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Abstract: - In this paper we present the results obtained in our search for stable high performance single bit sigma-delta 
modulator loopfilter transfer functions. The results presented are made for third order modulators and give the 
performance impact on them when varying both poles and zeroes of the transfer function. This loopfilter function 
search is done with fast theoretical calculation of signal to noise ratio without need of simulations and combined with 
theory that gives approximated value for modulator’s maximal stable DC input signal. 
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1   Introduction 
     Sigma-Delta modulators are the standard for analog 
to digital conversion nowadays (ADC). When using high 
oversampling ratios sigma-delta modulators (SDM) can 
achieve very high signal to noise ratio (SNR) [1]. They 
shape the noise and push it to frequencies higher than the 
operational band of interest. Thanks to its simplicity, 
single bit code shaping SDM are of greatest interest, 
because they’re performance is influenced only by the 
loopfilter’s transfer function and the modulator’s 
oversampling ratio (OSR). Despite this in practice the 
modulator’s maximal DC input signal range and its SNR 
are determined mostly by simulations, which also leave a 
zone of uncertainty. Furthermore a lot of engineers 
experiment with the loopfilter coefficients in order to 
achieve more SNR, but up to date there is still no such a 
thing as optimal loopfilter transfer function for specific 
modulator order that provides both high performance 
and stable modulator behavior. All of the realistic 
loopflter transfer functions have the poles grouped into a 
complex conjugate pairs and one real pole when having 
odd modulator order. In order to increase modulator 
performance some authors move one of the complex 
conjugate pair of poles [3] or the real pole [4] a little bit 
outside of the unit circle, while keeping the other poles 
inside resulting in increased SNR and reduced stability 
limit for maximal DC input signal amplitude beyond 
which the modulator becomes unstable. 
     This paper presents a design approach for a third 
order SDM taking into account the stability and SNR 
performance. The approach includes variation of the 
poles and zeroes positions on the unit circle of third 
order sigma-delta modulator loopfilter. For that type of 
analysis a parallel decomposition form of the loopfilter 
given in [2] is used. The results presented in [2] allows 

approximation of the maximal stable DC input signal 
value for single bit quantizer modulators with this 
particular filter form and they are used in the design 
procedure. For faster SNR calculation a derivation of it 
from the loopfilter noise transfer function is used, 
because in this case there is no need of modulator’s 
output bitstream resulting in no need of SDM 
simulations [5]. 
     The paper is organized as follows. In the next chapter 
a theoretical background necessary for understanding the 
approach is given. Then in the third chapter is presented 
the design procedure targeted to obtain SDM loopfilter 
transfer functions providing both decent performance 
and guaranteed stable modulator behavior. In the fourth 
chapter are presented the procedure results obtained 
from simulations and calculations. The conclusion 
remarks are given in fifth chapter. 
 
2   Theoretical background 

For better understanding the design approach here we 
will remind briefly the results in [2] that are used. The 
well known basic structure of an SDM is shown in Fig.1, 
and consists of a filter with transfer function G(z) 
followed by a one-bit quantizer in a feedback loop.  
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Figure1.  Basic sigma delta modulator structure. 

The system operates in discrete time and the input to 
the loop is a discrete-time sequence u(n)∈[-1, 1], 
appearing in quantized form at the output. The discrete-
time sequence x(n) is output of the filter and quantizer 
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input. Quantizer producing an output of +1 when its input 
is positive and –1 when its input is negative (single-bit), 
will not provide a good approximation to its input signal 
and for that reason an feedback loop is used, acting in 
such a way as to shift this quantization noise away from a 
certain frequency band. If an input signal from within this 
frequency band is applied to the loop, most of the noise 
imposed by the quantization process will lie outside the 
frequency band of interest and can subsequently be 
filtered out, leaving a good approximation to the input 
signal. This process is called noise shaping. 

In [2] authors consider a Nth order modulator with a 
loop filter transfer function of the form 
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In the general case the loop filter transfer function 
have complex conjugated roots. Without loss of 
generality we will consider only one pair of complex 
conjugated roots. In this case (1) becomes  
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where the coefficients bi, i=1,2,…,N of the fractional 
components can be found easily using the well known 

formula  
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The denominator of the last part of (2) has a complex 
conjugated pair of roots and therefore (2) becomes 
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i.e. λN-1, λN and bN-1, bN are complex conjugated 
numbers. 

Because of this in [2] the parallel presentation given 
in Fig.2 of third order modulator is used. The values of 
the last two blocks are complex, but the output signal of 
these two blocks is real. They correspond to a second 
order SDM with complex conjugated poles of the loop 
filter transfer function G(z). Both signals x2 and x3 are 
complex conjugated (and x2 is real), namely  
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Because of this the input of the quantizer is real i.e. 
2 3( ) ( ) ( ) ( ) 2 ( ) 2 ( )j x k j x k m k n kδ γ δ γ δ γ− + + = +   (6) 

The modulator could be considered as three first order 
modulators interacting only through the quantizer 
function. The connected signals with two modulators are 
complex, but the input and output signals (u and y) are 
the “true” signals of the modulator. As it is stressed in [2] 

both modulators work cooperative, because their signals 
are conjugated. These modulators do not exist in the real 
SDM and they are introduced to help the analysis of the 
behavior of the whole system. 

 
Figure2.  Block diagram of third order SDM with parallel 

loopfilter form 
 

The benefit of this modulator representation is 
because we can determine whenever the modulator is 
stable or not by the following criterion [2]  
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and additionally we can also determine the maximal 
range of input signal ensuring the stability expressed by 
∆u (DeltaU) 
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3   Design Approach  

For third order modulator with the realistic form of 
the loopfilter (third order transfer function with one real 
and two complex conjugate poles) a pole variation is 
performed (Fig.3). This is done by moving the complex 
conjugate pair inside the unit circle and the real pole on 
the unit circle and away from it in logarithmic 
increments. In order to have result from stability 
condition (7) and ∆u (8), these equations allows only one 
of the poles to be outside of the unit circle and this is the 
reason why the complex conjugate pair is not moved 
outside the unit circle. Some authors prefer to move the 
complex conjugate pair outside of the unit circle, because 
they end up with higher SNR, but with decreased range 
of maximal acceptable input signal [4]. In these cases at 
some point when increasing the input signal amplitude 
the modulator behavior becomes unstable and maximum 
input signal clipping limits determined by simulations are 
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used in order to keep the modulator stable. On the other 
hand moving only the real pole produces higher SNR 
(but not as high as when moving complex pairs), while 
keeping the maximal range of input signal almost equal 
to 1 [3]. Moving the real pole too far away from the unit 
circle produces decrease of SNR and loss of stability and 
for that reason we moved only the real pole outside the 
unit circle. Also when moving the real pole inside of the 
unit circle, when having all other poles are also inside 
leads to SNR decrease. 

 
Figure 3. Position placements of the loopfilter’s poles 

The modulus of the complex pole positions is shown 
in Figure 4. Values equal to almost 1 means that the 
complex pair is very close and almost lying on the unit 
circle. 

 
Figure 4. Modulus of the complex poles values for all the 
complex pole placement positions on the unit circle 

The filter design procedure also includes usage of two 
real zeroes and variation of their values on the real axis.  
For one loopfilter case, where the zeros are chosen to be 
two and real values for some fixed zero positions and the 
pole positions varied, the results for SNR value are given 
in Fig.5 for 64 times oversampling ratio (OSR), input 
sine wave with scaled amplitude value 0.5 and frequency 
2/3 of our band of interest, when SNR is calculated from 
simulations. Also for comparison in Fig.6 is shown SNR 
values that are calculated and theoretically derived from 
loopfilter transfer functions [5] that are formed at every 
iteration step. 

  
Figure 5. SNR results calculated from simulations for fixed 
zeros combination and variation of the real  and complex 
conjugate poles 

  
Figure 6. SNR results calculated on derivations from the 
loopfiler transfer function for fixed zeros combination and 
variation of the real and complex conjugate pair poles 

On Fig.7 for this same particular case the theoretically 
derived for every iteration ∆u value is also plotted. 

 
Figure 7. DeltaU values for one fixed zeros combination 
and variation of the real  and complex conjugate poles 

The practical relation of ∆u and modulator stability 
depending on its signal value is given in Fig.8 in one 
example with usage of poor loopfilter transfer function 
that produces loss of stability for input signals with 
higher amplitude. Here when rising the test sine wave 
amplitude we can observe that at some point we start to 
have an SNR decrease and eventually loss of stability. 
This means that the modulator can be stable for input 
signals with value higher than that of ∆u, but then we 
can’t guarantee its stability (∆u=0.68 in this example).  
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Figure 8. Relation between DeltaU and the value of the 
input signal 

4   Simulation Results 
A procedure rotating all the poles and having two real 

zeros for additional movement inside the unit circle was 
performed. Because of the reduced time for SNR 
calculations when using the approach for deriving it from 
the loopfilter transfer function was used theoretical SNR 
calculation. The theoretical SNR derivation showed very 
high SNR values (as high as more than 100dB for third 
order modulator) when the zeros had small values and 
because the poles were inside the unit circle ∆u criterion 
had also a good value. In practice however, when 
simulation was performed on SDM model when using 
these candidate functions we end up with modulator 
behavior that does not correspond to SDM, i.e. the 
modulator was unstable. When moving the zeroes to 
positions greater than 0.65 then the modulator becomes 
stable. Additionally we observed that moving the zeros to 
values beyond 0.8 leads to decrease of SNR and loss of 
stability when moving the zeroes to much higher values. 
Also when having the zeroes with this bigger values the 
formula for ∆u result appears to be correct and the 
calculated from loopfilter transfer function derivations 
SNR is almost equal to the one calculated from 
simulations. For this reason the search procedure was 
modified to start the zero movement from points with 
values 0.65 for the zeroes and stop at 0.8 (SNR results on 
Fig.9). 

 
Figure 9. Combined zero and pole variation and 
corresponding SNR  

 All the results presented are given for 64 times OSR and 
amplitude value 0.5 of the test input signal sine wave 
with frequency equal to 2/3 of the band of interest. This 
modified procedure give back as an result a lot of 
transfer functions that give an modulator SNR little over 
or little less around 90 dB. SNR of 90dB for third order 
loopfilter transfer function at 64 times OSR is more than 
the 83dB provided by used for comparison DStoolbox 
optimized transfer function, especially when the 
acquired transfer functions have ∆u value almost equal 
to one. One curious observation we had was that when 
moving the complex pole pair deep inside the unit circle 
the modulator vastly decreases its performance and in 
some cases even loses his stability as can be seen on 
Fig.5 and Fig6, where the last iterations include the poles 
nearing the imaginary axis. One example of modulator 
power spectrum shape obtained after simulations, when 
using test sine wave for modulator with one of the 
optimal loopfilter transfer functions is shown on Fig.10. 
One such a transfer function is with two zeros at points 
0.76 and 0.7 lying on the real axis, and with poles equal 
to 1.000001907348633, 0.9985+0.039i and 0.9985-
0.039i. For this example we get value for max stable DC 
input at ∆u=0.999957508095839, or we can say that the 
modulator is stable up to input signals with value almost 
1. For this single example the poles and zeros form 
loopfilter transfer function G(z) having the following 
polynomial form: 

2

3 2

1.46 0.532G(z)= 
2.997001907348633 2.995527058975220 0.998525154531956

z z
z z z

− +
− + −
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Figure 10. SDM spectrum for third order loopfilter transfer 
function providing 90dB SNR 
 
 
5   Conclusion 

In the paper a design approach for stable high 
performance sigma-delta modulator is presented. Based 
on this approach a third order stable SDM with 
reasonable performance in sense of SNR and stable DC 
input signal range is obtained. The approach easily can be 
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generalized for high order modulators. The loss of 
stability when modulator loopfilter poles and zeros are 
deep inside the unit circle and extension of the search 
procedure for higher optimal modulator loopfilter order 
should be a topic for further research.  
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