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A real-time semiautonomous stereo panning system for music mixing has been implemented. The system uses spectral
decomposition, constraint rules, and cross-adaptive algorithms to perform real-time placement of sources in a stereo mix. A
subjective evaluation test was devised to evaluate its quality against human panning. It was shown that the automatic panning
technique performed better than a nonexpert and showed no significant statistical difference to the performance of a professional

mixing engineer.

1. Introduction

Stereo panning aims to transform a set of monaural signals
into a two-channel signal in a pseudostereo field [1]. Many
methods and panning ratios have been proposed, the most
common one being the sine-cosine panning law [2, 3]. In
stereo panning the ratio at which its power is spread between
the left and the right channels determines the position of
the source. Over the years the use of panning on music
sources has evolved and some common practices can now be
identified.

Now that recallable digital systems have become com-
mon, it is possible to develop intelligent expert systems
capable of aiding the work of the sound engineer. An expert
panning system should be capable of creating a satisfactory
stereo mix of multichannel audio by using blind signal
analysis, without relying on knowledge of original source
locations or other visual or contextual aids.

This paper extends the work first presented in [4]. It
presents an expert system capable of blindly characterizing
multitrack inputs and semiautonomously panning sources
with panning results comparable to a human mixing engi-
neer. This was achieved by taking into account techni-
cal constraints and common practices for panning, while
minimizing human input. Two different approaches are

described and subjective evaluation demonstrates that the
semi-autonomous panner has equivalent performance to
that of a professional mixing engineer.

2. Panning Constraints and Common Practices

In practice, the placement of sound sources is achieved using
a combination of creative choices and technical constraints
based on human perception of source localization. It is not
the purpose of this paper to emulate the more artistic and
subjective decisions in source placement. Rather, we seek to
embed the common practices and technical constraints into
an algorithm which automatically places sound sources. The
idea behind developing an expert semi-autonomous panning
machine is to use well-established common rules to devise
the spatial positioning of a signal.

(1) When the human expert begins to mix, he or she
tends to do it from a monaural, all centered position,
and gradually moves the pan pots [5]. During this
process, all audio signals are running through the
mixer at all times. In other words, source placement
is performed in realtime based on accumulated
knowledge of the sound sources and the resultant



mix, and there is no interruption to the signal path
during the panning process.

(2) Panning is not the result of individual channel
decisions; it is the result of an interaction between
channels. The audio engineer takes into account the
content of all channels, and the interaction between
them, in order to devise the correct panning position
of every individual channel [6].

(3) The sound engineer attempts to maintain balance
across the stereo field [7, 8]. This helps maintain the
overall energy of the mix evenly split over the stereo
speakers and maximizes the dynamic use of the stereo
channels.

(4) In order to minimize spectral masking, channels with
similar spectral content are placed apart from each
other [6, 9]. This results in a mix where individual
sources can be clearly distinguished, and this also
helps when the listener uses the movement of his or
her head to interpret spatial cues.

(5) Hard panning is uncommon [10]. It has been
established that panning a ratio of 8 to 12dBs is
more than enough to achieve a full left or full right
image [11]. For this reason, the width of the panning
positions is restricted.

(6) Low-frequency content should not be panned. There
are two main reasons for doing this. First, it ensures
that the low-frequency content remains evenly dis-
tributed across speakers [12]. This minimizes audible
distortions that may occur in the high-power repro-
duction of low-frequencies. Second, the position of
a low frequency source is often psychoacoustically
imperceptible. In general, we cannot correctly local-
ize frequencies lower than 200 Hz [13]. It is thought
that this is due to the fact that the use of InterTime
Difference as a perceptual clue for localization of
low frequency sources is highly dependent on room
acoustics and loudspeaker placement, and Inter-Level
Differences are not a useful perceptual cue at low
frequencies since the head only provides significant
attenuation of high-frequency sources [14].

(7) High-priority sources tend to be kept towards the
centre, while lower priority sources are more likely
to be panned [7, 8]. For instance, the vocalist in a
modern pop or rock group (often the lead performer)
would often not be panned. This relates to the idea
of matching a physical stage setup to the relative
positions of the sources.

3. Implementation

3.1. Cross-Adaptive Implementation. The automatic panner
is implemented as a cross-adaptive effect, where the output
of each channel is determined from analysis of all input
channels [15]. For applications that require a realtime signal
processing, the signal analysis and feature extraction has
been implemented using side chain processing, as depicted
in Figure 1. The audio signal flow remains real-time while
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FiGure 1: General diagram of a cross-adaptive device using side
chain processing with feature accumulation.

the required analysis of the input signals is performed in
separate instances. The signal analysis involves accumulating
a weighted time average of extracted features. Accumulation
allows us to quickly converge on an appropriate panning
position in the case of a stationary signal or smoothly adjust
the panning position as necessary in the case of changing
signals. Once the feature extraction within the analysis side
chain is completed, then the features from each channel are
analyzed in order to determine new panning positions for
each channel. Control signals are sent to the signal processing
side in order to trigger the desired panning commands.

3.2. Adaptive Gating. Because noise on an input microphone
channel may trigger undesired readings, the input signals are
gated. The threshold of the gate is determined in an adaptive
manner. By noise we refer not only to random ambient noise
but also to interference due to nearby sources, such as the
sound from adjacent instruments that are not meant to be
input to a given channel.

Adaptive gating is used to ensure that features are
extracted from a channel only when the intended signal is
present and significantly stronger than the noise sources. The
gating method is based on a method implemented in [16, 17]
by Dugan. A reference microphone may be placed outside
of the usable source microphone area to capture a signal
representative of the undesired ambient and interference
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FIGURE 2: Quasiflat frequency response bandpass filter bank (Type
A filter bank for K = 8). (a) Filter bank consisting of a set of
eight second order band-pass IIR Biquadratic filters with center
frequencies as follow: 100Hz, 400Hz, 1kHz, 2.5kHz, 5kHz,
7.5kHz, 10kHz, and 15000 kHz. (b) Combined response of the
filter bank.

noise. The reference microphone signal is used to derive
an adaptive threshold by opening the gate only if the input
signal magnitude is grater than the reference microphone
magnitude signal. Therefore the input signal is only passed
to the side processing chain when its level exceeds that of the
reference microphone signal.

3.3. Filter Bank Implementation. The implementation uses
a filter bank to perform spectral decomposition of each
individual channel. The filter bank does not affect the audio
path since it is only used in the analysis section of the
algorithm. It was chosen as opposed to other methods of
classifying the dominant frequency or frequency range of a
signal [18] because it does not require Fourier analysis, and
hence is more amenable to a real-time implementation.

For the purpose of finding the optimal spectral decom-
position for performing automatic panning, two different
eight-band filter banks were designed and tested. The first
consisted of a quasiflat frequency response bandpass filter
bank, which for the purposes of this paper we will call filter
bank type A in Figure 2, and the second contained a lowpass
filter decomposition filter bank, which we will call filter bank
type B in Figure 3. In order to provide an adaptive frequency
resolution for each filter bank, the total number of filters, K,
is equal to the number of input channels that are meant to be
panned. The individual gains of each filter were optimized to
achieve a quasiflat frequency response.

3.4. Determination of Dominant Frequency Range. Once
the filter bank has been designed, the algorithm uses the
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FIGURE 3: Lowpass filter decomposition filter bank (Type B filter
bank for K = 8). (a) Filter bank comprised of a set of second order
low-pass IIR Biquadratic filters with cutoff frequencies as follows:
35 Hz, 80 Hz, 187.5 Hz, 375 Hz, 750 Hz, 1.5 kHz, 3 kHz, and 6 kHz.
(b) Combined response of the filter bank. All gains have been set to
have a maximum peak value of 0 dBs.

band limited signal in each filter’s output to obtain the
absolute peak amplitude for each filter. The peak amplitude
is measured within a 100 ms window. The algorithm uses
the spectral output of each filter contained within the filter
bank to calculate the peak amplitude of each band. By
comparing these peak amplitudes, the filter with the highest
peak is found. An accumulated score is maintained for the
number of occurrences of the highest peak in each filter
contained within the filter bank. This results in a classifier
that determines the dominant filter band for an input
channel from the highest accumulated score.

The block diagram of the filter bank analysis algorithm is
provided in Figure 4. It should be noted that this approach
uses digital logic operations of comparison and addition
only, which makes it highly attractive for an efficient digital
implementation.

3.5. Cross-Adaptive Mapping. Now that each input channel
has been analyzed and associated with a filter, it remains
to define a mapping which results in the panning position
of each output channel. The rules which drive this cross-
adaptive mapping are as follows.

The first rule implements the constraint that low-
frequency sources should not be panned. Thus, all sources
with accumulated energy contained in a filter with a high
cutoff frequency below 200 Hz are not panned and remain
centered at all times.

The second rule decides the available panning step of
each source. This is a positioning rule which uses equidistant
spacing of all sources with the same dominant frequency
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FIGURE 4: Analysis block diagram for one input channel.

range. Initially, all sources are placed in the centre. The
available panning steps are calculated for every different
accumulated filter, k, where k ranges from 1 to K, based
on the number of sources, Ny, whose dominant frequency
range resides in that filter. Due to this channel dependency
the algorithm will update itself every time a new input is
detected in a new channel, or if the spectral content of an
input channel suffers from a drastic change over time.

For filters which have not reached maximum accumu-
lation there is no need to calculate the panning step, which
makes the algorithm less computationally expensive. If only
one repetition exists for a given kth filter (N = 1) the system
places the input at the center.

The following equation gives the panning space location
of the ith source residing in the kth filter:

(1/2, Ni=1,
N—i—1 . .
. —, + N dd,
P(ik) = { 2(Ne — 1) PRk O (1)
Ni—i . .
- 7, + 2] 1)
N 1) i+ Nk is even, N #

where P(i, k) is the ith available panning step in the kth filter,
i ranges from 1 to Ny and P(i,k) = 0.5 corresponds to a
center panning position.
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Using this equation, if Ni is odd, the first source, i = 1,
is positioned at the center. When Nj is even, the first two
sources, i = 2,3, are positioned either side of the center.
In both cases, the next two sources is positioned either
side of the previous sources and so on such that sources
are positioned further away from the centre as i increases.
The extreme panning positions are 0 and 1. However, as
mentioned, hard panning is generally not preferred. So our
current implementation provides a panning width control,
Py, used to narrow or widen the panning range. The
panning with has a valid range from 0 to 0.5 where 0 equates
to the wide panning possible and 0.5 equates to no panning.
In our current implementation, it defaults to Py = 0.059.
The Py value is subtracted for all panning positions bigger
than 0.5 and added to all panning positions smaller than 0.5.
In order to avoid sources originally panned left to cross to the
right or sources originally panned right to cross to the left,
the panning width algorithm ensures that sources in such
cases default to the centre position.

3.6. Priority. Equation (1) provides the panning position for
each of the sources with dominant spectral content residing
in the kth filter, but it does not say how each of those
sources are ordered from source i = 1 to i = Ni. The
common practices mentioned earlier would suggest that
certain sources, such as lead vocals, would be less likely
to be panned to extremes than others, such as incidental
percussions. However, the current implementation of our
automatic panner does not have access to such information.
Thus, the authors have proposed to use a priority driven
system in which the user can label the channels according
to importance. In this sense, it is a semiblind automatic
system. Thus, all sources are ordered from highest to the
lowest priority. For the Nj sources residing in the kth filter,
the first panning step is taken by the highest priority source,
the second panning step by the next highest priority source,
and so on. The block diagram containing the constrained
decision control rule stage of the algorithm is presented in
Figure 5.

3.7. The Panning Processing. Once the appropriate panning
position was determined, a sine-cosine panning law [2] was
used to place sources in the final sound mix:

(P(z k)n) Fnlx),

Sfrout(x) = sin
o 2)
fLout(X)=C0( b ) Fnl).

An interpolation algorithm has been coded into the
panner to avoid rapid changes of signal level. The inter-
polator has a 22 ms fade-in and fade-out, which ensures a
smooth natural transition when the panning control step is
changed.

In Figure 6, the result of down-mixing 12 sinusoidal test
signals through the automatic panner is shown. It can be seen
that both f; and fi, are kept centered and added together
because their spectral content is below 200 Hz. The three
sinusoids with a frequency of 5 kHz have been evenly spread.
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f> has been allocated to the center due to priority while f;
has been send to the left and fs has been send to the right,
in accordance with (1). Because there is no other signal with
the same spectral content than fi;, it has been assigned to
the center. The four sinusoids with a spectral content of
15kHz have been evenly spread. Because of priority, f3 has
been assigned a value of 0.33, f; has been assigned a value of
0.66, fo has been assigned all the way to the left, and fjy has
been assigned all the way to the right, in accordance with (1).
Finally, the two sinusoids with a spectral content of 20 KHz
have been panned to opposite sides. All results prove to be
in accordance with the constraint rules proposed for cross-
adaptive mapping.

4, Results

4.1. Test Design. In order to evaluate the performance
of the semiautonomous panner algorithm against human
performance, a double blind test was designed. Both of auto-
panning algorithms were tested, the bandpass filter classifier
known as algorithm type A, and the low-pass classifier
known as algorithm type B. Algorithms were randomly
tested in a double blind fashion.

The control group consisted of three professional human
experts and one nonexpert, who had never panned music
before. The test material consisted of 12 multitrack songs of
different styles of music. Stereo sources were used in the form
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FIGURE 6: Results of automatic panning based on the proposed
design. The test inputs were 12 sinusoids with amplitude equal to
one and the following frequencies: fi = 125Hz, f, = 5kHz, f; =
15kHz, fy = 5kHz, fs = 20kHz, fy = 5kHz, f; = 15kHz, f; =
20kHz, fy = 15kHz, fip = 15kHz, fi = 10kHz,and fi, = 125Hz

of two separate monotracks. Where acoustic drums were
used, they would be recorded with multiple microphones
and then premixed down into a stereo mix. Humans and
algorithms used the same stereo drum and keyboard tracks as
separate left and right monofiles. All 12 songs were panned
by the expert human mixers and by the nonexpert human
mixer. They were asked to pan the song while listening for
the first time. They had the length of the song to determine
their definitive panning positions. The same songs were
passed through algorithms A and B only once for the entire
length of the song. Although the goal was to give the human
and machine mixers as close to the same information as
possible, human mixers had the advantage of knowing which
type of instrument it was. Therefore, they assigned priority
according to this prior known knowledge. For this reason a
similar priority scheme was chosen to compensate for this.
Both A and B algorithms used the same priority schema.
Mixes used during the test contain music freely available
under creative commons copyright can be located in [19].
As shown in Figure 7, the test used two questions to
measure the perceived overall quality of the panning for
each audio comparison. For the first question, “how different
is the panning of A compared to B?”, a continuous slider
with extremities marked “exactly the same” and “completely
different” was used. The answer obtained in this question
was used as a weighting factor in order to decide the validity
of the next question. The second question, “which file, A
or B, has better panning?”, used a continuous slider with
extremes marked “A quality is ideal” and “B quality is ideal”.
For both of these questions, no visible scale was added in
order not to influence their decision. The test subjects were
also provided with a comment box that was used for them to
justify their answers to the previous two questions. During
the test it was observed that expert subjects tend to use the
name of the instrument to influence their panning decisions.
In other words they would look for the “bass” label to make
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sure that they kept it center. This was an encouraging sign
that panning amongst professionals follows constraint rules
similar to those that were implemented in the algorithms.

The tested population consisted of 20 professional sound
mixing engineers, with an average experience of 6-year work
in the professional audio market. The tests were performed
over headphones, and both the human mixers and the test
subjects used exactly the same headphones. The test lasted
an average time of 82 minutes.

Double blind A/B testing was used with all possible
permutations of algorithm A, algorithm B, expert and
amateur panning. Each tested user answered a total of 32
questions, two of which were control questions, in order to
test the subject’s ability to identify stereo panning. The first
control question consisted of asking the test subjects to rate
their preference between a stereo and a monaural signal.
During the initial briefing it was stressed to the test subject
that stereo is not necessarily better than monaural audio. The
second control question compared two stereo signals that
had been panned in exactly the same manner.

4.2. Result Analysis. All resulting permutations were classi-
fied into the following categories: monaural versus stereo,
same stereo versus same stereo file, method A versus method
B, method A versus nonexpert mix, method B versus
nonexpert mix, method A versus expert mix, and method B
versus expert mix.

Results obtained on the question “How different is
panning A compared to B?” were used to weight the results
obtained for the second question “Which file, A or B, has
better panning quality?”. This is in order to have a form of
neglecting incoherent answers such as “I find no difference
between files A or B but I find the quality of B to be better
compared to A”.

Answers to the first question showed that, with at least
95% confidence, the test subjects strongly preferred stereo to
monaural mixes. The second question also confirmed with
at least 95% confidence that professional audio engineers
find no significant difference when asked to compare two
identical stereo tracks. The results are summarized in Table 1,
and the evaluation results with 95% confidence intervals are
depicted in Figure 8.

The remaining tests compared the two panning tech-
niques against each other and against expert and nonexpert
mixes. The tested audio engineers preferred the expert mixes
to panning method A, but this result could only be given with
80% confidence. On average, non-expert mixes also were
preferred to panning method A, but this result could not be
considered significant, even with 80% confidence.

In contrast, panning method B was preferred over non-
expert mixes with over 90% confidence. With at least 95%
confidence, we can also state that method B was preferred
over method A. Yet when method B is compared against
expert mixes, there is no significant difference.

The preference for panning method B implies that low-
pass spectral decomposition is preferred over band-pass
spectral decomposition as a means of signal classification for
the purpose of semi-autonomous panning. Furthermore, the
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lack of any statistical difference between panning method B
and expert mixe, (in contrast to the significant preference for
method B over non-expert mixes, and for expert mixes over
method A) leads us to conclude that the semi-autonomous
panning method B performs roughly equivalently to an
expert mixing engineer.

It was found that the band-pass filter bank, method A,
tended to assign input channels to less filters than the low-
pass filter bank, method B. The distribution of input tracks
among filters for an 8-channel song for both methods is
depicted in Figure 9. In effect, panning method B is more
discriminating as to whether two inputs have overlapping
spectral content and hence is less likely to unnecessarily
place sources far from each other. This may account
for the preference of panning method B over panning
method A.

The subjects justified their answers in accordance with
the common practices mentioned previously. They relied
heavily on manual instrument recognition to determine the
appropriate position of each channel. It was also found that
any violation of common practice, such as panning the lead
vocals, would result in a significantly low measure of panning
quality. One of the most interesting findings was that spatial
balance seemed to be not only a significant cue used to
determine panning quality but was also a distinguishing
factor between expert and non-expert mixes. Non-expert
mixes were often weighted to one side, whereas almost
universally, expert mixes had the average source position in
the centre. Both panning methods A and B were devised to
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FIGURE 8: Summarized results for the subjective evaluation. The
first two tests were references (comparing stereo against monaural,
and comparing identical files), and the remaining questions
compared the two proposed auto-panning methods against each
other and against expert and non-expert mixes. 95% confidence
intervals are provided.

perform optimal left to right balancing. Histograms of source
positions which demonstrate these behaviors are depicted in
Figure 10.
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TasLE 1: Double blind panning quality evaluation table.

Test Number of Comparisons Preference Confidence Standard Deviation Mean
Stereo versus 20 Stereo 95% 0.61545 ~0.4561
Mono
Stereo versus 20 Identify them 95% 0.0287 0.0064
Stereo to be the same
Human Expert
versus Method 144 Human 80% 0.5105 —0.666
A
et N
versus 56 95% 0.5956 —0.0552
Non-expert between
algorithms

Method B
versus 56 Method B 90% 0.6631 0.1583
Non-expert

No significant
Method B 144 difference 95% 0.5131 0.0108
versus Expert between

algorithms

Method A
versus Method 200 Method B 95% 0.4474 —0.0962
B
5. Conclusions and Future Work References

In terms of generating blind stereo panning up-mixes with
minimum human interactions, we can conclude that it is
possible to generate intelligent expert systems capable of
performing better than a non-expert human while having
no statistical difference when compared to a human expert.
According to the subjective evaluation, low-pass filter-
bank accumulative spectral decomposition features seem to
perform significantly better than band-pass decompositions.

More sophisticated forms of performing source priority
identification in an unaided manner need to be investigated.
To further automate the panning technique, instrument
identification and other feature extraction techniques could
be employed to identify those channels with high priority.
Better methods of eliminating microphone cross-talk noise
need to be researched. Furthermore, in live sound situations,
the sound engineer would have visual cues to aid in panning.
For instance, the relative positions of the instruments on
stage are often used to map sound sources in the stereo
field. Video analysis techniques could be used to incorporate
this into the panning constraints. Future subjective tests
should include visual cues and be performed in real sound
reinforcement conditions.

Finally, the work presented herein was restricted to stereo
panning. In a two-or three-dimensional sound field, there
are more degrees of freedom, but rules still apply. For
instance, low-frequency sources are often placed towards the
ground, while high-frequency sources are often placed above,
corresponding to the fact that high frequency sources emitted
near or below the ground would be heavily attenuated [20].
It is the intent of the authors to extend this work to automatic
placement of sound sources in a multispeaker, spatial audio
environment.
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