
July 2, 2011 13:8 WSPC/S0218-1274 02941

International Journal of Bifurcation and Chaos, Vol. 21, No. 6 (2011) 1755–1772
c© World Scientific Publishing Company
DOI: 10.1142/S0218127411029410

GLOBAL STABILITY, LIMIT CYCLES
AND CHAOTIC BEHAVIORS OF SECOND ORDER
INTERPOLATIVE SIGMA DELTA MODULATORS

CHARLOTTE YUK-FAN HO
School of Mathematical Sciences,

Queen Mary, University of London,
Mile End Road, London E1 4NS, United Kingdom

c.ho@qmul.ac.uk

BINGO WING-KUEN LING
School of Engineering,

University of Lincoln, Lincoln,
Lincolnshire LN6 7TS, United Kingdom

wling@post01.lincoln.ac.uk

JOSHUA D. REISS
Department of Electronic Engineering,

Queen Mary, University of London, Mile End Road,
London E1 4NS, United Kingdom

josh.reiss@elec.qmul.ac.uk

XINGHUO YU
School of Electrical and Computer Engineering,

Royal Melbourne Institute of Technology,
GPO Box 2476V, Melbourne, VIC 3001, Australia

x.yu@rmit.edu.au

Received June 4, 2010; Revised August 18, 2010

It is well known that second order lowpass interpolative sigma delta modulators (SDMs) may
suffer from instability and limit cycle problems when the magnitudes of the input signals are at
large and at intermediate levels, respectively. In order to solve these problems, we propose to
replace the second order lowpass interpolative SDMs to a specific class of second order bandpass
interpolative SDMs with the natural frequencies of the loop filters very close to zero. The global
stability property of this class of second order bandpass interpolative SDMs is characterized and
some interesting phenomena are discussed. Besides, conditions for the occurrence of limit cycle
and fractal behaviors are also derived, so that these unwanted behaviors will not happen or can
be avoided. Moreover, it is found that these bandpass SDMs may exhibit irregular and conical-
like chaotic patterns on the phase plane. By utilizing these chaotic behaviors, these bandpass
SDMs can achieve higher signal-to-noise ratio (SNR) and tonal suppression than those of the
original lowpass SDMs.
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1. Introduction

Sigma delta modulation is a kind of source cod-
ing techniques [Janssen & Reefman, 2003]. An input
signal is first sampled at a much higher rate than
the Nyquist rate. The most common oversampling
ratios are 64, 128 and 256, depending on the appli-
cations. Then the sampled signal is subtracted from
the output of the interpolative sigma delta modu-
lator (SDM) and filtered via a loop filter. Finally,
the loop filter output is quantized to produce the
output of the SDM via a very coarse quantizer,
such as a single bit quantizer. The block diagram
of an interpolative SDM is shown in Fig. 1 [Janssen
& Reefman, 2003]. Because of the simple, robust
and inexpensive circuit implementation, many sys-
tems employ interpolative SDMs to perform analog-
to-digital (A/D) conversions [Janssen & Reefman,
2003].

By modeling the quantizer as a white noise
source and properly designing the loop filter, the
magnitude of the noise transfer function can be
very small at the signal band. This design method
is called the noise shaping technique [Janssen &
Reefman, 2003]. However, small magnitude of the
noise transfer function at the signal band some-
times does not guarantee a good performance of the
SDM, in particular, when the state vectors of the
SDM suffer from divergence and limit cycle prob-
lems. This is because the noise shaping technique
assumes that the quantization noise is indepen-
dent of the input of the quantizer. Nevertheless, the
quantization noise is input dependent. Hence, the
noise shaping technique cannot explain the occur-
rence of some nonlinear behaviors, such as limit
cycle [Hein & Zakhor, 1993], fractal [Ashwin et al.,
2003; Davies & Petkov, 1997; Feely, 1997; Petkov &
Davies, 1997] and chaotic [Hein, 1993; Schreier,
1994] behaviors, as well as the divergence of the
system states when the linearized closed loop trans-
fer function of the SDM is stable [Schreier, 1993;
Steiner & Yang, 1997]. If a SDM exhibits the diver-
gent behavior for some initial conditions, then when
electric shocking occurs, the current state vectors
of the SDM will probably be excited to those states

+
F(z) Qu(k) y(k)

_

s(k)

Fig. 1. The block diagram of an interpolative SDM.

that lead to the divergent behavior. In this case, the
SDM will be damaged. For some applications, such
as audio application, the occurrence of the limit
cycle behavior may result in an annoying audio tone
[Reefman & Janssen, 2002]. We can see that both
the limit cycle and divergent behaviors would cause
a degradation of the performance of the SDM, so the
occurrence of these behaviors should be avoided. It
is well known that limit cycle [Hein & Zakhor, 1993]
and divergent behaviors [Schreier, 1993; Steiner &
Yang, 1997] usually occur especially in high order
SDMs whereas high order SDMs can produce very
small magnitudes of the noise transfer functions
at the signal bands. Even for second order low-
pass SDMs, these problems still exist [Wang, 1992;
Farrell & Feely, 1998] when the input magnitudes
are at large or intermediate levels.

Although some existing control strategies, such
as clipping [Reefman & Janssen, 2002], have been
proposed to limit the maximum absolute value of
the state variables, it may result in the occurrence
of limit cycles. This situation usually emerges when
the input signal is very slow time varying and the
value of the clipped level is very small. To avoid the
occurrence of limit cycles, dithering has been pro-
posed [Magrath & Sandler, 1995]. However, dither-
ing would increase the circuit complexity and the
implementation cost. In this paper, we employ a
simple SDM that guarantees both the global sta-
bility property and the avoidance of the limit cycle
behavior. Here, the global stability property refers
to the property of the SDM that the state variables
are bounded for all initial conditions in the state
space.

It was discussed in [Ashwin et al., 2003] that if
second order bandpass interpolative SDMs exhibit
fractal behaviors [Ashwin et al., 2003], then an
invariant set [Ashwin et al., 2003; Güntürk & Thao,
2004; Schreier et al., 1997; Thao, 2002, 2004] exists
for these SDMs. It was also found in [Ashwin
et al., 2003] that some of these SDMs achieve
global stability. On the other hand, it was reported
in [Güntürk & Thao, 2004; Schreier et al., 1997;
Thao, 2002, 2004] that the existence of an invari-
ant set as well as some other conditions will guar-
antee the global stability property. However, the
global stability conditions in [Güntürk & Thao,
2004; Schreier et al., 1997; Thao, 2002, 2004] are
not satisfied for second order bandpass interpola-
tive SDMs. This is because the SDM studied in
[Güntürk & Thao, 2004; Schreier et al., 1997; Thao,
2002, 2004] are based on feedbackward structures,
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in which these results cannot directly be applied
to the second order bandpass interpolative SDMs
with loop filters having arbitrarily filter coefficients.
It was found in [Ho et al., 2006] that some of
second order bandpass interpolative SDMs may
exhibit the divergent behavior if the frequency spec-
trum of the input of the loop filter contains an
impulse located at the natural frequency of the
loop filter. This implies that the global stability of
second order bandpass interpolative SDMs is not
universally guaranteed and the global stability of
these SDMs is still opened. One of the objectives
of this paper is to address this issue. The global
stability conditions for these second order band-
pass interpolative SDMs is analyzed by the root
locus approach [Baird & Fiez, 1994]. Moreover, we
numerically show that these SDMs may also exhibit
irregular and conical-like chaotic patterns on the
phase plane. For these two behaviors, the global
stability property of these SDMs has not been
investigated yet.

In this paper, the difference between the frac-
tal and irregular or conical-like chaotic behaviors
is also investigated. It was reported in [Ashwin
et al., 2003] that if the filter parameter of a sec-
ond order bandpass interpolative SDM is within a
certain range, then fractal behavior will occur. How-
ever, the relationship between the occurrence of the
fractal behavior and the magnitude of the input
signal has not been exploited yet. In this paper,
we investigate this relationship. The importance of
studying this relationship is to provide some guide-
lines for SDM engineers to operate these SDMs, so
that the occurrence of unwanted behaviors can be
avoided and high tonal suppression can be obtained.

The outline of this paper is as follows. Nota-
tions are introduced in Sec. 2. In Sec. 3, analytical
and simulated results are presented. Finally, a con-
clusion is drawn in Sec. 4.

2. Notations

We assume that the loop filter is causal and ratio-
nal with real valued coefficients and a unit delay
element multiplied by the numerator of the trans-
fer function. We make this assumption because of
the feedback loop configuration. Hence, the trans-
fer function of the second order loop filter can be
denoted as:

F (z) ≡ Gz−1(1 − bz−1)
(1 − a′z−1)(1 − az−1)

, (1)

where a and a′ are the poles, b is the zero and G is
related to the DC gain of the loop filter. Since the
input signal is oversampled, the input is very slow
time varying and we can approximate it as a DC
signal. That is, by denoting u(k) as the input of the
second order interpolative SDM and u as the input
step size, we have u(k) ≈ u for k ≥ 0. This assump-
tion can be validated via testing the performance of
the SDM by using a sinusoidal input with frequency
within the signal band [0, π/R], in which R denotes
the oversampling ratio [Schreier, 2003]. Denote the
output of the loop filter as y(k). The dynamics of
this SDM can be described by the following state
space equation:

x(k + 1) = Ax(k) + B(u(k) − s(k)) for k ≥ 0,
(2)

where x(k) ≡ [x1(k) x2(k)]T ≡ [y(k−2) y(k−1)]T

is the state vector of the SDM, u(k) ≡ [u(k −
2) u(k−1)]T is the vector containing the past two
consecutive points from the input signal u(k),

A ≡
[

0 1

−aa′ a + a′

]
(3)

is the system matrix,

B ≡
[

0 0

−bG G

]
(4)

is the matrix associated with the input signal and
the nonlinearity due to the quantizer,

s(k) ≡ [Q(x1(k)) Q(x2(k))]T for k ≥ 0 (5)

is the quantized state vector in which the super-
script T denotes the transpose operator, and

Q(y) ≡
{

1 y ≥ 0

−1 otherwise
(6)

is a single bit quantization function.

3. Main Results

3.1. Magnitude response of the loop
filter in a second order
bandpass interpolative SDM

Now, let us consider the second order bandpass
interpolative SDM discussed in [Ashwin et al., 2003;
Davies & Petkov, 1997; Feely, 1997; Petkov &
Davies, 1997], where the parameters of the filter are
G = 2cos θ, a = ejθ, a′ = e−jθ and b = 1/2 cos θ, in
which θ is the natural frequency of the loop filter.
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Fig. 2. Magnitude responses of both the lowpass and bandpass SDMs.

Although the bandpass filter is employed, the mag-
nitude response of the bandpass filter is close to that
of the lowpass filter when θ is very close to zero, in
particular, when |ω| ≥ 2θ. Hence, the magnitude
response of the lowpass filter can be approximated
by the bandpass filter with the natural frequency
very close to zero. Here, very close to zero means
that θ is much smaller than π/R. Figure 2 shows the
magnitude responses of a second order bandpass fil-
ter with θ = 0.001 and a second order lowpass filter
with a = a′ = 1, b = 1/2 and G = 2. It can be seen
from Fig. 2 that the magnitude responses of these
two filters are almost the same when |ω| ≥ 2θ.

3.2. Global stability property of
the second order bandpass
interpolative SDM

As discussed in Sec. 1 that an invariant set exists
for a class of second order bandpass interpolative
SDMs [Ashwin et al., 2003] when this class of SDMs
exhibits fractal behaviors. Also, some of these SDMs
will be globally stable. However, this property has
not been proved in [Ashwin et al., 2003]. More-
over, the global stability condition has not been
investigated yet if fractal behaviors do not occur.
In this subsection, we will address the following
issues: First, what are the general global stabil-
ity conditions for these SDMs? Second, do invari-
ant sets exist when these SDMs do not exhibit
fractal behavior? Third, will the state vectors move

towards these invariant sets when these SDMs do
not exhibit fractal behavior? To address the first
problem, we have the following result.

Lemma 1. For the class of second order band-
pass interpolative SDMs discussed in [Ashwin et al.,
2003], if the ratio of the output of the SDM to the
output of the loop filter tends to zero as well as the
frequency spectrum of the input of the loop filter
contains an impulse located at the natural frequency
of the loop filter, then this SDM will diverge.

Proof. To prove this lemma, the root locus
approach [Baird & Fiez, 1994] is employed. That
is, the quantizer is modeled as an amplifier with
variable gain K.

As K ≡ s(k)/y(k) and s(k) = Q(y(k)) ∈
{1,−1} ∀ k ≥ 0, K > 0. The poles of the linearized
closed loop transfer function are:

λ1(K) = (1 − K) cos θ

+
√

(K − 1)2 cos2 θ + K − 1 (7)

and

λ2(K) = (1 − K) cos θ

−
√

(K − 1)2 cos2 θ + K − 1. (8)

If 0 < K < 1, then imag(λi(K)) �= 0 for i = 1, 2 and
it can be checked easily that |λi(K)| =

√
1 − K < 1

for i = 1, 2 and ∀ θ ∈ [−π, π]. For K = 0, λ1 = ejθ

and λ2 = e−jθ. For K ≥ 1, imag(λi(K)) = 0 for
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i = 1, 2. It can be checked easily that if cos θ < 1/2
and K > 2(1− cos θ)/(1− 2 cos θ), then K > 1 and
λ1(K) > 1. If cos θ > −(1/2) and K > 2(cos θ +
1)/(2 cos θ+1), then K > 1 and λ2(K) < −1. Since
2(1− cos θ)/(1− 2 cos θ) < 2(cos θ + 1)/(2 cos θ + 1)
for 0 > cos θ > −(1/2) and vice versa for 1/2 >
cos θ > 0, by combining all these conditions, the
stability of the linearized closed loop transfer func-
tion is summarized as follows:

If K > 2(1 − cos θ)/(1 − 2 cos θ) and cos θ < 0,
or K > 2(cos θ+1)/(2 cos θ+1) and cos θ > 0, then
the linearized closed loop transfer function will be
unstable. If K = 0, or cos θ = 0 and K = 2(1 −
cos θ)/(1 − 2 cos θ) = 2(cos θ + 1)/(2 cos θ + 1) = 2,
or K = 2(1 − cos θ)/(1 − 2 cos θ) and cos θ < 0, or
K = 2(cos θ + 1)/(2 cos θ + 1) and cos θ > 0, then
the linearized closed loop transfer function will be
marginally stable. Otherwise, the linearized closed
loop transfer function will be strictly stable. The
stability region is shown in Fig. 3.

As K ≡ s(k)/y(k) and s(k) = Q(y(k)) ∈
{1,−1}, y(k) is unbounded if and only if K → 0+.
Hence, the stability analysis can be performed by
only considering the case when K → 0+. It is worth
noting that this linear approach is applied even
though it is employed for the analysis of a nonlin-
ear system. When K → 0+, the linearized closed
loop transfer function is marginally stable. For any
bounded input u(k), the input of the loop filter
is bounded because s(k) is bounded. As the SDM
consists of the marginally stable loop filter, the
only possible cause for y(k) being unbounded is the
resonance effect. That is, the frequency spectrum
of the input of the loop filter contains an impulse

located at the natural frequency of the loop filter.
This completes the proof. �

From the above, we can see that large value of
|y(k)| corresponds to small value of K. If |y(k)| is
large and K → 0+, then the linearized closed loop
transfer function is marginally stable. If the fre-
quency spectrum of the input of the loop filter con-
tains an impulse located at the natural frequency of
the loop filter, then the state vectors will diverge.

As fractal behaviors could be exhibited for a
class of second order bandpass interpolative SDMs,
we can understand the exhibitions of fractal behav-
iors from the above root locus analysis. It is worth
noting that small values of |y(k)| correspond to
large value of K and an unstable linearized closed
loop transfer function. Hence, for small values of
|y(k)|, the state vectors will move outwards from
the region around the origin. On the other hand,
large values of |y(k)| correspond to small value of K
and a strictly stable linearized closed loop transfer
function if K does not tend to zero. Hence, for large
values of |y(k)|, the state vectors will move towards
the region around the origin. Hence, the state vec-
tors will move in and out of the region around the
origin again and again. This accounts for the occur-
rence of the fractal and irregular chaotic behaviors.

To investigate whether an invariant set exists
for the SDM when the SDM does not exhibit the
fractal behavior, we need to recall the definition of
an invariant set [Ashwin et al., 2003; Güntürk &
Thao, 2004; Schreier et al., 1997; Thao, 2002, 2004].
Denote a map G which maps from a set Γ to itself.
That is, G : Γ → Γ. If G(Γ) = Γ, then Γ is called
an invariant set. Denote ∅ as the empty set.

Fig. 3. Stability region of the linearized closed loop transfer function of the second order bandpass interpolative SDM. (The
red region refers to the unstable region and the blue region refers to the strictly stable region.)
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Lemma 2. Denote

Γ ≡
{

x ≡ [x1, x2]T : Ax + B(u − Q(x)) ∈ Γ,x − 2[Q(x1), 0]T /∈ Γ, and

[−Q(x) − x, x1]T ∈ Γ, where x ≡ x2 + 2cos θ(Q(x1) − x1) + u(1 − 2 cos θ).

}
. (9)

Denote G : Γ → Γ such that G(x) ≡ Ax + B(u −
Q(x)). Suppose that Γ �= ∅. Then Γ is an invariant
set under the system map G.

Proof. Since ∀,x ∈ Γ, G(x) = Ax+B(u−Q(x)) ∈
Γ. This implies that G(Γ) ⊆ Γ. ∀y ≡ [y1, y2]T ∈ Γ,
define y ≡ y2 + 2cos θ(Q(y1) − y1) + u(1 − 2 cos θ).
Denote x ≡ [−Q(y) − y, y1]T . Then x ∈ Γ and

G(x) = Ax + B(u − Q(x))

= [y1, Q(y) + y + 2y1 cos θ + 2u cos θ

− 2Q(y1) cos θ − u + Q(−Q(y) − y)]T

= [y1, Q(y) + Q(−Q(y) − y) + y2]T .

If y ≥ 0, then Q(y) = 1, Q(−Q(y) − y) = −1
and G(x) = y. If y < 0, then Q(y) = −1,
Q(−Q(y) − y) = 1 and G(x) = y. Hence, ∀y ∈ Γ,
∃x ∈ Γ such that G(x) = y. This implies that
G(Γ) ⊇ Γ. Therefore, G(Γ) = Γ and Γ is an invari-
ant set under the system map G. This completes
the proof. �

There are some conventional approaches to test
whether a set of state vectors of a SDM is an invari-
ant set or not. One of the conventional approaches
is based on the geometric property of the set.
Although this conventional approach can be applied
for those SDMs which exhibit the fractal behav-
ior, because the corresponding set consists of trape-
zoids, this conventional approach cannot be applied
if the shape of the sets is irregular. In fact, we will
show numerically at the end of this subsection that
a bandpass SDM may exhibit irregular and conical-
like chaotic patterns on the phase plane. By apply-
ing Lemma 2, we can conclude that these sets are
invariant sets because Lemma 2 is satisfied for these
cases.

To investigate whether some state vectors,
which are initially not inside the invariant set Γ,
will eventually move towards the invariant set Γ if
the invariant set Γ exists, the injective property of G
has to be investigated. However, in general, the exis-
tence of invariant sets does not imply that the cor-
responding system maps are injective. Consider the
following counter-example: Define f : [0, 1] → [0, 1]
as a map such that f(x) = mod(2x, 1), where mod

is denoted as the modulo operator. Obviously, [0, 1]
is an invariant set under the map f , but f is not
injective.

Lemma 3. Suppose that Γ �= ∅. Then G is
bijective.

Proof. From Lemma 2, we have G(Γ) = Γ. This
implies that G is surjective. To show that G is injec-
tive, denote x1 ≡ [x1

1, x1
2]

T and x2 ≡ [x2
1, x2

2]
T .

Assume that x1,x2 ∈ Γ, x1 �= x2 and G(x1) =
G(x2). G(x1) = G(x2) implies that x1

2 = x2
2 and

Q(x1
1)−Q(x2

1) = x1
1 − x2

1. Since x1 �= x2 and x1
2 =

x2
2, x1

1 �= x2
1. This implies that Q(x1

1) �= Q(x2
1) and

x2
1 = x1

1 − 2Q(x1
1). As x2 = x1 − 2[Q(x1

1), 0]T /∈ Γ,
this contradicts to x2 ∈ Γ. This implies that G is
injective. Hence, G is bijective. This completes the
proof. �

Lemma 4. Define H :�2 → �2 as a map that
H(x) ≡ Ax + B(u − Q(x)). Then H is surjective.

Proof. Denote x ≡ [x1, x2]T , y ≡ [y1, y2]T and y ≡
y2 + 2cos θ(Q(y1) − y1) + u(1 − 2 cos θ). ∀y ∈ �2,
let x2 = y1 and x1 = −Q(y) − y. Then x ∈ �2 and
y = H(x). Hence, H is surjective. This completes
the proof. �

Lemma 5. H is not injective.

Proof. Denote x1 ≡ [x1
1, x1

2]
T and consider the

case when |x1| < 2. Define x2 ≡ [x2
1, x2

2]
T ≡ x1 −

2[Q(x1
1), 0]T . Then

H(x1) = [x1
2, 2 cos x1

2 − x1
1 + (2 cos θ − 1)u

+ Q(x1
1) − 2 cos θQ(x1

2)]
T

and

H(x2) = [x1
2, 2 cos x1

2 − x1
1 + 2Q(x1

1)

+ (2 cos θ − 1)u + Q(x1
1 − 2Q(x1

1))

− 2 cos θQ(x1
2)]

T .

Since |x1| < 2, Q(x1
1 − 2Q(x1

1)) = −Q(x1
1) and

H(x1) = H(x2). This implies that H is not injec-
tive. This completes the proof. �
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If x(0) ∈ Γ, since x(1) = Ax(0) + B(u −
Q(x(0))) = G(x(0)), from Lemma 2, we have x(1) ∈
Γ. Similarly, we can conclude that x(k) ∈ Γ for
k ≥ 0. Hence, the SDM is locally stable. Define
ΓS ≡ {x ∈ Γ : |x1| < 2} and ΓR ≡ G(ΓS). As
ΓS ⊆ Γ, from Lemma 2, we have ΓR ⊆ Γ. Assume
that ΓS �= ∅. Define Γ̃1 ≡ {x − 2[Q(x1), 0]T :
x ≡ [x1, x2]T ∈ ΓS}. Since ΓS �= ∅, Γ̃1 �= ∅

and Γ �= ∅. From Lemma 2, we can conclude that
Γ̃1 ∩ Γ = ∅. From Lemmas 4 and 5, we can con-
clude that ∀y ∈ ΓR,∃x1 ∈ ΓS and ∃x2 ∈ Γ̃1 such
that x1 �= x2 and G(x1) = H(x2) = y ∈ ΓR.
This implies that if x(0) ∈ Γ̃1\Γ, then x(1) =
H(x(0)) ∈ ΓR and x(k) ∈ Γ for k ≥ 1. Or in
other words, there exists some state vectors, which
are initially not in the invariant set Γ, but they
will eventually move towards the invariant set Γ
if ΓS �= ∅.

Suppose that ΓS �= ∅. Define Γ̃n+1 such that
H(Γ̃n+1) = Γ̃n for n ≥ 1. Then the state vectors
in Γ̃n will move to Γ̃n−1, and then move to Γ̃n−2,
and continue to move until they move to Γ̃1, and
eventually reach ΓR and stay inside Γ forever.

Now, we investigate whether all the state vec-
tors, which are initially not in the invariant set Γ,
will eventually move towards the invariant set Γ,
when the invariant set Γ exists and the frequency
spectrum of the input of the loop filter does not
contain an impulse located at the natural frequency
of the loop filter. If the frequency spectrum of the
input of the loop filter does not contain an impulse
located at the natural frequency of the loop filter,
then the state vectors will be bounded. Denote Λ
as the corresponding bounded set. Denote the set
Λ\Γ\⋃

∀n≥1 Γ̃n as
◦
Λ.

Lemma 6. Suppose that ΓS �= ∅,
◦
Λ �= ∅, and the

frequency spectrum of the input of the loop filter
does not contain an impulse located at the natural
frequency of the loop filter. Then

◦
Λ is an invariant

set under the system map H.

Proof. Since ΓS �= ∅, this implies that Γ̃1 �= ∅. As
H is surjective, this further implies that Γ̃n �= ∅ for
n ≥ 1. Since the frequency spectrum of the input of
the loop filter does not contain an impulse located
at the natural frequency of the loop filter, the state
vectors are bounded. As

◦
Λ �= ∅, ∃x(0) ∈ ◦

Λ. Hence,

∀x(0) ∈ ◦
Λ, H(x(0)) = Ax(0)+B(u−Q(x(0))) ∈ Λ.

However, H(x(0)) /∈ Γ\⋃
∀n≥1 Γ̃n. Otherwise, it

contradicts to the definition of H(Γ̃n+1) = Γ̃n.

Therefore, H(x(0)) ∈ ◦
Λ and H(

◦
Λ) ⊆ ◦

Λ. ∀y ∈
◦
Λ, as H is surjective and the state vectors are
bounded, ∃x ∈ Λ such that H(x) = y. However,
x /∈ Γ\⋃

∀n≥1 Γ̃n. Otherwise, it contradicts to the

definition of H(Γ̃n+1) = Γ̃n. Hence, x ∈ ◦
Λ and

H(
◦
Λ) ⊇ ◦

Λ. This implies that H(
◦
Λ) =

◦
Λ and

◦
Λ

is an invariant set under the system map H. This
completes the proof. �

Suppose that
◦
Λ �= ∅. Without loss of general-

ity,
◦
Λ can be partitioned into four different sub-

sets, denoted as Λi for i = 1, 2, 3, 4, such that
∀xi,xj ∈ ΛkQ(xi) = Q(xj) and Q(Λi) �= Q(Λj)

for i �= j, Λi ∩ Λj = ∅ for i �= j, and
⋃4

i=1 Λi =
◦
Λ.

Theorem 1. If ΓS �= ∅ and the frequency spectrum
of the input of the loop filter does not contain an
impulse located at the natural frequency of the loop
filter, then

◦
Λ = ∅.

Proof. From Lemma 1, we see that if K �= 0, or
cos θ < 0 and K < 2(1 − cos θ)/(1 − 2 cos θ),
or cos θ > 0 and K < 2(cos θ + 1)/(2 cos θ + 1),
or cos θ = 0 and K < 2, then the linearized closed
loop transfer function of the SDM will be strictly
stable. This implies that the SDM is strictly sta-
ble for 0 < K < 4/3. This further implies that
if |y(k)| > 3/4 and the frequency spectrum of
the input of the loop filter does not contain an
impulse located at the natural frequency of the
loop filter, then the SDM will be strictly stable and
larger values of |y(k)| will move to a region around
the origin. Since ΓS �= ∅, Γ̃n �= ∅ for n ≥ 1.
Suppose that

◦
Λ �= ∅. If ∃x1 ≡ [x1

1, x1
2]

T ,x2 ≡
[x2

1, x2
2]

T ∈ Λi such that x2 = x1 − 2[Q(x1
1), 0]T ,

then the trajectories corresponding to these two
initial conditions will move to a region around
the origin. Hence, we can just consider the case
that x1 ∈ Λi and x2 ∈ Λj for i �= j. Suppose
that x1 + [∆x, 0]T ∈ Λi for ∀∆x ∈ (−δ, δ) and
x2 + [∆x, 0]T ∈ Λj for ∀∆x ∈ (−δ, δ), where δ is
the length of the neighborhood of x1 and x2. Since
H(x1 + [∆x, 0]T ) = H(x1) − [0, ∆x]T , H(x2 +
[∆x, 0]T ) = H(x2)− [0, ∆x]T and H(x1) = H(x2),
the regions after the system map are overlapped.
However, this contradicts to the definition of an
invariant set with the system map having the prop-
erty |det(A)| = 1. Hence,

◦
Λ = ∅. This completes

the proof. �
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(a)

(b)

Fig. 4. Diagrams showing how the state vectors move towards an invariant set when (a) fractal and (b) irregular chaotic
patterns occur.



July 2, 2011 13:8 WSPC/S0218-1274 02941

Global Stability, Limit Cycles and Chaotic Behaviors of Second Order Interpolative SDMs 1763

Theorem 1 implies that, if ΓS �= ∅ and the
frequency spectrum of the input of the loop filter
does not contain an impulse located at the nat-
ural frequency of the loop filter, then for all the
initial conditions that are initially not in the invari-
ant set Γ,∃ k0 ∈ Z+ such that x(k0) ∈ Γ̃1. That
means, the SDM is globally stable and the state
vectors will eventually move to the invariant set. To
illustrate the theorem, the black, blue, cyan, yel-
low, green, magenta and red regions in Figs. 4(a)
and 4(b) show the sets Γ̃6, Γ̃5, Γ̃4, Γ̃3, Γ̃2, Γ̃1 and ΓR,
respectively.

Corollary 1. Define

L1 ≡
M−1∑
j=0

sin(M − 1 − j)θ(2 cos θ(u − Q(x2(j)))

− (u − Q(x1(j)))), (10)

L2 ≡
M−1∑
j=0

cos(M − 1 − j)θ(2 cos θ(u − Q(x2(j)))

− (u − Q(x1(j)))), (11)

L̃1 ≡ x̃1(0) cos Mθ + x̃2(0) sin Mθ (12)

and

L̃2 ≡ −x̃1(0) sin Mθ + x̃2(0) cos Mθ. (13)

Denote T ≡ [
1 0

cos θ sin θ

]
. Then T−1 exists for band-

pass filters. Define the transformed state vectors as
x̃(k) = T−1x(k). Then ∀x(0) ∈ Λ\Γ,∃M ∈ Z+

such that x(M) ∈ Γ. Also, if ∀y ∈ Γ‖x̃(0)‖2 >
‖T−1y‖2, then ∃M ∈ Z+ such that (L1 + L̃1)2 +
(L2 + L̃2)2 < L̃2

1 + L̃2
2.

Proof. Since sin θ is zero only for lowpass or high-
pass filters, T−1 exists for bandpass filters. Accord-
ing to Theorem 1, as

◦
Λ = ∅, ∀x(0) ∈ Λ\Γ,∃M ∈

Z+ such that x(M) ∈ Γ. Define
�

A ≡ [
cos θ sin θ
−sin θ cos θ

]
.

Hence, A = T
�

AT−1 and

x(M) = AMx(0) +
M−1∑
j=0

AM−1−jB(u − Q(x(j))).

This implies that

x̃(M) =
�

AM x̃(0)

+
M−1∑
j=0

�

AM−1−jT−1B(u − Q(x(j)))

=

[
x̃1(0) cos Mθ + x̃2(0) sin Mθ + L1

−x̃1(0) sin Mθ + x̃2(0) cos Mθ + L2

]

and ‖x̃(M)‖2
2 − ‖x̃(0)‖2

2 = (L1 + L̃1)2 + (L2 +
L̃2)2 − L̃2

1 − L̃2
2. If ∀y ∈ Γ‖x̃(0)‖2 > ‖T−1y‖2, then

∃M ∈ Z+ such that ‖x̃(M)‖2 < ‖x̃(0)‖2. Hence,
∃M ∈ Z+ such that (L1 + L̃1)2 + (L2 + L̃2)2 <
L̃2

1 + L̃2
2. This completes the proof. �

Corollary 1 provides information on how the
initial condition moves towards the invariant set Γ.

Beside, some interesting phenomena are found.
First of all, fractal patterns are not the only type
of chaotic patterns exhibited in the phase plane.
The SDM may exhibit irregular and conical-like
chaotic patterns. Figures 5(a) and 5(b) show the
phase portraits when x(0) = 0, u = −0.3, θ =
cos−1(0.158532), and x(0) = 0, u = 0.5, θ = 0.1,
respectively. Figure 5(c) shows the transformed
phase portrait x̃(k) when x(0) = 0, u = −1 and
θ = 0.01. It can be seen from Figs. 5(a)–5(c) that
fractal, irregular and conical-like chaotic patterns
are exhibited on the phase plane, respectively. How-
ever, no matter what type of chaotic patterns, an
invariant set exists. By dividing the phase portraits,
shown in Figs. 6(a), 6(c) and 6(e), into four sub-
portraits, it can be seen, respectively, in Figs. 6(b),
6(d) and 6(f), that the union of the mapped regions
generates the original phase portraits with the same
outer boundaries.

The second interesting phenomenon is that
Γ\ΓS = ∅ when the SDM exhibits fractal patterns,
while Γ\ΓS �= ∅ when the SDM exhibits irregu-
lar and conical-like chaotic patterns. To understand
this phenomenon, note that the fractal patterns are
confined within two trapezoids, the co-ordinates of
the outer four corners of these two trapezoids not
including the co-ordinates on the x2 axis are:

P1 = [(2 cos θ − 1)(u − 1) (4 cos2 θ − 1)(u − 1)]T ,

(14)

P2 = [2 cos θ(u+ 1)+ 1−u (4 cos2 θ− 1)(u + 1)]T ,

(15)

P3 = [(2 cos θ − 1)(u + 1) (4 cos2 θ − 1)(u + 1)]T

(16)
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(a) (b) (c)

Fig. 5. Phase portraits of the SDMs when (a) fractal and (b) irregular chaotic patterns occur. (c) Transformed phase portrait
of the SDM when a conical-like chaotic pattern occurs.

and

P4 = [2 cos θ(u− 1)− u− 1 (4 cos2 θ− 1)(u− 1)]T ,

(17)

respectively. We will show in Sec. 3.4 that the con-
ditions for exhibiting fractal behaviors are | cos θ| <
1/2 and |u| < min(1, (1 + 2 cos θ)/(1 − 2 cos θ)),
and the absolute values of the first co-ordinate of
these four state vectors is bounded by 2. Note that
these two trapezoids are in ΓS. Hence, Γ = ΓS and
Γ\ΓS = ∅. However, this property does not hold
for the cases when irregular and conical-like chaotic
patterns are exhibited on the phase plane. The red
regions shown in Figs. 7(a) and 7(c) correspond to
ΓS, while the blue region shown in Fig. 7(c) corre-
sponds to Γ\ΓS. The red regions shown in Fig. 7(b)
and 7(d) correspond to ΓR, while the blue region
shown in Fig. 7(d) corresponds to Γ\ΓR. It can be
seen in Figs. 7(a) and 7(b) that there is no blue
region in the phase portraits, which implies that
Γ\ΓS = ∅ when the SDMs exhibit fractal patterns.

3.3. Conditions for the second order
bandpass interpolative SDM
exhibiting limit cycle behavior

The necessary and sufficient conditions for the class
of second order bandpass interpolative SDMs dis-
cussed in [Ashwin et al., 2003] exhibiting the limit
cycle behaviors are presented below.

Suppose that there exists M ≥ 1 such that
I − AM is invertible, where I denotes the identity
matrix. Denote ‖·‖∞ as the infinity-norm operator,

x∗
0 ≡ (I − AM )−1


M−1∑

j=0

AM−1−jB(u − s(j))


,

(18)
x∗

i+1 ≡ Ax∗
i + B(u − s(i))

for i = 0, 1, . . . ,M − 2, (19)

and
x̂i(k) ≡ T−1(x(kM + i) − x∗

i )

for k ≥ 0 and i = 0, 1, . . . ,M − 1. (20)
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(a) (b)

(c) (d)

Fig. 6. Phase portraits when (a) fractal, (c) irregular and (e) conical-like chaotic patterns occur. (b), (d) and (f) are the
corresponding mapped phase portraits.
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(e) (f)

Fig. 6. (Continued)

The following lemma describes the necessary
and sufficient relationships among the periodicity of
the output sequence, the behavior of the trajectory
and the set of initial conditions generating periodic
output sequence.

Lemma 7. The following three statements are
equivalent :

(i) ∃M ∈ Z+ such that ∀ i ≥ 0 s(M + i) = s(i).

(ii) ∃M ∈ Z+ such that �xi(k + 1) =
�

AM �xi(k) for
k ≥ 0 and for i = 0, 1, . . . ,M − 1.

(iii) ∃M ∈ Z+ such that x(0) ∈ ΣM ≡
{x(0) : ‖T−1(x(i) − x∗

i )‖ ≤ ‖x∗
i ‖∞} for i =

0, 1, . . . ,M − 1.

Proof. The proof can be worked out using the tech-
niques discussed in [Ling et al., 2003]. �

Statement (ii) of Lemma 7 implies that the
transformed trajectories are circular. Since i =
0, 1, . . . ,M − 1, there are M circles centered at
the origin with radii ‖�a�xi(0)‖2. By transforming
back to the original state trajectories, there are M
ellipses centered at x∗

i for i = 0, 1, . . . ,M − 1 with
the size dependent on ‖x(i)‖2 and the orientation

dependent on θ. Moreover, from statement (i) of
Lemma 7, we can see that the output sequence is
periodic with period M . Furthermore, from state-
ment (iii) of Lemma 7, we can see that the shape of
the set of the initial conditions is elliptic.

There are three main important implications
and two interesting phenomena that can be con-
ceived from Lemma 7. The first important implica-
tion of Lemma 7 is that for a given initial condition
in the trapezoids, Lemma 7 provides information to
test whether a limit cycle occurs or not. This can
be done by checking whether the given initial con-
dition is inside the ellipses of the fractal patterns
or not. If it is inside the ellipses, then a limit cycle
occurs, and vice versa.

The second important implication of Lemma 7
is to estimate the periodicity of the limit cycle. Since
the periodicity is defined based on the behavior over
an infinite amount of time, but only a finite number
of observable output bits are obtained from practi-
cal situations, in general, it is not trivial to check
whether an output sequence is periodic or not. Even
though the output sequence is periodic, it is not
easy to estimate its periodicity. However, according
to Lemma 7, the periodicity of the output sequence
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(a) (b)

(c) (d)

Fig. 7. (a) ΓS and (b) ΓR when a fractal pattern occurs. (c) ΓS and Γ\ΓS , and (d) ΓR and Γ\ΓR when an irregular chaotic
pattern occurs.
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can be estimated by counting the number of the
ellipses exhibiting on the phase plane or counting
the number of the elliptical sets of initial conditions.

The third important implication of Lemma 7
is to provide information whether a limit cycle is
stable or not. If a given initial condition is strictly
inside an elliptical set of initial conditions, a small
perturbation of the initial condition will give rise to
a similar elliptic trajectory pattern and the same
periodic output sequence as well. Hence, the corre-
sponding trajectory for the limit cycle is regarded
as locally stable. However, if the initial condition is
on the boundary of the elliptical set, a small pertur-
bation of the initial condition will give rise to a very
different dynamical behavior and output sequence.
In this case, the trajectory for the limit cycle is
regarded as locally unstable.

There are two interesting phenomena that can
be explained by Lemma 7. First, when M = 1,x∗

0

is on the diagonal line. Since the output sequence
is constant, all the state vectors are in the same
quadrant. Hence, the trajectory and the set of ini-
tial conditions are confined either in quadrant I
or quadrant III, and cannot cut across the prin-
ciple axes. For M ≥ 1, by downsampling the out-
put sequence by M , the output sequence becomes
constant. Hence, the trajectory of each ellipse and
each elliptical set of initial conditions also cannot
cut across the principle axes.

Second, the occurrence of periodic output
sequence does not imply the occurrence of periodic
state variables [Ling et al., 2003]. In general the
state variables are periodic if θ is a rational multiple
of π.

3.4. Conditions for the second
order bandpass interpolative
SDM exhibiting fractal
behavior

Now, we present the results for the class of sec-
ond order bandpass interpolative SDMs discussed in
[Ashwin et al., 2003] which exhibits fractal behav-
iors. The conditions for the occurrence of fractal
behaviors are presented below.

Lemma 8. If

|cos θ| <
1
2
, (21)

|u| < min
(

1,
1 + 2 cos θ

1 − 2 cos θ

)
, (22)

s(k) are aperiodic and

x(0) ∈ Γ

∖ ⋃
M≥1

ΣM , (23)

then

x(k) ∈ Γ

∖ ⋃
M≥1

ΣM , for k ≥ 0. (24)

Proof. It can be proved using the approach dis-
cussed in [Ashwin et al., 2003]. �

Although this lemma can be proved using the
approach discussed in [Ashwin et al., 2003], the
effects of the input step size and the initial condi-
tions to the exhibition of elliptic fractal patterns
have not been explored in [Ashwin et al., 2003]
yet. Lemma 8 addresses these issues. We can see
from Lemma 8 that elliptic fractal patterns will
occur when the filter parameter satisfies the con-
dition stated in Eq. (21), the input step size is kept
below the bound defined in Eq. (22) and the ini-
tial condition satisfies Eq. (23). Note that when the
magnitude of u is larger than the bound defined in
Eq. (22), or when the filter parameters are not in
the range defined by Eq. (21) or when the initial
conditions are not in the set defined in Eq. (23)
but still in the trapezoids, then Lemma 8 will not
be satisfied and elliptic fractal pattern will not be
exhibited in the phase plane.

The importance of Lemmas 7 and 8 is that they
provide information for SDM designers to operate
the SDMs so that the occurrences of limit cycle
and fractal behaviors can be avoided. Hence, annoy-
ing audio tones will not be observed if these SDMs
are employed for audio application [Reefman &
Janssen, 2002].

3.5. Performance of the second
order bandpass interpolative
SDM

In the following simulations, we assume that R = 64
because it is the most common oversampling ratio
employed in audio application [Reefman & Janssen
2002]. As discussed in Sec. 3.1, the natural fre-
quency of a second order bandpass interpolative
SDM should be small, we choose θ = 0.001, which
is 2.0372% of the signal bandwidth π/R. In order to
compare the performances of the second order low-
pass and bandpass interpolative SDMs, the second
order lowpass interpolative SDM with a = a′ = 1,
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b = 1/2 and G = 2 are set because the magnitude
response of this lowpass SDM is close to that of
the bandpass SDM. We first employ x(0) = 0 for
simulations because “initially at rest” is the most
common practical situations. Then, we check if the
conditions for exhibiting limit cycles and fractal

behaviors stated in Secs. 3.3 and 3.4, respectively,
are satisfied or not. If none of these conditions is
satisfied, then we will employ this initial condi-
tion. Otherwise, we generate another initial condi-
tion randomly and check it again. We repeat this
checking procedure for no more than 100 iterations.

(a)

(b)

Fig. 8. Tonal suppression of (a) the lowpass SDM and (b) the bandpass SDM. (c) Ratio of the improvement of the tonal
suppression.
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(c)

Fig. 8. (Continued)

Note that only less than 100 iterations are checked
because this can prevent trapping into a dead loop
of the generation of the initial conditions.

In order to compare the performance of the
lowpass and the bandpass SDMs, tonal suppression
and SNR are used as the criteria. Tonal suppres-
sion reflects the ability of the avoidance of annoy-
ing audio tones and SNR reflects the reconstruction
errors of the A/D and D/A conversions. We define
the tonal suppression as:

TS(ω0) ≡ |S(ω0)|
max

ω∈(0,π)\{ω0}
|S(ω)| . (25)

Figures 8(a) and 8(b) show the tonal
suppression of the lowpass SDM, denoted as
TS lowpass(ω0), and that of the bandpass SDM,
denoted as TS bandpass(ω0), respectively. Figure 8(c)
shows the ratio of the improvement of the
tonal suppression, that is (TSbandpass(ω0) −
TS lowpass(ω0))/TS lowpass(ω0). It can be seen from
Fig. 8(c) that there are many positive spikes,
which implies that the bandpass SDM has higher
tonal suppression than the lowpass SDM for
most frequencies and input magnitudes. Besides,
Fig. 9 shows the magnitude spectra of the output
sequences of the lowpass and bandpass SDMs when
the DC input with the step size u = 0.7 is applied

under zero initial condition x(0) = 0. It can be seen
from Fig. 9 that there are impulses in the magni-
tude spectrum of the output sequence of the lowpass
SDM, which demonstrates that the lowpass SDM
exhibits the limit cycle behavior. On the other hand,
the bandpass SDM operates normally.

The definition of the SNR adopted in this
paper is based on that defined in [Schreier, 2003].
Figure 10 shows the SNRs of the lowpass and band-
pass SDMs under the same oversampling ratios,
that is, R = 64, and operating conditions. That
is, we assume that the frequency of the sinusoidal
input is 2/3 of the signal bandwidth π/R. Accord-
ing to Fig. 10, we can see that the lowpass SDM can
only achieve an average of 66.1751 dB for an input
magnitude less than or equal to 1.06, and 9.2952 dB
for that between 1.07 and 2. On the other hand, the
bandpass SDM can achieve an average of 80.7934 dB
for an input magnitude less than or equal to 1.16,
and 12.0046 dB for that between 1.17 and 2 by
using our checking procedures. Hence, the bandpass
SDM has an average of 14.6183 dB and 2.7094 dB
improvements for low and high input magnitudes,
respectively, as well as an increase in the input sta-
bility margin of 0.1. These results show that the
bandpass SDM with the natural frequency very
close to zero can achieve a higher SNR than that
of the lowpass SDM, and our derived conditions
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Fig. 9. Magnitude spectra of the output sequences of the lowpass and bandpass SDMs.

Fig. 10. SNRs of the lowpass and bandpass SDMs.
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for checking the exhibition of limit cycle and frac-
tal behaviors are useful for operating the bandpass
SDM.

4. Conclusion

In this paper, we propose to replace a second order
lowpass interpolative SDM by a second order band-
pass interpolative SDM with the natural frequency
of the loop filter very close to zero. If the natu-
ral frequency of the bandpass SDM is smaller than
the value which depends on the oversampling ratio,
then the magnitude response of the bandpass SDM
will be close to that of the lowpass SDM. The main
advantage of employing the bandpass SDM are that
the global stability of the SDM can be guaran-
teed if the frequency spectrum of the input of the
loop filter does not contain an impulse located at
the natural frequency of the loop filter. Moreover,
the conditions for the occurrence of limit cycle and
fractal behaviors are derived, so these unwanted
behaviors can be avoided accordingly. Simulation
results show that the bandpass SDM can achieve
higher SNR and tonal suppression than that of the
lowpass SDM.
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