solutions, as described in Section III-A.

A. Enumerating the Solutions

Consider the five constraints of (2). These each give conditions for
the coefficients of (1) and the position of the upper and lower frequen-
cies. The first two constraints give (3) in all cases. Then, the third con-
straint gives two solutions to (5), Case 1 and Case 2. If we consider
Case 1, then (7) gives two solutions to the fourth constraint. In either
case, (9) has four possible solutions. The first two solutions each have
three solutions, (13) to (15), and the second two solutions to (9) each
have two solutions, but these are the same in both cases, and given by
(19). So, for Case 1, we have � � 	� � � � � � �
 � �� solutions.

Case 2 is all the solutions of Case 1, but with a zero and a pole re-
flected by the unit circle. Thus, in terms of different sets of coefficients,
we have a total of 32 solutions.

All solutions can be explained in terms of poles and zeros. The �
signs in (25) determine if the zeros are inside or outside the unit circle,
and then the�� sign in (24) determines if the poles are inside or outside
the unit circle. If poles and zeros are on the real axis, then there are
additional solutions (Case 2) where both a pole and a zero have been
reflected across the unit circle. Thus, there are only a possible ���� � �
stable, minimum phase solutions.

For each choice of �, one could conceive of additional situations
which give the same magnitude response where just one or three of the
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Fig. 2. Square magnitude of the transfer function for normalized center fre-
quency ����, gain of 0.5, and bandwidth ����. Transfer functions and band-
width locations are shown for the first three solutions (solid, dotted, and dashed
line, respectively) for �.

real valued poles and zeros are outside the unit circle, but these would
violate the first two constraints of (2).

B. Explaining Solutions for �

It still remains to explain why there are multiple different solutions
for �, especially since previous derivations of the parametric equal-
izer have only given solutions similar to ��������. The reason comes
from the fact that our bandwidth definition, even though it is commonly
used, is still vague in its specification. It simply specifies the distance
between two frequencies where the transfer function magnitude is�� .
However, for a notch (peaking) filter, these frequencies could be either
side of where the magnitude response has its minimum (maximum), as
is intended, or else they could be either side of where a notch (peaking)
filter has its maximum (minimum). This is shown in Fig. 2, which de-
picts three possible square magnitude plots for center frequency ����,
gain of 0.5, and bandwidth ��	�, where all units have been normalized
such that half the sampling frequency is set to �. All three plots sat-
isfy the parametric equalizer constraints. However, the dotted red plot,
corresponding to the second option for � places the upper and lower
cutoff frequencies around DC, and the dashed blue plot, corresponding
to the third option for � places the upper and lower cutoff frequencies
around half the sampling frequency.

Consider a parametric equalizer with center frequency ��	�
�, gain
of 2 and bandwidth ������ � 
�	��, again in normalized frequency
units. Admittedly, such a low Q factor would not often be used. In
Fig. 3, two possible plots of the square magnitude of the transfer func-
tion are depicted. These correspond to the first and fourth choices for
�. The fourth solution has two possible placements of the bandwidth.
Either both cutoff frequencies are located where the transfer function is
rising, or both are located where the transfer function is falling. This ex-
plains why these solutions are only possible (the term under the square
root in (19) must be positive) for large bandwidth, and why there are
two solutions in (19), corresponding to the two different choices for
placement of bandwidth.

IV. PREFERRED SOLUTION

From the previous section, only the first solution for �,
� � � ��������, positions the upper and lower cutoff frequen-
cies correctly on either side of the center frequency.

Fig. 3. Square magnitude of the transfer function for normalized center fre-
quency ������, gain of 2, and bandwidth ����. Transfer functions and band-
width locations are shown for the first and last solutions (solid line and dashed
line, respectively) for �. The two possible bandwidth locations for the last so-
lution have been offset slightly from � � ��� for clarity.

Fig. 4. Boundaries between regions where the preferred solution has real or
complex zeros for� � ��� and� � �. The boundaries between regions where
poles are real or complex is also shown, and is independent of �.

If we assume the poles or zeros are complex conjugate pairs, then
the conditions for stability and minimum phase behavior may be found
from the pole and zero radii:

� � 	�� � 	� �
 � �� � �

� � 	�� � 	� � � ��� � 
� (26)

Since the gain is positive, � must be negative. So the negative sign
is used in � � � ��������, and the negative sign is used in ��.

Without loss of generality, assume that bandwidth has been defined
using the arithmetic mean �
 � 	�. The regions with complex or real
valued poles and zeros are depicted in Fig. 4 for � � ��
 and � � �.
It can be seen that real valued poles or zeros only exist for large values
of bandwidth as compared to the center frequency. This is an unusual
situation, since the notch and peaking filters are generally cascaded
such that each filter acts on a relatively narrow range of frequencies.
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Our preferred solution for the parametric equalizer gives poles and
zeros as
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We define an angle �� such that
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This is valid since ���� �� � �
	� �� � �, and the square root term
in (28) is real for complex poles. Similarly, we define

��� �� � �
�
	� �� �� ��	 �

�

�
	�� � �� ��	 �

�

�

�
	 �� �
����� �
	� �� ��� ��	� �

�

�
	�� � �� ��	 �

�

� (29)

Then, it can be easily shown that

���
��� � ����� � ��	���

���

���
��� � ����� � ��	���

���
� (30)

Thus, all solutions with constant frequency lie on the circle defined
by the center ������
 and radius ��	���
. The position of the poles is
independent of the gain, and the position of the zeros is on the same
circle, but with displacement from the poles dependent on the gain.

Now note that the pole radius and zero radius may be given as
follows:

�� �
�� ��	 �
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� � ��	 �
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��� ��	 �

�
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That is, all poles lie on the curve with center at zero, and radius given
only as a function of bandwidth. The zeros lie on different curves, given
by both the gain and the bandwidth. We have thus defined curves of
constant frequency for poles and zeros, curves of constant bandwidth
for poles, and curves of constant gain and bandwidth for zeros. These
curves are depicted in Fig. 5, for both bandwidth and center frequency
ranging from ����	 to ����	 in units of ����	. One can see the re-
lationship between varying the parametric equalizer parameters and
movement of the poles and zeros on the complex plane.

V. CONCLUSION

In this paper, we presented an exact derivation of the parametric
equalizer without resorting to an analog prototype or any approxima-
tions. We showed that there are actually 32 possible solutions to the
parametric equalizer design constraints as usually stated. There are two
reasons for this. The first is that the bandwidth is usually given only in
terms of the distance between upper and lower cutoff frequencies, but
does not specify where they are placed. The second reason is that the
constraints allow for unstable or nonminimum phase solutions. Only
one solution consistently yields stable, mimimum phase behavior with
the upper and lower cutoff frequencies positioned around the center fre-
quency. The resultant pole zero placements were examined, including
the conditions for poles or zeros existing in complex conjugate pairs,
and the effect of moving poles or zeros in the complex plane.

Fig. 5. Curves of constant frequency and curves of constant bandwidth and
gain depicted on the complex plane. The dotted curves represent the locations
of zeros and poles while holding frequency constant and varying gain or band-
width. The dashed curves represent the locations of poles while holding fre-
quency constant and varying gain or bandwidth. The locations of zeros for fixed
frequency and fixed gain are on the same dashed curves, but have a modified
radius if gain is varied.

The approach given here used trigonometric relationships to deter-
mine filter parameters directly from the conditions which specify the
filter design. Although the analysis was fairly detailed, if one only
wishes to derive the ideal solution, then the complexity of this tech-
nique is fairly small. Case 1.2 and Case 2 of Section II may be ignored,
as well as all the alternative solutions for 
 and the different choices for
the� signs. Thus, this derivation may be considered as simple as those
based on transformation of analog prototypes, if not simpler. It offers
the advantage of being able to work only in the z domain, as opposed to
both the z domain and the Laplace domain. Nor does it require one to
transform an allpass filter, as suggested in [3], [14], [16], or involve any
of the approximations previously described. Furthermore, although the
technique began with the filter described in pole zero form without the
assumption of complex conjugate poles or zeros, the same approach
could have been applied to derive the coefficients of the direct form or
the radii and angles of complex conjugate pole zero pairs.

A similar approach could be taken to design other second-order dig-
ital filters often given as parametric structures, such as low-pass, high-
pass, band-pass, and shelving filters. Fully digital IIR filter design tech-
niques may also lead to new digital filters which need not be directly
related to existing analog prototypes. This is the author’s direction of
future research in this area.
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