
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 12, NO. 4, JUNE 2010 247

A Real-Time Framework for Video
Time and Pitch Scale Modification

Ivan Damnjanovic, Dan Barry, David Dorran, and Joshua D. Reiss

Abstract—A framework is presented which addresses the issues
related to the real-time implementation of synchronized video and
audio time-scale and pitch-scale modification algorithms. It allows
for seamless real-time transition between continually varying, in-
dependent time-scale and pitch-scale parameters arising as a result
of manual or automatic intervention. We illuminate the problems
which arise in a real-time context as well as provide novel solutions
to prevent artifacts, minimize latency, and improve synchroniza-
tion. The time and pitch scaling approach is based on a modified
phase vocoder with optional phase locking and an integrated tran-
sient detector which enables high-quality transient preservation in
real-time. A novel method for audio/visual synchronization was im-
plemented in order to ensure no perceptible latency between audio
and video while real-time time scaling and pitch shifting is applied.
Evaluation results are reported which demonstrate both high audio
quality and minimal synchronization error.

Index Terms—Adaptive video refresh rate, audio/visual synchro-
nization, time-scale modification.

I. INTRODUCTION

S YNCHRONIZED audio and video time stretching is often
used in video editing and production whenever video con-

tent needs to be sped up or slowed down either as a creative
effect or to fit certain time slots within a program schedule, as
is the case in television advertisements.

Time-scale modification (TSM) is typically used to change
the tempo of musical content or the playback rate of speech
without affecting pitch content. Conversely, pitch-scale modifi-
cation (PSM) algorithms enable pitch shifting without affecting
the playback rate of the audio content. A significant amount of
research has been dedicated to both TSM and PSM yielding a
variety of time and frequency domain algorithms. Despite this
abundance of literature and readily available commercial appli-
cations, there is still a lack of information, understanding, and
consideration for real-time implementations of TSM and PSM
algorithms. Here we illuminate some of the problems which
arise in a real-time context as well as provide novel solutions

Manuscript received July 13, 2009; revised October 05, 2009 and December
07, 2009; accepted December 10, 2009. First published March 22, 2010; cur-
rent version published May 14, 2010. This work was supported in part by the
European Community under the Information Society Technologies (IST) pro-
gramme of the 6th FP for RTD-project EASAIER contract IST-033902. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Shrikanth Narayanan.

I. Damnjanovic and J. D. Reiss are with Queen Mary, University of
London, London, E14NS, U.K. (e-mail: ivan.damnjanovic@elec.qmul.ac.uk;
josh.reiss@elec.qmul.ac.uk).

D. Barry and D. Dorran are with the Audio Research Group, Dublin Institute
of Technology, Dublin 8, Ireland (e-mail: dan.barry@dit.ie; david.dorran@dit.
ie).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2010.2046296

to these issues. A real-time software-based framework is pre-
sented, which allows time stretching of audio content within
digital video streams while maintaining synchronization with
the video content. Time-scale changes can be made in real-time
with almost unperceivable latency and no transitional artefacts.
In addition, the approach also supports real-time pitch shifting
of the audio content independent of time-scale changes. The
approach is based on a modified phase vocoder with optional
phase locking and an integrated transient detector which enables
high-quality transient preservation in real-time.

Within this article, emphasis is given to audio/visual (A/V)
synchronization issues which arise in such a framework. De-
spite the growth in algorithms for independent audio time
or pitch modification, there are relatively few applications
which address combined time stretching of video and audio.
In [1], a method for adjusting video playback rate to com-
pensate for network delay is presented. Similarly, [2] presents
an adaptive method for video playback, intended to address
issues concerning packet loss and random delays in streaming
applications. Their method uses audio time scaling when the
streamed video playback speed is modified, as suggested for
packet loss in voice communication [3].

Synchronized audio and video time scaling is typically used
in video editing and production whenever video content needs
to be sped up or slowed down either as a creative effect or to fit
certain time slots within a program schedule. For example, TSM
can be used to alter the duration of an advertisement while pre-
serving the pitch and timbre of speech and other audio content.
Experiments have shown that increasing the information rate in
commercials is more engaging and more favorable to viewers.
In [4], it was suggested that an increase in the rate of informa-
tion of up to 130% of the typical speech rate can significantly
increase the impact of advertisements.

The driving force for the work presented here on real-time
synchronized audio/video time-stretching comes from user re-
quirements and user feedback in music education research [5],
[6], which indicated that time-scaled video would be desirable
in applications related to aural learning, music transcription, and
musical technique analysis. The effects of audio/video time-
compression and expansion on the learning process have been
thoroughly studied [4]–[8]. Besides time efficiency benefits, it
was shown that learning from accelerated material can be at least
equally as effective as the normal speed of presentation. There
were further findings that students watching accelerated mate-
rial stay more focused. At normal speech rates they “become
bored and their attention begins to wander” [7], and learning
processes benefit from acceleration of presentation as long as
intelligibility can be maintained [8]. For entertainment applica-
tions, internet video streaming, digital video players, and set-top

1520-9210/$26.00 © 2010 IEEE

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 12,2010 at 17:04:18 UTC from IEEE Xplore. Restrictions apply.

248 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 12, NO. 4, JUNE 2010

devices can benefit greatly from an audio/video time stretching
tool. Studies of digital video browsing [9] noted that one of the
highest rated enhanced features was watching time-compressed
video.

II. AUDIO TIME-SCALE MODIFICATION

Time-scale modification can be achieved in a number of ways
in both the time and frequency domain. However, time domain
approaches are typically not considered ideally suited to mixed
audio content, which may include speech, polyphonic music,
and ambient noise. As such, the real-time time-scale modifica-
tion technique proposed here is based on a set of modifications
to the phase vocoder [10], a popular frequency domain approach
to time-scaling. A comprehensive tutorial outlining the theory
of the traditional phase vocoder is presented in [11] and a brief
description is provided here.

The Fourier transform interpretation of the phase vocoder
is mathematically equivalent to a short time Fourier transform
(STFT) [12] which segments the analyzed signal into overlap-
ping frames which are separated by a certain “hop size”. Within
phase vocoder implementations, TSM is achieved by varying
the analysis hop size with respect to the resynthesis hopsize

such that the time scaling factor is calculated as .
It follows then that will result in timescale compres-
sion (speed up), and will result in timescale expan-
sion (slow down). Within the phase vocoder, analysis frames are
“remapped” along the time axis resulting in newly constructed
synthesis frames, each with a modified phase spectrum, to en-
sure that the synthesis frames maintain phase coherence through
time. Since the phase spectrum of each frame must be modified,
the windowing function will also be affected. For this reason,
a resynthesis window is necessary and a 75% overlap is recom-
mended to avoid modulation at the output. This will result in the
output having a constant gain factor of approximately 1.5 which
can easily be compensated by multiplying all samples by the re-
ciprocal of the gain factor. An overlap of 75% corresponds to a
fixed synthesis hop size, , of samples.

In order for the synthesis frames to overlap synchronously,
the frame phases must be updated such that phase continuity
is maintained between adjacent output frames. The standard
method used to calculate suitable synthesis phases involves cal-
culation of the instantaneous frequency of each bin in radians
per sample. Having obtained the instantaneous frequency, it is
possible to predict the expected phase of any component for a
given synthesis hop size. Given that the frequency content of
both music and speech is stationary only over short periods,
phase estimates will decrease in accuracy as the hop sizes in-
crease. The most accurate way to estimate phase for each com-
ponent is by first calculating the principal argument of the het-
erodyned phase increment between adjacent analysis frames as
defined in [10] and [11]. The instantaneous frequency is then
calculated in radians per sample. In order to calculate the phase
spectrum for the new synthesis frame at the time scaled output,
the instantaneous frequency is multiplied by the synthesis hop
size , and added to the resultant synthesis phases from the
previous frame. This is known as phase propagation or phase up-
dating. The newly modified phases along with the original mag-
nitude spectrum are then used to reconstruct the audio frame.

Although the time scaled output is horizontally phase co-
herent at this point, the timbral quality is often described as
sounding “phasey” or “distant” and is generally not regarded
as natural sounding. Particularly noticeable is how transients
are affected by the phase vocoder. These artifacts can be at-
tributed to the fact that the standard phase vocoder only at-
tempts to achieve an optimal phase relationship between adja-
cent frames, known as horizontal phase coherence. However,
the pursuit of horizontal phase coherence has a profoundly neg-
ative effect on vertical phase coherence, which describes the re-
lationship between the phases of frequency components within
a single frame. Maintaining vertical phase coherence is an im-
portant consideration in order to achieve natural sounding TSM.

The improved phase vocoder [13] explicitly attempts to iden-
tify sinusoidal frequency bins in FFT frames by a peak picking
process within the magnitude spectrum. The phases of these
truly sinusoidal peak frequency bins are then updated in the
traditional manner, i.e., by maintaining horizontal phase coher-
ence between corresponding peak frequency bins of successive
frames. The nonsinusoidal frequency bins are then updated by
maintaining the phase difference that existed between each bin
and its closest peak/sinusoidal frequency bin. The process is
known as peak locking.

III. REAL-TIME CONSIDERATIONS

FOR DYNAMIC TIME-SCALING

When a fixed time-scale factor is applied to an entire audio
signal, both and remain fixed. In which case, the posi-
tion in time of any analysis or synthesis frames can be defined
as and , respectively, where is an incre-
menting integer representing a sequence of frames as in [10].
For real-time implementations, where the time-scale factor, ,
may be varying dynamically due to user intervention, this defini-
tion will introduce distortions into the time-scaled output since
the analysis hop is no longer fixed. The solution is to redefine

as . This ensures that the current
analysis frame position, , is always updated correctly. The po-
sition in time of the current analysis frame is always related to
both the previous analysis frame and the current time scaling
factor, .

Although it is favorable to vary the analysis hop and fix
the synthesis hop to achieve TSM, it can result in inaccurate
frequency estimation for time-scaling factors . When the
signal is being sped up, the distance between analysis frames
exceeds . It becomes impossible to accurately predict the
amount of phase unwrapping to be applied during the frequency
estimation stage of the horizontal phase update procedure de-
scribed in [10] and [11], resulting in inaccurate synthesis phase
estimates. In addition to this, when is varied over time, the ac-
curacy of the instantaneous frequency estimates also varies. This
leads to momentary artefacts whenever the time-scale factor, ,
is changed. Effectively, the transitions between frames with dif-
ferent TSM factors are not perceptually smooth despite the win-
dowed overlapping scheme. The solution to both of these prob-
lems is to ensure that the instantaneous frequency estimates are
always derived using the phase differences between the current
analysis frame and a frame one synthesis hop back from the po-
sition of the current analysis frame, . Although

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 12,2010 at 17:04:18 UTC from IEEE Xplore. Restrictions apply.

DAMNJANOVIC et al.: REAL-TIME FRAMEWORK FOR VIDEO TIME AND PITCH SCALE MODIFICATION 249

an extra FFT and an extra buffer is required to obtain the phases
of this frame, it guarantees that phase unwrapping errors will
not be present and that the instantaneous frequency estimates
will be consistent regardless of variation in . The phase update
equation [10], [11] is now redefined in (1):

(1)

When vertical phase coherence is to be maintained, peak
locking can be used, and only the sinusoidal or peak frequency
bins are updated using (1), with all other bins updated as in
[10] and [11]. This method of phase updating removes the
need to estimate the instantaneous frequency. However, for the
case where pitch scale modification is required, calculation
of instantaneous frequency is still necessary. Nonetheless, the
“hop-back” method described above is used to avoid phase
unwrapping errors and to maintain smooth pitch and time-scale
transitions. This will be discussed in the next section.

A similar phase update procedure was proposed in [14] in
which time-scale modification is achieved through the insertion
and deletion of entire frames. Since the approach we propose
here uses a variable analysis hop size, it has the advantage of
maintaining better estimates of the magnitude spectrum, thereby
greatly reducing the possibility of removing or repeating per-
ceptually salient characteristics within the time-scaled signal.

IV. REAL-TIME PITCH SHIFTING

The simplest method to shift the apparent pitch of a signal is
by interpolating or decimating the time domain signal. The re-
sulting signal, although pitch shifted, is also shortened or length-
ened by the reciprocal of the interpolation/decimation factor .
A common technique used to shift the pitch and maintain dura-
tion is to pitch scale the signal using interpolation/decimation,
and apply complimentary time-scale modification to restore the
original length of the signal. This is easily achieved in the of-
fline context but becomes difficult to implement in a real-time
context. If both pitch shifting and time scaling are required si-
multaneously, the problem becomes more difficult since time
scaling is required for two alternate operations (pitch and time
scaling) within the same frame. When the signal is both time
scaled and interpolated for any time scaling factor and pitch
shifting factor , the required compensatory time-scale factor,
such that the resultant signal is both the required pitch and length
[15], is simply .

In a real-time context, the pitch and time scaling must be car-
ried out within a single frame interval (in this implementation 23
ms). Two issues arise. First, the computational requirements are
directly related to the product of and , since each frame must
now be time-scaled internally to compensate for pitch shifting.
This makes real-time operation unfeasible for large products

. Second, the length of the resultant frame is no longer fixed.
An additional buffer must be used in order to handle the over-
flow if the resultant frame exceeds (analysis frame size) sam-
ples. If , the resultant frame will be smaller than the
required samples. In this case, more input frames need to be
processed until there are sufficient samples to generate an output
frame. These issues can make the output unpredictable, added
to which the solutions are computationally intensive.

Fig. 1. Real-time re-sampling method used for obtaining fixed length pitch
shifted frames. A illustrates no pitch change, B pitching down, and C pitching
up.

Here we present a novel method for real-time pitch shifting
which resolves the problematic issues raised above. The com-
putational requirements are not dependent on and , and the
method guarantees that a fixed frame length can be generated
independent of the time and pitch scale factors used. No inter-
frame time scaling and no additional buffers are required. The
pitch shifting is performed using linear re-sampling in the time
domain, and phase vocoder theory is then applied using a modi-
fied phase update equation which incorporates the pitch scaling
factor . In order to generate a pitch shifted frame of known
length, we interpolate or decimate the input time domain signal
over the range to , where is a fixed analysis
frame size chosen to ensure adequate frequency resolution. This
results in a time domain frame of length which has been
generated by interpolating or decimating samples by the
pitch scaling factor . Fig. 1 illustrates this procedure. This
frame now constitutes an analysis frame which can have arbi-
trary time scaling applied using the phase update equations pre-
sented below.

The goal is to estimate the phase propagation required to
allow successive interpolated frames to be updated such that the
pitch shifted and time scaled output is horizontally phase co-
herent. Recall (1), which was introduced as a preferred method
to ensure reliably wrapped phase difference estimates. This was
achieved by using an extra FFT to estimate the phases of the
frame exactly one synthesis hop back from the current analysis
frame, thereby allowing the phase differences to be estimated
over a known fixed interval equal to . The “apparent” analysis
hop is now equal to the synthesis hop, but the actual value of
is still variable. In order to estimate suitable synthesis phases for
pitch shifted frames, the instantaneous frequency must be cal-
culated as follows. A new method to calculate the heterodyned
phase increment for pitch shifted frames is given by (2), where
the interpolation factor, , is now included in the equation:

(2)

where and represent the phases
of the current analysis frame and an analysis frame exactly one
synthesis hop back from the current value of . The resulting

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 12,2010 at 17:04:18 UTC from IEEE Xplore. Restrictions apply.

250 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 12, NO. 4, JUNE 2010

term, , is then the principle argument of the heterodyned
phase increment of the pitch shifted frame such that it is in the
range to . Since the frames have been interpolated or deci-
mated (resulting in frequency shifts), they will no longer exhibit
the expected phase derivatives over a given hop, . To calculate
the correct phase increment, the hop must also be multiplied by
the reciprocal of the pitch scaling factor, . The instantaneous
frequency in radians per sample of the pitch shifted frame is
given by (3):

(3)

As opposed to the standard method [10], [11], we divide the
phase deviation by instead of , because the method used
to calculate phase difference in (3) uses two frames separated
by a fixed distance, . The standard phase update equation
[10], [11] can now be used, and peak locking can be applied
as discussed previously. The advantages of using (1) for phase
updating have already been incorporated in (2) above. We now
have modified phase vocoder equations which allow real-time
pitch shifting and time stretching simultaneously. A key advan-
tage of using this method for pitch shifting is that compensatory
time scaling is not required. Instead, the pitch scaling factor is
incorporated in the phase update equations. This guarantees that
the computational load remains fixed and predictable for any
combination of time and pitch scaling factors.

V. REAL-TIME TRANSIENT PRESERVATION

Although peak locking contributes to maintaining the tim-
bral quality of transients during TSM, transients should not be
time-scaled if a naturally sounding output is required. An of-
fline solution was proposed in [16]. The approach taken here
is to identify transients automatically in real-time. Upon detec-
tion of a transient, the time-scale factor is returned to “1” (no
scaling), and the analysis phases are mapped directly to the syn-
thesis phases (phase locking) for the duration of the transient.
When the transient has passed, the time-scale factor is automat-
ically reset to the value prior to the transient. Transients rep-
resent an ideal place to lock the phases since any discontinuities
introduced to the time scaled signal will be masked by the tran-
sient itself.

In order to identify an analysis frame as a transient [17], the
log difference of each frequency component between consecu-
tive frames is calculated as in (4). This measure effectively tells
us how rapidly the spectrogram is fluctuating:

(4)

where is the log energy difference between frames
separated by , and is the current analysis frame instant. In
order to detect the presence of a transient, we define a measure
given in (5):

if
otherwise

(5)

where is a threshold which signifies the rise in energy,
measured in dB, which must be detected within a frequency
channel before it is deemed to belong to an onset. In order for

Fig. 2. Highly dynamically compressed signal containing rock music is de-
picted in the top plot. The bottom plot shows the output of the percussive onset
detector.

the frame to be declared a transient, must exceed a
second threshold . In practice, we have found that
and give satisfactory results for most popular
music. Thus, a transient is detected at frame , if at least 75%
of the bins in the log difference spectrogram (4), exceed a value
of 6 dB. Note that using this measure, the energy present in
the signal is not the defining factor of the transient. Instead,
we assign the transient probability, , using a measure of
how “broadband” or percussive the onset is [17]. This is based
on the number of bins exhibiting a positive first derivative ex-
ceeding , as described by (5). Fig. 2 shows the effectiveness
of this approach. Despite the fact that the signal itself has little
dynamic range, the feature detector is rarely prone to false
detections which makes it ideal for transient detection in time
scaling. Furthermore, it can easily be implemented within the
current framework since the only requirement is that the current
and previous frame magnitudes are available.

Upon detecting a transient, the time-scale factor, , is au-
tomatically returned to “1”, inhibiting TSM momentarily. We
term this method “transient hopping”. In addition, the frame
phases are locked and the frame is mapped directly to the output.
This mechanism preserves the transient and ensures that it is re-
produced unaffected at the output. Since we use 75% overlap,

for analysis frame length 4096, a short transient
will exist in four consecutive frames. In order to preserve the
transient correctly, the TSM factor, , must remain at a value of
“1” until all overlapping frames have passed the transient. Since
the local time-scale factor is reduced, a time-scale compensation
factor is applied after each transient. Equation (6) describes this
action:

if
if

otherwise
(6)

where is the global time-scale factor, is the TSM factor to
be applied during the frames proceeding the transient, is the
maximum desired TSM factor, and must be strictly greater
than 1. The number of frames, , in which the time-scale com-
pensation factor must be applied after the transient, is dependent
on the maximum timescale factor, such that .
Using a larger number of frames to compensate for the transient
has the advantage that smaller TSM factors may be distributed
over a longer time period, thus reducing signal distortion due to
excessive timescale factors.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 12,2010 at 17:04:18 UTC from IEEE Xplore. Restrictions apply.

DAMNJANOVIC et al.: REAL-TIME FRAMEWORK FOR VIDEO TIME AND PITCH SCALE MODIFICATION 251

Fig. 3. Time-scale factor as a function of transient detection.

Fig. 4. Relationship between input and output frames for � � �.

Fig. 3 illustrates how the time scaling factor is varied before
and after the transient in order to both preserve the transient and
to maintain a constant global time-scale factor.

VI. BUFFER SCHEMES

One of the key issues in a real-time implementation of TSM
is the choice of buffer scheme and for completeness sake we
suggest a suitable scheme here. In offline processing, the entire
signal is overlapped and concatenated before playback. How-
ever, in a real-time environment, a constant stream of processed
audio must be outputted and consecutive output frames must be
continuous. In order for seamless concatenation, the boundaries
of each output frame must be at the constant gain associated with
the overlap factor in order to avoid modulation. The method pre-
sented below addresses this concern. For reasons discussed in
previous sections, a 75% overlap is recommended. This effec-
tively means that at any one time instant, four analysis frames
are actively contributing to the current output frame.

In Fig. 4, the audio to be processed is divided into overlap-
ping frames of length . In order to output a processed frame,
four full frames would need to be processed and overlapped.
This leads to considerable latency from the time a parameter
change is affected to the time when its effects are audible at the
output. However, given that the synthesis hop size is fixed at

, we can load and process a single frame of length
, output 1/4 of the frame, and retain the rest in a buffer to

overlap with audio in successive output frames. To do this, a
buffer of length is required in which the current processed
frame (with synthesis window applied) is placed. Three addi-
tional buffers of length , , and will also be re-
quired to store remaining segments from the three previously

Fig. 5. Real-time output buffer scheme using a 75% overlap. The gray arrows
indicate how each segment of each buffer is shifted after the output frame has
been generated.

processed frames. Each output frame of length is then gen-
erated by summing samples from each of these four buffers.
Fig. 5 shows how the buffer scheme works. On each iteration ,
a full frame, , of length is processed and placed in buffer 1.
The remaining samples from the three previous frames occupy
buffers 2, 3, and 4. The required output frame of length ,

, is generated as defined in (7):

(7)

From (7), it can be seen that the output frame, , is gener-
ated by summing the first samples form each buffer. Once
the output frame has been generated and outputted, the first
samples in each buffer can be discarded. The data in all buffers
must now be shifted in order to prepare for the next iteration.
The gray arrows in Fig. 5 illustrate how each segment of each
buffer is shifted in order to accommodate a newly processed
frame in the next iteration. The order in which the buffers are
shifted is vital. Buffer 4 is filled with the remaining sam-
ples from buffer 3, buffer 3 is then filled with the remaining
samples from buffer 2, and finally buffer 2 is filled with the re-
maining samples from buffer 1. Buffer 1 is now empty
and ready to receive the next processed frame of length . The
result of this scheme is that 1/4 of a processed frame will be out-
putted at time intervals of , which is equal to samples.
Using the suggested frame size of 4096 samples, the output will
be updated every 1024 samples which is approximately equal
to 23.2 ms. The audio will be processed with newly updated pa-
rameters every 23.2 ms, but the latency will be larger than this
and depends on the time required to access and write to hard-
ware buffers in the audio interface. In general however, it is pos-
sible to achieve latencies 40 ms.

VII. SYNCHRONIZATION WITH THE HOST APPLICATION

The requirement to synchronize independent time and
pitch scaling with video and screen updates adds additional
complexity. To maintain multimedia synchronization, the
time scaling process should control the master clock within
an application. In this section, we present a real-time media
synchronization framework which has made this possible.

Previous sections have described in detail the audio pro-
cessing blocks required to achieve real-time time and pitch

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 12,2010 at 17:04:18 UTC from IEEE Xplore. Restrictions apply.

252 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 12, NO. 4, JUNE 2010

Fig. 6. Overview of clocking between time/pitch scale modification and host
application.

scaling simultaneously. Fig. 6 shows how the overall system is
configured.

Firstly, it is important to note that, in order to allow time-scale
modification to be carried out in real-time while maintaining
synchronization with other media such as video or screen up-
dates, e.g., the audio locators, it is necessary to pass full con-
trol of the host clock to the time scaling algorithm. This is be-
cause time scaling by its very nature involves manipulation of
the time base of the audio. As described previously, the time in-
crement between frames is purely dependent on the choice of
time-scale factor. Furthermore, if we wish to continuously vary
the time-scale factor, the time line becomes nonlinear at transi-
tion points. Essentially, the time-scale algorithm must be able to
request any audio frame, starting at any sample point within the
audio stream.

With this in mind, the first stage involves loading an audio
frame defined by the time-scale algorithm itself. Immediately
following this, the first stage of pitch shifting is achieved by
interpolating or decimating the input waveform by the pitch
scaling factor. Regardless of time or pitch scale factor, one full
frame is always populated on every iteration. For example, using
a pitch scale factor of “2”, samples will be interpolated to
produce an sample frame where is the frame size. If the
frame is identified as a transient, no further processing is ap-
plied, and time scaling is suspended for four frames (due to 75%
overlap). The frames around a transient are reproduced at the
output identical to that of the input and the audio clock is up-
dated as normal. If no transient has been detected, the phases are
updated according to the modified phase update equations. Pitch
shifting is only completed at this stage since the phase update
procedure needs to include the interpolation factor. Following
this, the processed audio frame is reproduced and re-windowed.
The audio clock is then updated, and the frame incremented by a
varying factor depending on the user input (i.e., TSM factor). In
order to produce a continuous stream of audio, the buffer scheme
described above is used.

Regardless of what processing is carried out by the time-
scaling algorithm, it is solely responsible for updating the host
clock. The host then uses this information to update screen com-
ponents which depend on audio playback position. Thus, all
screen components, processes, and visualizations are synchro-
nized with the audio clock which is controlled by the time-scale
modification algorithm.

VIII. VIDEO SYNCHRONIZATION

Combined audio/visual artefacts that can be introduced due
to loss of synchronization are often the most perceptually unde-
sirable. Failure to keep audio and video streams synchronized,
known as “lip sync errors,” result in audio events occurring be-
fore or after the associated video frames. When audio advances
video by 20 ms or when audio lags video by 40 ms, it becomes
detectable. Errors of 40 ms and 160 ms are “subjectively
annoying” as reported by the International Telecommunications
Union (ITU) in 1993 [18]. Further research reported in ITU-R
BT1359-1 [19] showed reliable detection of 45 ms audio leading
and 125 ms audio lagging, while the acceptability region is even
wider. The ITU recommends that the difference between audio
and video should be no less than 90 ms and no more then 185
ms. In reality, this range is probably too wide for acceptable per-
formance. For example, in video footage of musical instruments
being played, key strokes or string plucks are more precise than
lip movement during speech, so the synchronization thresholds
need to be reduced. In addition, when a video has been stretched
it can be easier to analyze, and therefore, synchronization errors
become more perceivable.

In this section, three approaches to the preservation of
audio/video synchronization in time scaling applications will
be presented. Insertion and deletion of frames is necessary when
the frame rate is dictated by the playback device. Television
standards such as PAL/SECAM and NTSC use standardized
refresh rates, and hence, the output of a time stretching module
must maintain a corresponding frame rate. However, many
software implementations of video players, including mplayer,
VLC player, and others, allow for change of the video rate
once the compressed video is unpacked. Screen refresh rate of
modern equipment is in the range of 100–200 Hz, so variations
in the frame rate can be introduced by choosing when a partic-
ular video frame will be shown on the display device. Hence,
less noticeable artefacts and smoother picture transition can
be obtained when variable frame rate, the second method, is
applied. The third method, adaptive video refresh rate (AVRR),
relies on the precision of the audio clock. Synchronization is
maintained by ensuring that the video time code remains locked
to the audio time code within an allowable threshold.

Video time stretching for conventional broadcast uses inser-
tion and deletion of frames to maintain synchronization. When
speeding up the video, some frames need to be dropped, while
when slowing down, some need to be duplicated. When frames
are duplicated or dropped, maximal synchronization error is half
of a video frame length, since we round to the closest frame.
Hence, if the frame rate is 25 fps, maximal error will be 20 ms.
This error range (20 ms to 20 ms) meets ITU recommenda-
tions for lip sync error to be undetectable. However, it may not
be good enough for more demanding applications such as time

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 12,2010 at 17:04:18 UTC from IEEE Xplore. Restrictions apply.

DAMNJANOVIC et al.: REAL-TIME FRAMEWORK FOR VIDEO TIME AND PITCH SCALE MODIFICATION 253

Fig. 7. Video time scaling implementation.

stretching of video, when precise movements are slowed and be-
come easier to analyze. In addition, frame duplication can cause
jerkiness to be perceived in the video of slow steady movements.

Changing the video frame rate by the scaling factor will gen-
erally give a smoother image since frames are equally spaced
in time. The additional advantage is that no frames are dropped
when speeding up. Ideally, timing for a new frame is easy to cal-
culate by advancing the previous frame time by the new frame
rate interval. However, due to the fact that timing precision is
influenced by factors such as temperature and humidity, simply
setting-up the next frame to display a given period after the pre-
vious frame without comparing it to a master clock can cause
long-term synchronization errors.

The AVRR method refreshes the display with a new frame
when the video time code is equal to (or within a threshold of)
the original time code of the audio frame being outputted. The
refresh rate is adaptive since the period between two frames
adapts to the audio clock. Ideally, it should be equal to the re-
ciprocal of the scaled frame rate, but will oscillate around that
value. We define here two time-lines; one is the media player’s
actual time-line and the other is the original media time-line.
It is crucial for this method to calculate precisely the time on
the media time-line of the audio sample currently being played.
This time value is then compared with the original time code
associated with non-time-scaled video frames and the display
is refreshed with this frame when the video frame time code is
smaller than or equal to the time of the audio sample that is cur-
rently being outputted. To minimize loss of synchronization due
to computationally intensive processing, the decoding algorithm
needs to be efficient and implemented in a separate high-priority
thread.

The video-synchronized time stretching algorithm described
above was implemented as presented in Fig. 7, and intended for
a demanding application requiring fast access to audio frames
while other intensive processing tasks are performed. Here, the
audio stream is first uncompressed and stored locally in an audio
input buffer. Unlike audio, however, uncompressed video would
require an unacceptably large local buffer, so video packets are
accessed directly from the compressed stream.

Since video decoding is done online, particular consideration
was given to its implementation. Higher time compression rates
will demand that video frames be decoded and scaled much
faster than usual. Hence, the video decoding is carried out to-
gether with video zooming in a separate high-priority thread.
The video decoding thread receives two control inputs from the
user interface. Video zoom factors, changeable from the inter-
face, are sent directly to the video scaler, which scales a frame
according to a zoom factor and sends it to the video display
buffer. Change of playback position is sent to the decoder, and
it instructs the decoder to seek the stream and also to erase any
previously decoded frames from video display buffer.

The time-stretching factor is sent to the audio processing
engine in order to change the analysis hop size, and the audio
output frame timestamp is calculated accordingly. However,
this timestamp is not sufficient for proper A/V synchronization,
since it represents the time when the audio frame is sent to the
audio hardware buffer. For example, if an audio frame is 1024
samples and the sample rate is 44 100 Hz, the time resolution
will be 23.2 ms. For the normal playback speed, this may
be sufficient, but in the case of doubling the playback speed,
the time span between two audio sample points on the media
timeline becomes 46.4 ms. Hence, some measure of fullness of

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 12,2010 at 17:04:18 UTC from IEEE Xplore. Restrictions apply.

254 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 12, NO. 4, JUNE 2010

the audio hardware buffer needs to be introduced for precise
timing of outputted audio samples. The fullness of the hardware
audio buffer is hardware dependent and measuring it is often a
complex task, so we propose to find approximate timing of the
audio sample by measuring the time difference between
the moment the audio frame is sent to the hardware buffer and
the current time. This value is then added to the timestamp of
the audio frame that was sent to the audio buffer , and
is then compared with the video frame timestamp . The
display is refreshed with this frame when the video frame time
code is smaller than or equal to the calculated audio time:

(8)

Another issue is timer precision for measuring . In Win-
dows OS, the maximal precision that can be achieved with the
standard timer is 15 ms, which is hardly enough for a synchro-
nization application. Hence, is measured by measuring CPU
counts from the moment the frame is sent to the hardware buffer
and then dividing by the CPU count frequency. Since gives
a value related to the real playback time-line, it is transposed to
the media time line by dividing it by the time-stretching factor :

(9)

However, both variable frame rate and adaptive video refresh
rate have the potential disadvantage that at higher time-scale
factors, since more frames are displayed per second, frames
need to be decoded much faster. Synchronization can be lost
if a frame is not decoded within a frame interval, so a preferred
solution is to combine AVRR with frame dropping when loss of
synchronization occurs. In our implementation, whenever the
video lag exceeds 20 ms, the application instructs the decoder
not to decode the following frame, and returns to full decoding
when the lag returns to under 10 ms.

IX. AUDIO QUALITY EVALUATION

Since the focus of this research is concerned with the real-
time implementation of a synchronized video/audio and mul-
timedia time and pitch scale modification algorithm, the eval-
uation of the audio time-scale algorithm presented here is not
intended to be comprehensive. Instead, to ensure that this real-
time implementation has not resulted in a compromise to the
audio quality of the algorithm, a series of subjective listening
tests were carried out in order to ensure that the TSM algorithm
is as least as good as that described in [13]. The transient detec-
tion has not been used in these comparison tests since [13] does
not employ transient detection.

In total, ten subjects undertook a series of 20 tests1 each, to-
taling 200 individual tests. The tests used included slowing and
speeding of audio as well as pitch shifting in both directions
by a range of factors. Both time and pitch scale factors ranged
from 0.75 to 1.5. A range of signals including solo and ensemble
music from a range of genres and male and female speech seg-
ments sampled at 16 bit, 44.1 kHz comprise the test suite. Each
listener was presented with an unprocessed reference signal and

1http://www.audioresearchgroup.com/downloads/tsmtests.zip

Fig. 8. Subjective listening test results for ten subjects. Along the horizontal
axis, 1 indicates a predominant preference for real-time TSM whereas 5 indi-
cates predominant preference for the improved phase vocoder [13].

two alternative processed signals. The same processing param-
eters and frame sizes are used in each algorithm. The order in
which the algorithms are presented was randomized.

The results are presented in Fig. 8, where results for each sub-
ject are given from 1 to 5, where 1 indicates predominant pref-
erence for real-time TSM, 3 indicates no preference, and 5 indi-
cates predominant preference for the improved phase vocoder.
The subjective listening tests indicate that the overall trend is
such that the algorithms are perceived to perform equally well.
The average value over all 200 tests was 2.985, very close to
no preference, with a relatively low standard deviation of 0.94.
Subjects who were predisposed to distinctly choosing 1 algo-
rithm over the other tended to choose each algorithm a similar
number of times indicating equivalence of the algorithms. Many
subjects reported that the algorithms sounded very similar but
felt compelled to make explicit decisions regardless. The data
are skewed slightly in favor of the real-time TSM algorithm,
but it is likely that a greater number of test subjects would intro-
duce greater balance in the data. Some differences between the
algorithms which may account for this include the fact that the
real-time TSM algorithm does not perform peak locking above
10 KHz due to the fact that peak locking is intended to main-
tain the phase relationship between the peak and lobes of sinu-
soidal components. Significant acoustic energy above 10 KHz
is often stochastic and attributed to transients, noise, and ambi-
ence. Peak locking above 10 KHz forces nonsinusoidal compo-
nents into a state of unnatural phase coherence which can sound
objectionable to subjects with acute hearing in the upper fre-
quency range.

Theoretically, the pitch shifting quality in [13] should out-
perform that of the real-time algorithm but subjective tests have
shown that the differences are largely imperceptible for mod-
erate time scaling factors (in the region of .75 to 1.5) although
the real-time algorithm can become noticeably more objection-
able when opposing time and pitch scale factors are used simul-
taneously (i.e., slow down and pitch up simultaneously). This
is due to the efficient pitch shifting technique used to achieve
frame synchronous pitch shifting.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 12,2010 at 17:04:18 UTC from IEEE Xplore. Restrictions apply.

DAMNJANOVIC et al.: REAL-TIME FRAMEWORK FOR VIDEO TIME AND PITCH SCALE MODIFICATION 255

Fig. 9. Comparison of video lag for three video player implementations when
playback speed is half of original.

Fig. 10. Video lag when playback speed is doubled.

X. A/V SYNCHRONIZATION EVALUATION

To measure the quality of the A/V synchronization algorithm,
we compared it with integration of our time-stretching into
the FFmpeg (v0.4, ffmpeg.org/ffplay-doc.html) platform and
with the MPlayer implementation (v1.0rc2, http://www.mplay-
erhq.hu/) in LinuxOS. FFplay is a well-known efficient open
source application for video encoding, and MPlayer is a robust,
open source video player based on ffmpeg libraries. One of the
many features of MPlayer is the possibility to change playback
speed, but without independent pitch-shifting. Nevertheless,
this feature, robust implementation and the possibility to ex-
tract A/V synchronization information make MPlayer useful
for evaluation and comparison with our algorithm. For A/V
synchronization, FFplay uses duplicating and dropping video
frames whereas MPlayer uses a variable frame rate.

We compared video players on the “Casino Royale” trailer
sequence coded in MPEG1 format with video frame dimension
640 352 at 23.97 frames per second and an audio sample rate
of 44100 Hz. The video frame lag with respect to audio is pre-
sented for 100 video frames from the middle of the sequence
in the case of playing the video at half of the original speed
(Fig. 9) and with double the original speed (Fig. 10). It can be
seen that our adaptive video refresh rate algorithm outperforms
the other two methods, because of the precise matching of the
video timestamp to the audio clock. The video lag of the AVRR
time-stretching algorithm is also well below the ITU lip sync
error recommendation with maximal video lag being 14 ms and

Fig. 11. Average video lag as a function of time scaling factor.

maximal video advance being 13 ms in the case of doubled play-
back speed. Moreover, the standard deviation of video lag is
3.328 ms, showing stability of this solution.

Fig. 11 depicts the average video lag as a function of the
time scaling factor for the three video synchronization tech-
niques. FFplay was modified to ensure that it would not decode
dropped frames; otherwise, its performance would be signifi-
cantly worse. However, it still shows notable degradation in per-
formance as the time scaling factor increases beyond 2 and video
frame decoding becomes significantly slower than the time to
process a time scaled audio frame. MPlayer maintains suitable
performance as time scale increases, though it does not adapt the
variable refresh rate to the precise audio time codes. The AVRR
method maintains strong synchronization over the entire range
of time scaling factors. Only at time scaling factors beyond 3.5
does the AVRR occasionally lose synchronization, and opts not
to decode a frame.

XI. CONCLUSIONS

A framework for real-time independent video time scaling
and pitch shifting was presented. Careful consideration was
given to the problems which arise in a real-time context and
novel solutions to these issues have been provided. It was
shown how time-scale changes can be achieved in real-time
with almost imperceptible latency and no transitional artefacts.
The approach is based on a modified phase vocoder with op-
tional phase locking and an integrated transient detector which
enables high-quality transient preservation in real-time.

The framework presented is the basis for the developments
of applications which allow for a seamless real-time transition
between continually varying, independent video time-scale and
pitch-scale parameters. A novel solution for audio/visual syn-
chronization called adaptive video refresh rate has also been de-
veloped. Due to the fact that synchronization errors in the fore-
seen applications will be easier to detect, special focus was given
to minimizing video lags and advances, resulting in an algorithm
that significantly outperforms existing algorithms.

REFERENCES

[1] M. C. Yuang, S. T. Liang, and Y. G. Chen, “Dynamic video playout
smoothing method for multimedia applications,” Multimedia Tools
Appl., vol. 6, pp. 47–59, 1998.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 12,2010 at 17:04:18 UTC from IEEE Xplore. Restrictions apply.

256 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 12, NO. 4, JUNE 2010

[2] M. Kalman, E. Steinbach, and B. Girod, “Adaptive media playout
for low delay video streaming over error-prone channels,” IEEE
Trans. Circuits Syst. Video Technol., vol. 14, no. 6, pp. 841–851,
Jun. 2004.

[3] Y. J. Liang, N. Färber, and B. Girod, “Adaptive playout scheduling
using time-scale modification in packet voice communication,” pre-
sented at the Int. Conf. Acoustics, Speech, and Signal Processing
(ICASSP), Salt Lake City, UT, 2001, pp. 1445–1448.

[4] P. LaBarbera and J. MacLachlan, “Time-compressed speech in radio
advertising,” J. Market., vol. 43, pp. 30–36, 1979.

[5] C. Landone, J. Harrop, and J. D. Reiss, “Enabling access to sound
archives through integration, enrichment and retrieval: The EASAIER
project,” presented at the 8th Int. Conf. Music Information Retrieval
(ISMIR), Vienna, Austria, 2007.

[6] C. Duffy, “A case study of networked sound resources for education in
traditional music: The HOTBED project,” presented at the Integration
of Music in Multimedia Applications, Barcelona, Spain, 2004.

[7] J. S. Olson, “A study of the relative effectiveness of verbal and visual
augmentation of rate-modified speech in the presentation of technical
material,” in Proc. Annu. Conv. Association for Educational Commu-
nications and Technology (AECT), Anaheim, CA, 1985.

[8] K. Harrigan, “The SPECIAL system: Searching time-compressed
digital video lectures,” J. Res. Comput. Educ., vol. 33, pp. 77–86,
2000.

[9] F. C. Li, A. Gupta, E. Sanocki, L. He, and Y. Rui, “Browsing digital
video,” presented at the ACM CHI, Hague, The Netherlands, 2000.

[10] J. L. Flanagan, D. I. S. Meinhart, R. M. Golden, and M. M. Sondhi,
“Phase vocoder,” J. Acoust. Soc. Amer., vol. 38, p. 939, 1965.

[11] M. Dolson, “The phase vocoder: A tutorial,” Comput. Music J., vol. 10,
pp. 14–27, 1986.

[12] M. Portnoff, “Implementation of the digital phase vocoder using the
fast Fourier transform,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-24, no. 3, pp. 243–248, Jun. 1976.

[13] J. Laroche and M. Dolson, “Improved phase vocoder timescale mod-
ification of audio,” IEEE Trans. Speech Audio Process., vol. 7, no. 3,
pp. 323–332, May 1999.

[14] J. Bonada, “Automatic technique in frequency domain for near-lossless
time-scale modification of audio,” presented at the Int. Computer Music
Conf., Berlin, Germany, 2000, pp. 396–399.

[15] J. Laroche, “Autocorrelation method for high quality time/pitch
scaling,” presented at the IEEE WASPAA, Mohonk, NY, 1993, pp.
131–134.

[16] C. Duxbury, M. Davies, and M. Sandler, “Improved time-scaling of
musical audio using phase locking at transients,” presented at the 112th
AES Conv., Munich, Germany, May 10–13, 2002, pp. 1–5.

[17] D. Barry, D. FitzGerald, and E. Coyle, “Drum source separation
using percussive feature detection and spectral modulation,” pre-
sented at the IEE Irish Signals and Systems Conf., Dublin, Ireland,
2005, pp. 13–17.

[18] International Telecommunication Union Document 11A/47-E, Oct. 13,
1993.

[19] Relative Timing of Sound and Vision for Broadcasting. Recommen-
dation, International Telecommunication Union ITU-R BT. 1359-1,
1998.

Ivan Damnjanovic received the Ph.D. degree in signal processing from Queen
Mary University of London, London, U.K., in the field of digital watermarking
of compressed video sequences, doing extensive research in human perception
modeling, compression techniques, and information theory.

He is a Research Assistant with the Centre for Digital Music at Queen Mary
University of London. He was contributor to many European Union Framework
projects (BUSMAN, K-SPACE, EASAIER, MESH, and SMALL), working
mainly on audio/visual signal synchronization, processing, analysis, and
retrieval. More recently, he has focused on machine learning, including devel-
oping multimodal dictionary learning and sparse representation techniques, and
on their application to audio/visual signal synthesis and analysis, i.e., source
separation, automatic music transcription, and audio/video enhancement.

Dan Barry was born in 1979 in Dublin, Ireland. He is currently the manager
and senior researcher in the Audio Research Group based in the Department
Electrical Engineering Systems at The Dublin Institute of Technology. His re-
search focuses predominantly on real-time audio signal processing with partic-
ular interest in the areas of sound source separation, time and pitch modification,
automatic audio retrieval systems, noise reduction, surround sound processing,
and digital audiometry. In addition to extensive publication the areas, he holds
several patents in audio signal processing and has developed technologies for
several international companies through academic and private consultancy. In
addition to technological research, he also runs an audio mastering facility and
has previously engineered and mastered a large number of recordings. Further-
more, he is a keen musician and continues to write and perform music.

David Dorran received the honours degree in electrical/electronic engineering
from the Dublin Institute of Technology, Dublin, Ireland, in 1998 and the Ph.D.
degree in audio time-scale modification in May 2005.

He worked in industry in both a hardware and software engineering capacity
for four years before returning to academia in 2002, when he undertook a re-
search position in the audio signal processing domain. He has published exten-
sively in the area of audio time-scale modification. In November 2005, he was
appointed Assistant Lecturer in electrical/electronic engineering in the School
of Electrical Engineering Systems in the Dublin Institute of Technology and is
heavily involved in the Institute’s Audio Research Group. In November 2008,
he progressed to a full lecturing position, and his current research interests are
in the area of speech transformations and audio processing.

Joshua D. Reiss received the Ph.D. in physics from Georgia Tech, Atlanta, spe-
cializing in analysis of nonlinear systems.

He is a Senior Lecturer with the Centre for Digital Music at Queen Mary
University of London, London, U.K. He made the transition to audio and mu-
sical signal processing through his work on sigma delta modulators, which led
to patents. He has investigated music retrieval systems, time scaling and pitch
shifting techniques, polyphonic music transcription, loudspeaker design, auto-
matic mixing for live sound, and digital audio effects. His primary focus of re-
search, which ties together many of the above topics, is on the use of state-of-
the-art signal processing techniques for professional sound engineering.

Dr. Reiss received a nomination for a best paper award from the IEEE.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 12,2010 at 17:04:18 UTC from IEEE Xplore. Restrictions apply.

