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Abstract: - In this paper we present the results obtained in our search for stable high performance single bit sigma-delta
modulator loopfilter transfer functions. The results presented are made for third order modulators and give the
performance impact on them when varying both poles and zeroes of the transfer function. This loopfilter function
search is done with fast theoretical calculation of signal to noise ratio without need of simulations and combined with
theory that gives approximated value for modulator’s maximal stable DC input signal.
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1 Introduction

Sigma-Delta modulators are the standard for analog
to digital conversion nowadays (ADC). When using high
oversampling ratios sigma-delta modulators (SDM) can
achieve very high signal to noise ratio (SNR) [1]. They
shape the noise and push it to frequencies higher than the
operational band of interest. Thanks to its simplicity,
single bit code shaping SDM are of greatest interest,
because they’re performance is influenced only by the
loopfilter’s transfer function and the modulator’s
oversampling ratio (OSR). Despite this in practice the
modulator’s maximal DC input signal range and its SNR
are determined mostly by simulations, which also leave a
zone of uncertainty. Furthermore a lot of engineers
experiment with the loopfilter coefficients in order to
achieve more SNR, but up to date there is still no such a
thing as optimal loopfilter transfer function for specific
modulator order that provides both high performance
and stable modulator behavior. All of the realistic
loopflter transfer functions have the poles grouped into a
complex conjugate pairs and one real pole when having
odd modulator order. In order to increase modulator
performance some authors move one of the complex
conjugate pair of poles [3] or the real pole [4] a little bit
outside of the unit circle, while keeping the other poles
inside resulting in increased SNR and reduced stability
limit for maximal DC input signal amplitude beyond
which the modulator becomes unstable.

This paper presents a design approach for a third
order SDM taking into account the stability and SNR
performance. The approach includes variation of the
poles and zeroes positions on the unit circle of third
order sigma-delta modulator loopfilter. For that type of
analysis a parallel decomposition form of the loopfilter
given in [2] is used. The results presented in [2] allows
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approximation of the maximal stable DC input signal
value for single bit quantizer modulators with this
particular filter form and they are used in the design
procedure. For faster SNR calculation a derivation of it
from the loopfilter noise transfer function is used,
because in this case there is no need of modulator’s
output bitstream resulting in no need of SDM
simulations [5].

The paper is organized as follows. In the next chapter
a theoretical background necessary for understanding the
approach is given. Then in the third chapter is presented
the design procedure targeted to obtain SDM loopfilter
transfer functions providing both decent performance
and guaranteed stable modulator behavior. In the fourth
chapter are presented the procedure results obtained
from simulations and calculations. The conclusion
remarks are given in fifth chapter.

2 Theoretical background

For better understanding the design approach here we
will remind briefly the results in [2] that are used. The
well known basic structure of an SDM is shown in Fig.1,
and consists of a filter with transfer function G(z)
followed by a one-bit quantizer in a feedback loop.
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Figurel. Basic sigma delta modulator structure.

The system operates in discrete time and the input to
the loop is a discrete-time sequence u(n)e[-1, 1],
appearing in quantized form at the output. The discrete-
time sequence X(n) is output of the filter and quantizer
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input. Quantizer producing an output of +1 when its input
is positive and —1 when its input is negative (single-bit),
will not provide a good approximation to its input signal
and for that reason an feedback loop is used, acting in
such a way as to shift this quantization noise away from a
certain frequency band. If an input signal from within this
frequency band is applied to the loop, most of the noise
imposed by the quantization process will lie outside the
frequency band of interest and can subsequently be
filtered out, leaving a good approximation to the input
signal. This process is called noise shaping.
In [2] authors consider a N™ order modulator with a
loop filter transfer function of the form
6(2) = EijZ_l ot ayz i
1+d,z7"'+d, 27 +...+d,z
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In the general case the loop filter transfer function
have complex conjugated roots. Without loss of
generality we will consider only one pair of complex
conjugated roots. In this case (1) becomes
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where the coefficients b;, i=1,2,...,N of the fractional
components can be found easily using the well known
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The denominator of the last part of (2) has a complex
conjugated pair of roots and therefore (2) becomes
bz bz b,z

_ -1 _ -1 _ -1 (3)
1-42 1-4y,2 1-4y2

G(2)=

where
g =a+ B, Ay =a—-jp
bN—l =6-]y, bN =0+ ]y

“)

ie. Ani, Anv and by.g, by are complex conjugated
numbers.

Because of this in [2] the parallel presentation given
in Fig.2 of third order modulator is used. The values of
the last two blocks are complex, but the output signal of
these two blocks is real. They correspond to a second
order SDM with complex conjugated poles of the loop
filter transfer function G(z). Both signals X, and X; are
complex conjugated (and X, is real), namely

X, (K+1D)=m(k+1)+ jn(k +1)

X (K+1)=m(k+1)— jn(k+1)
Because of this the input of the quantizer is real i.e.
(0= %K)+ (5 + jy)x (k) =26m(k) + 2yn(k) (6)

The modulator could be considered as three first order
modulators interacting only through the quantizer
function. The connected signals with two modulators are

complex, but the input and output signals (U and y) are
the “true” signals of the modulator. As it is stressed in [2]
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both modulators work cooperative, because their signals
are conjugated. These modulators do not exist in the real
SDM and they are introduced to help the analysis of the
behavior of the whole system.

Figure2. Block diagram of third order SDM with parallel
loopfilter form

The benefit of this modulator representation is
because we can determine whenever the modulator is
stable or not by the following criterion [2]

@) b B 2i00-mes ()
Ao (A=) Fa-1 (-a)+p

and additionally we can also determine the maximal
range of input signal ensuring the stability expressed by
Au (DeltaU)

Nz-z [ _2|5(1—a)+7,3|+b1(2—/%)
AU < =2 -1 (-a)y+p  A(4-)
: ®)
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3 Design Approach

For third order modulator with the realistic form of
the loopfilter (third order transfer function with one real
and two complex conjugate poles) a pole variation is
performed (Fig.3). This is done by moving the complex
conjugate pair inside the unit circle and the real pole on
the unit circle and away from it in logarithmic
increments. In order to have result from stability
condition (7) and Au (8), these equations allows only one
of the poles to be outside of the unit circle and this is the
reason why the complex conjugate pair is not moved
outside the unit circle. Some authors prefer to move the
complex conjugate pair outside of the unit circle, because
they end up with higher SNR, but with decreased range
of maximal acceptable input signal [4]. In these cases at
some point when increasing the input signal amplitude
the modulator behavior becomes unstable and maximum
input signal clipping limits determined by simulations are
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used in order to keep the modulator stable. On the other
hand moving only the real pole produces higher SNR
(but not as high as when moving complex pairs), while
keeping the maximal range of input signal almost equal
to 1 [3]. Moving the real pole too far away from the unit
circle produces decrease of SNR and loss of stability and
for that reason we moved only the real pole outside the
unit circle. Also when moving the real pole inside of the
unit circle, when having all other poles are also inside
leads to SNR decrease.
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Figure 3. Position placements of the loopfilter’s poles

The modulus of the complex pole positions is shown
in Figure 4. Values equal to almost 1 means that the
complex pair is very close and almost lying on the unit
circle.
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Figure 4. Modulus of the complex poles values for all the
complex pole placement positions on the unit circle

The filter design procedure also includes usage of two
real zeroes and variation of their values on the real axis.
For one loopfilter case, where the zeros are chosen to be
two and real values for some fixed zero positions and the
pole positions varied, the results for SNR value are given
in Fig.5 for 64 times oversampling ratio (OSR), input
sine wave with scaled amplitude value 0.5 and frequency
2/3 of our band of interest, when SNR is calculated from
simulations. Also for comparison in Fig.6 is shown SNR
values that are calculated and theoretically derived from
loopfilter transfer functions [S5] that are formed at every
iteration step.
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Figure 5. SNR results calculated from simulations for fixed
zeros combination and variation of the real and complex

] |
Uil «[\Hin.

Number of iterations

Figure 6. SNR results calculated on derivations from the
loopfiler transfer function for fixed zeros combination and
variation of the real and complex conjugate pair poles
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On Fig.7 for this same particular case the theoretically
derlved for every iteration Au Value is also plotted.
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Figure 7. DeltaU values for one fixed zeros combination
and variation of the real and complex conjugate poles

The practical relation of Au and modulator stability
depending on its signal value is given in Fig.8 in one
example with usage of poor loopfilter transfer function
that produces loss of stability for input signals with
higher amplitude. Here when rising the test sine wave
amplitude we can observe that at some point we start to
have an SNR decrease and eventually loss of stability.
This means that the modulator can be stable for input
signals with value higher than that of Au, but then we
can’t guarantee its stability (Au=0.68 in this example).
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SNR for different amplitude values
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Figure 8. Relation between DeltaU and the value of the
input signal

4 Simulation Results

A procedure rotating all the poles and having two real
zeros for additional movement inside the unit circle was
performed. Because of the reduced time for SNR
calculations when using the approach for deriving it from
the loopfilter transfer function was used theoretical SNR
calculation. The theoretical SNR derivation showed very
high SNR values (as high as more than 100dB for third
order modulator) when the zeros had small values and
because the poles were inside the unit circle Au criterion
had also a good value. In practice however, when
simulation was performed on SDM model when using
these candidate functions we end up with modulator
behavior that does not correspond to SDM, i.e. the
modulator was unstable. When moving the zeroes to
positions greater than 0.65 then the modulator becomes
stable. Additionally we observed that moving the zeros to
values beyond 0.8 leads to decrease of SNR and loss of
stability when moving the zeroes to much higher values.
Also when having the zeroes with this bigger values the
formula for Au result appears to be correct and the
calculated from loopfilter transfer function derivations
SNR is almost equal to the one calculated from
simulations. For this reason the search procedure was
modified to start the zero movement from points with
values 0.65 for the zeroes and stop at 0.8 (SNR results on
Fig.9).
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Figure 9. Combined zero and pole variation and
corresponding SNR
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All the results presented are given for 64 times OSR and
amplitude value 0.5 of the test input signal sine wave
with frequency equal to 2/3 of the band of interest. This
modified procedure give back as an result a lot of
transfer functions that give an modulator SNR little over
or little less around 90 dB. SNR of 90dB for third order
loopfilter transfer function at 64 times OSR is more than
the 83dB provided by used for comparison DStoolbox
optimized transfer function, especially when the
acquired transfer functions have Au value almost equal
to one. One curious observation we had was that when
moving the complex pole pair deep inside the unit circle
the modulator vastly decreases its performance and in
some cases even loses his stability as can be seen on
Fig.5 and Fig6, where the last iterations include the poles
nearing the imaginary axis. One example of modulator
power spectrum shape obtained after simulations, when
using test sine wave for modulator with one of the
optimal loopfilter transfer functions is shown on Fig.10.
One such a transfer function is with two zeros at points
0.76 and 0.7 lying on the real axis, and with poles equal
to 1.000001907348633, 0.9985+0.039i and 0.9985-
0.039i. For this example we get value for max stable DC
input at Au=0.999957508095839, or we can say that the
modulator is stable up to input signals with value almost
1. For this single example the poles and zeros form
loopfilter transfer function G(z) having the following
polynomial form:
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Figure 10. SDM spectrum for third order loopfilter transfer
function providing 90dB SNR

5 Conclusion

In the paper a design approach for stable high
performance sigma-delta modulator is presented. Based
on this approach a third order stable SDM with
reasonable performance in sense of SNR and stable DC
input signal range is obtained. The approach easily can be
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generalized for high order modulators. The loss of
stability when modulator loopfilter poles and zeros are
deep inside the unit circle and extension of the search
procedure for higher optimal modulator loopfilter order
should be a topic for further research.
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