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ABSTRACT

Sigma delta modulation is a popular form of audio analogue-to-digital and digital-to-analogue conversion, but
suffers from stability problems for many designs and many input signals. A general theory of stability in sigma delta
modulators has been developed which predicts the stability of a high order one bit sigma delta modulator (SDM)
under a variety of designs. In this paper, the theoretical approach to stability as it applies to boundedness of states is
explained. Several low pass SDM designs are developed which are intended for audio analogue to digital
conversion, and predicted results for stability of these designs are given. Stability is examined both in terms of the
maximum allowable DC input amplitude and the theoretical sufficient conditions for stable behavior. Theoretical
results are compared with simulated results, and where possible, with experimental results from a realisation of a
third order SDM with adjustable parameters. Practical observations are then made concerning the effect of
noiseshaping, pole/zero placement, and cut-off frequency on the stability.

satisfactory theory of their stability is still lacking. In its
simplest form, this implies that in general, the maximum
allowable input signal which can produce stable
behavior for a given design cannot be easily derived.

1. INTRODUCTION

Sigma delta modulation is one of the most popular
methods for analog to digital (and digital to analog)
conversion for audio applications. Yet despite the
widespread use of sigma delta modulators (SDMs), a

There has been much research into stability issues in
SDMs, but many essential questions remain unsolved. It
is fairly easy to show the stability limits of the first
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order SDM, but for the standard second order SDM,
proof of boundedness is not trivial. A linear
programming approach is used by Farrell and Feely[1].
They assumed that there have been some number n
iterations with negative output. From this, they identify
the maximum values of the state space variables for the
first positive output bit. This value is used to identify
the maximum number of positive output bits which
results, n'. They then find the maximum number of
negative output bits which result from the n" positive
bits. This new value of n™ is strictly less than n" and
hence the oscillations are bounded. This successfully
finds the bounds on the second order SDM and may be
extended to second order SDMs with leaky or chaotic
integrators and their results bear strong agreement with
simulation.

To the best of our knowledge, there is no generally
accepted, successful analytical approach to stability in
high order SDMs (order greater than 2). Risbo[2]
discussed stability of SDMs in detail, primarily from a
nonlinear dynamics perspective. But, with the exception
of first order SDMs, he did not attempt a method for its
determination. A computational approach to finding the
invariant sets, which consist of initial conditions giving
rise to stable behavior, is derived by Schreier[3-5].
Although neither analytical nor rigorous, it is significant
because source code is available, and because results are
provided which may be confirmed or denied by other
methods. Hein and Zakhor’s approach[6] is to use the
limit cycles as a measure of stability. Their method is
not rigorous in that it postulates that the limit cycles
have a convergent bound on the state space variables,
and that this is also the bound for non-limit cycle
behaviour. Wang[7] converted a third order modulator
to a continuous time system by looking at the vector
field equations. By considering only boundary points,
he is able to convert the 3 dimensional flow into a 2
dimensional return map. Fixed points of this map then
yield insight into stability of the SDM. Zhang[8, 9] used
a model of the quantizer to estimate stability of a third
order SDM. The linearization implies that important
phenomena have been omitted. Furthermore, there is
little comparison of their results with simulation.
Another work by Zhang[10] bears a strong resemblance
to the linear programming approach of Feely.

One promising approach is based on representing the
sigma delta modulator’s loop transfer function as a
parallel decomposition of first order filters. Using this
decomposition, an N order SDM may be considered to
be comprised of N first order modulators which interact

only through the quantizer. The stability condition of
the system is then determined by the stability conditions
of each of the first order modulators but shifted with
respect to the origin of the quantizer function.
Significantly, this theory does not involve
approximating the quantiser as an additive noise source
and hence suffers none of the drawbacks of the linear
model.

The benefits of using parallel decomposition for
analysis of SDMs was first realized in seminal work by
Steiner and Yang, but at that time presented only as a
framework for understanding stability behavior in low
order designs[11], or as a general framework for
analysis of high order designs[12]. It was later extended
by Mladenov, et al [13, 14] in order to provide exact
formulas for stability of certain hypothetical high order
designs. The work presented herein further extends and
validates this approach by providing concrete results
concerning the stability of realistic high order designs
that may be applied to audio A/D conversion.

In this paper, the theory given in [13, 14] is applied to
both designs described in the literature, and to new high
order designs based on standard filter design techniques
such as Butterworth, Chebyshev, and
iteration/optimization techniques. These designs were
chosen such that they will yield performance,
particularly in terms of the Signal to Noise ratio,
suitable for use as an analog-to-digital converter to be
applied to audio signals. These techniques are used to
generate low pass filter coefficients for the signal
transfer function (or alternatively, high pass filter
coefficients for the noise transfer function). Then, the
loop filter is found using G(z)= (1/NTF(z))-1. A partial
fraction expansion is then applied so that the loop filter
may be implemented in parallel form and the theoretical
analysis mentioned above can be applied.

The theoretical stability of these designs is then
compared with simulated results. An experimental third
order SDM with adjustable coefficients was also
constructed. The design employed variable resistors
which allow all coefficients within the design to be
modified. This experimental design showed good
agreement with both a PSpice model of the circuitry and
the Matlab simulations of the logic level
implementation.

The level of DC input at which the SDM goes unstable
is reported and compared for theoretical and simulated
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systems. The effect of pole/zero placement, filter cut-off
frequency, and general noiseshaping characteristics on
stability is also discussed. Initial results confirm the
existing theory, and discrepancies may be accounted for
in part by the fact that current theory provides sufficient,
but not necessary, conditions for stable behavior.

2. THEORY

For better understanding, in this chapter we will
briefly present the theoretical results given in [13-16].
This theory provides a technique by which the stability
of an SDM may be found based on the placement of the
poles where the loop filter is represented in parallel
canonical form. In Section 2.1, we describe the parallel
decomposition. We then describe how the stability of
each of the first order sections in the decomposition
may be found in Section 2.2. Section 2.3 shows how
this may then be used to determine the stability of an
arbitrary order SDM with real poles, and in Section 2.4,
this is extended to high order SDMs where we consider
one complex conjugate pole pair in the loop filter. It
should be noted that not all cases have been fully
developed. The stability of real poles equal to one, more
than one pair of complex poles inside the unit circle, or
any number of complex poles on or outside the unit
circle, remain an area of active research.

2.1. Parallel Decomposition Of Sigma Delta
Modulators

The structure of a basic SDM is shown in Figure 1, and
consists of a filter with transfer function G(z) followed
by a one-bit quantizer in a feedback loop. The system
operates in discrete time.

+

u 6o > |

Figure 1. Basic structure of the sigma delta
modulator.

The input to the loop is a discrete-time sequence u(n)e |-
1, 1], which is to appear in quantized form at the output.
The discrete-time sequence x(r) is the output of the
filter and the input to the quantizer. Clearly a single-bit
quantizer, which gives an output of +1 when its input is
positive and —1 when its input is negative, will not
provide a good approximation to its input signal. In

other words the quantization noise will be large. This is
the reason for the use of the feedback loop, which acts
in such a way as to shift this quantization noise away
from a certain frequency band. If an input signal from
within this frequency band is applied to the loop, most
of the noise imposed by the quantization process will lie
outside the frequency band of interest and can
subsequently be filtered out, leaving a good
approximation to the input signal.

Let us consider a N order modulator with a loop filter
with a transfer function in the form
az ' +..+a,z"

G(z)=
@ l+dz" +d,z7 +..+dz"

(1

Suppose the transfer function has N real distinct roots of
the denominator. Then using partial fraction expansion
we get

-1 -N
az ' +..+ayz

O A A
—ANZ P N z
» o )
bz b,z
= +
1-4z" 1-A,z"

where the coefficients b;, i=1,2,...,N of the fractional
components can be found easily using the well known

(1-4z7)

formula b, = TG(Z)

z=1;

The corresponding block diagram of the modulator is
given in Figure 2.

Figure 2. Block diagram of the modulator using
parallel form of the loop filter.
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Based on this presentation the state equations of
the SDM are

X (n+1) = Ax, () +u(n) —sgn[ > by, (n)] =

= A x, (n) +u(n)—sgn[b x, (n)+ ibixi (m)], (3)

i=1
i#k

k=12,.,N

where 4;, A, ..., Ay are poles (or modes) of the loop filter
and the quantizer function is a sign function

) I, x>0

sgn(x) =

& -1, x<0

A brief overview of the results for the stability of first
order SDM described by

x(n+1) = Ax(n) +u(n)—sgn[x(n)] (4)
is given in [11, 15].

The above presentation demonstrates that high order
modulators could be considered as built up of first order
modulators, which interact only through the quantizer
function. Because of this interaction the stability of the
high order SDM depends on the stability of each of the
first order modulators, where they have been shifted
with respect to the origin of the quantizer function.

To simplify the notations, we will drop the indexes and
will rewrite equation (3) in the following form

x(n+1) = Ax(n) +u(n) —sgn[bx(n) + y(n)] (5
where
yn) =3 () (©)

i#k

This equation describes a first order shifted system and
in what follows we will investigate the stability of this
system.

2.2. Stability of shifted first order SDMs

The shifted first order system is described by equation
(4). Because of the ideal quantizer, the system can be
viewed as two linear systems connected at point —y(n)/b
and thus the equations describing the dynamics of the
first order SDM from (4) are

x(n+1) = Ax(n) +[u(n) —1)], x(n) = —y(n)/b; b > 0(7)
x(n+1) = Ax(n) +[u(n)+1], x(n) < —y(n)/b; b >0

The fixed points of the system are

»_u(m)+1
1-1

x,:u(n)—l
1-1

b

In what follows we will consider the input signal u(n) to
be from the interval u(n)e/-Au, Auj, Au>0 and because
of this the shift y(n) belongs to the interval /-Ay, Ay],
Ay>0.

2.2.1. Stable Mode, A<1

The flow diagram of the system is given in Figure 3.

A<=1
 — —>
ry ] . »
f >
virtual fixed point -y(n)/b  virtual fixed point x(n)
A>1
- _— ‘+—— —p
- | >
} >
-y(m)/b x(n)

fixed point fixed point

Figure 3. Flow diagrams of the first order system for
the case of A<1 and A>1.

Depending on the parameters b, y(n) and input signal
u(n) the system can have two stable virtual fixed points
(the case given in the figure) and a compact region
exists between them (in fact this is an invariant set in
state space, which has the property that all subsequent
states lie in the original set for a certain class of input
signals). For another set of parameters one of the virtual
fixed points becomes a real fixed point. In each of the
cases the system is stable but in the second one, there is
no compact region. The system moves towards a single
attractor at the stable fixed point. Anyway, if the initial
condition is between the origin and the real fixed point
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of system (4) the state flow finishes at the equilibrium
point (due to asymptotic movement to the single
equilibrium point). It should be noted that this is not a
desired SDM behavior. The SDM behavior appear when
the first order system has two virtual fixed points and
the state of (4) jumps between them. Thus the desired
bitstream appear at the output of the quantizer.
Sufficient conditions for this are object of another
research.

2.2.2. Unstable Mode, 2>1

The stability in this case is connected with existence of
a compact region between the unstable fixed points (not
virtual). It is important to point out that b>0. Otherwise
the dynamic of the system is described by

x(n+1) = Ax(n)+[u(n)-1], x(n)<—y(n)/b; b< 0(8)
x(n+1) = Ax(n) +[u(n)+1], x(n)=2—y(n)/b; b<0

and it is easy to observe that the above system is always
unstable, because at least one of the fixed points is
virtual.

A o

Ax(n)+{u(n)+1]

u(n)+1
1-1 -y(n)/b X(n)
1
u(n)—1
1-1
Ax(n)+[u(n)-1]
— 44/\________V/_______/

NHL PHL

Figure 4. Map (4) given by (7) for the case of A>1

Let's consider the map (4), given by (7) depicted in
Figure 4.

For a compact region (CR), to exists the fixed point
should not be virtual i.e.

_M<u(n)—l and_M>u(n)+l
b (-2 b~ (-2

This should be true for the worst case i.e.

y(n)<Au—1 and_M>_A”+l
b (1-2) b (-4

Taking into account that (1 — A) < 0 and 5>0 we get

b

a0 )

Au +

b
G-n "<

b
A-1

The second condition for the existence of a CR is that
the CR has to be included into the region between the
fixed points i.e. the stable region (SR). The maximum
jump of the variable x(n) from the Negative Half Line
(NHL), with respect to —y(n)/b, to the Positive Half Line
(PHL), with respect to —y(n)/b, is [-y(n)/b]A+[u(n)+1]
and the maximum jump from PHL to NHL is [-
y(n)/b]A+[u(n)-1]. Hence in the worst case

X 4 a1 < A4
b (1-4)
—M/1+[—Au—1]>ﬂ
b (1-2)

Solving the above inequalities with respect to y(n) we
find that a compact region can only exist if 5>0 and

b>0

b —b(2_1)<y(n)<— b Au+
A-1 AA-1) A-1

b(2- 1) (10)
AA-1)

Because the above should be valid for all y and for y=0
as well then (2-4)/4>0 or A<2, i.e. /[<A<2. Due to

this (2—4)/A<1 and hence if (10) is satisfied then (9)
will be satisfied as well.

Considering again these two conditions, the maximal
shift of the input signal Au, which ensures that the
compact region (CR) is included into the region
between the fixed points i.e. the stable region (SR) is
given by
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Ay(A-1) 2 The maximal "jumps" of the state variables
Au < — b + 1 (11) corresponding to the first p modes in the PHL and the

Note that condition (10) is a sufficient but not necessary
condition. It has been derived for the worst case and if
satisfied, the first order modulator is stable for the range
of input signal given by (11). However, if (10) is not
satisfied the modulator could be stable for certain input
signal.

2.3. Stability of High Order SDMs with Real
Poles

Taking into account the parallel presentation considered
in [11, 12], the stability of the high order SDM depends
on the stability of each of the first order modulators. If
all modes /;, are stable, i.e. 4;<1 then the corresponding
high order SDM is stable in the sense of boundness of
the states. If there exists even one unstable mode 4, i.e.
1<A<2, the stability conditions for shifted modulators
given above should be applied.

In this case the shift y,(n) depends on the values of the
other variables x;(n) i.e.

N
v =Y bxm), k=12,.,N 12
=k
From (10), we have
N —
D bx,(n)<— b Au + b2=4)
i=1 ﬂk -1 /1/((2’/( - 1)

izk

2: x;(n) >

1¢k

k=12,..,N

b bC=A)
k_l ﬂ’k(ﬂ’k_l)

(13)

The above should still be true when x; makes the
maximal "jumps" into the PHL or into the NHL.

Without loss of generality we will consider the first p
modes 4; of the high order SDM to correspond to
1<4<2, k=1,2,...,p whereas the remaining N-p modes
correspond to 4;<1, k=p+1,...,N. In this case only the
first p coefficients b, must be positive and the remaining
N-p coefficients could have any real value.

NHL are “0D =1 ang #()+1 respectively (the fixed
1-4, 1-4,

points of the system with respect to x;, k=1,2,...,p).

Similarly, the maximal "jumps" of the state variables

corresponding to the last N-p modes in the PHL and the

NHL, are () +1 ang u(m) =1 respectively (the virtual
1-4, 1-4

or real fixed points of the system with respect to x,

k=p+1,...,N).

Therefore from (13) for the worst case with respect to
the input signal one can obtain

r _ N _
Zbi Au 1+zbi Au+1<_ b, +bk(2 A4)
i=1 1—/1,- i=p+l 1_/11 /1;{_1 ﬂk(;tk_l)
i#k
. (14)
N _ _ —
Sh e S b S - 2O,
i i=p+1 1_/11 /11( -1 ﬂ‘k(ﬂk _1)

x;tl(

k=12,.,p

Note that we apply (14) only for the shifts connected to
the first p modulators. The other N-p first order
modulators are stable, because for their corresponding
/11(, ﬂk 1 k p+1 N

If there exists a region [-Au,Au]c[-1,1], such that
u € [-Au,Au] and for this region conditions (14) are

satisfied, then the SDM will be stable for all input
signals from this region.

Taking into account equation (14) we get

Loh & | LBl & h
[fz&—l_,zﬂ,—l}A“Zﬂ,q 27t

=1 74 i=p+1 7Y i=p+1 74 ,:}L ;
i#k

b(2-4)
A (4 =1 (13)

k=12,...p

More detailed considerations of the above inequality
shows that in order to ensure a consistent solution of
(16) with respect to Au

b |bi| _bk(z_/?’k)

)4 N
L <0, k=12,.., 16
Z‘z 27 4 (A 1) p (16)

;1 i=p+l i_l

Hence the maximal shift of input signal Au ensuring the
stability is given by
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i |bi| _ N bi +bk(2_ﬂk)
i=p+l /It -1 z;}c /11 -1 /1/{ (/1/\» -1
Au < d k=12, p(17
Zp: b ZV: ] p(17)
i=l 2‘[ _l i=p+1 ﬂ’, _1
Note that inequalities (17) should be wvalid

simultaneously for each &, k=1,2,...,p.

Therefore, together with b,>0, k=1,2,...,p, equation (16)
gives the sufficient conditions for the stability of the
SDM, namely

-_ P . N b
(2 ;Uk) bk > b, _ i ’k:1,2,-..,p (18)
/17{ (/1/(_1) ,:1,( A -1 i:p+1/1,_1

i

For the poles outside the unit circle, k&=1,2,...,p, we have
that (2-4;)/4<1. This implies that the inequality, Eq.
(18), can only hold for one value of k. Hence, Eq. (18)
provides a sufficient condition for stability when p=1
1.e. there is at most one unstable mode, and this
sufficient condition cannot hold when there is more than
one pole outside the unit circle.

It is clear now that in the case of repeated poles
(A4, ..., Au=A ) of the loop transfer function, the SDM is
stable only when the corresponding modes are stable i.e.

A<1.

Let us consider more precisely the case of identical
poles. Without losing the generality we will consider
that the pole A, is repeated with order 2 i.e. 4;:=4=A. In
this case (2) becomes

bz
— X!

2
b,z

+
(1-A")

-1
L v 9

1-4,z"

G(z)=
(2) 1
And the state equations may be given as

x,(n+1) = Ax,(n) +u(n) —sgn[bx,(n) + ibixi (n)]

x,(n+1) =x,(n)+ Ax,(n)
N (20)
x,(n+1)=A,x,(n)+u(n)—sgn[b,x, (n)+ Zbl.x,. (n)]

i=1
i#k

k=3,.,N

If A is an unstable mode, ie 1<A<2 then the
corresponding first and second modulators should be
stable in the sense of boundedness of the states. The
first one can satisfy the conditions given by (11). The
second one in fact is a linear system described by
x,(n+1)=Ax,(n)+x,(n) (21)

where the state variable x; could be considered as an
input signal for this system. If /<A<2 then all possible
symbolic sequences represent admissible periodic orbits
of x;. Because of this, depending on the initial

conditions a certain periodic orbit of x; could influence
the instability in x,.

2.4, Stability of High Order SDMs with
Complex Poles

In the general case the loop filter transfer function can
have complex conjugated roots. For better
understanding, we will present the theoretical solution
given in [13], where this case is described in detail.
Without loss of generality we will consider only one
pair of complex conjugated roots. In this case (2)
becomes

-1

b
G(z)=— 4. +G,(2) =
1-4z (22)
blz*l BN_lf1 + BNZJ
1-4z" Tl-dz'-d,z?

The denominator of the last part of (22) has a complex
conjugated pair of roots. The main idea is to use a
complex form of expansion of the last part of G(z).
Therefore (22) becomes

—1 -1 -1

G(z) = bz 1 by_z 1 byz 1 (23)
1-Az" 1-Ayz7 1-Ayz”

where

Ay =a+jB Ay =a-jp 24)

by, =0-j7, by =0+ jy

ie. Ay, Ay and by, by are complex conjugated
numbers.

Because of this we can use the same parallel
presentation given in figure 2. However, the values of
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the last two blocks are complex. It should be stressed
that the output signal of these two blocks is real. In
order to make things more clear, and without loss of
generality we will consider only these blocks. They
correspond to a second order SDM with complex
conjugated poles of the loop filter transfer function
G(z). The block diagram of this modulator is given in
figure 5. Here both signals x; and x, are complex
conjugated, namely

x(k+1)=m(k+1)+ jn(k+1)
x,(k+D)=mk+1)— jn(k+1)

(25)

Because of this the input of the quantizer is real i.e.

Figure S. Block diagram of second order modulator
with complex conjugate pair of poles.

(6= j1)x (k) + (6 + jy)x,(k) = 26m(k) + 2yn(k) (26)

As in the case of real poles, the modulator could be
considered as two first order modulators interacting
only through the quantizer function. The difference now
is that the signals connected with both modulators are
complex, but the input and output signals (u and y) are
the “true” signals of the modulator. This model will help
us to make analysis simple. We will consider the state
of the first order modulators as a point in a complex
plane (m,n). Depending on whether the input 26m +2yn
of the quantizer is positive or negative the state equation
of the second order modulator could be described as
follows:

x (K +1) = @+ jB)x (k) + [u(k) = 1,26m(k) +27n(k) 20 7
x,(k+1) = (ar+ j B)x, (k) +[u(k) — 11, 28m(k) + 2yn(k) = 0

and

x, (k+1)=(a+ jB)x, (k) +[u(k)+1],20m(k)+2yn(k) <0 28)
x,(k+1) =(a+ jB)x, (k) +[u(k)+1],26m(k) +2yn(k) <0

where x| and x, are given by (26). In fact 26m+2yn is a
line through the origin in the plane (m,n) and depending
on in what half the point x, is (because x,=m+jn), the
description of the modulator is (27) or (28). The
analysis of the behavior of both first order “complex”
modulators is similar to the analysis of the first order
“real” modulators, given in Section 2.2. Here we always
should keep in mind that both modulators work
cooperative, because their signals are conjugated. These
modulators do not exist in the real SDM. They are
introduced (like in the “real” case as well) to help us to
carry out the analysis of the behavior of the whole
system.

2.4.1. Stable Mode, |Ay.|=|A y|<1
In this case both modulators have two stable equilibrium

points (in every half plane):
U=l gpg v+l

¢ first modulator: ie.
1-4 1-4
@=Dl1-a)+jB] ang @+Dl1-2)+,B]
(- +p? (-a)y+p
¢ second modulator: ¥ -1 and 4 +1 ie.
1-2, 1-4,
@-Dl1-) - jB] and @+Dl(1-a)- ]
(I-a)y +p -y +p°

These fixed points could be virtual or real. Taking into
account equations (26) to (28), the fixed points of both
modulators are “virtual” when 26 (1 —a)) + 2y >0 and
“non-virtual” when 26 (1 —a)) + 2yB < 0 . Both complex
modulators are stable and the second order modulator is
stable as well. As was mentioned in section 2.2, the
SDM behavior appears when the first order system has
two virtual fixed points and the states of (28), (29) jump
between them. Thus the desired bitstream appears at the
output of the quantizer.

According to [13], in the general case, when the last two
first order modulators are “complex”, i.e. correspond to
a stable complex conjugated pair of roots; condition
(18) has the form

Q-4) b _ &
A D &

L 2100-@)+1B]

—ar+p >
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and the maximal range of input signal Au ensuring the
stability is expressed by

& [p| _200-a+8] 5n-4)
ZA-1 (-a)+p  A(4-D

b, _NZ—Z b| +2|§(1—a)+;ﬁ|
A-1 Si-1 (-a)+p

i=2

Au <

(30)

2.4.2. Unstable Mode, |A:|=|A2]>1

In this case both modulators have two unstable fixed
points (in every half plane). Depending on parameters,
these points could be “non-virtual” or “virtual”. In the
case of virtual fixed points, both “complex” modulators
are unstable and the whole system is unstable. In the
case of real fixed points, the possibility for SDM
behavior is connected with the existence of a compact
region in the complex plane. This case is a subject for
further research.

2.5. Theory conclusions

To summarise the results on stability of high order
SDMs from the previous sections, we have the
following;

1. Any SDM comprised entirely of parallel sections
with poles inside the unit circle is inherently stable.

2. Any SDM with only real poles is guaranteed to be
stable if Eq. 18 holds, and Eq. 17 provides the
maximum input for stability. Eq. 18 also implies that the
sufficient conditions for stability are violated if at least
2 real poles are outside the unit circle.

3. Any SDM comprised entirely of parallel sections
with poles inside the unit circle and one complex
conjugate pair inside the unit circle is inherently stable.

4. Any SDM comprised entirely of parallel sections
with some real poles outside the unit circle and one
complex conjugate pair inside the unit circle is
guaranteed to be stable if Eq. 29 holds, and Eq. 30.
provides the maximum input for stability. Eq. 18 also
implies that the sufficient conditions for stability are
violated if at least 2 real poles are outside the unit circle.

It should be emphasized, that present theoretical study
includes only the cases considered above; real poles not
equal to 1, or complex poles inside the unit circle. It is a
subject of further research to cover the cases when the
poles are at the unit circle, and the case when a complex
pair of poles is outside the circle.

3. EXPERIMENT
3.1. Simulation

Within the Matlab environment we have created a sigma
delta modulator model using the parallel decomposition
technique, according to the theory described in the
previous section. The general block diagram of this
model has been shown in Fig.2 and Fig.5. In many
realistic loop filter designs, there is one first order
section with a real pole and the others are grouped into
biquad sections. Transforming a second order sections
into first order sections results in two first order sections
nits with complex conjugate poles, leading to complex
signals. For this reason, the experimental
implementation, described in Section 3.2, retains the
second order sections, whereas the simulation may use
the equivalent complex first order sections.

Initially, for performance comparison with existing
SDM structures, we ran simulations with the parallel
modulator model and the modulator model from the
DStoolbox for Matlab[17] using the same loopfilter
transfer function on both models. The third order noise
transfer function obtained by the DStoolbox, for a 64
times oversampling ratio, was:

z’ —2.999z° +2.999z -1
20 =2.19922° +1.6876z —0.4441

NTF(z)=

The relationships between the loop filter, signal transfer
function and noise transfer function may be given
by[18]:

Gz)=— g1 31)
1-STF(z)  NTF(z)
which gives the loop filter transfer function:
2 —
Gz 0.7998z" —1.341424z+0.552171367 (32)

21 =2.999z% +2.999z -1
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Using partial fraction expansion, this may be given in
parallel form:

10.5599z"  (-4.8801 - 3.9952i)z™"

. (-4.8801 + 3.9952i)z”"
1=z 1-(0.9995+0.0316i)z”"

G(2)= —
1-(0.9995-0.0316i)z

Simulations confirmed that there was no difference
between the parallel and series implementations, with
both implementations achieving a signal to noise ration
of 83.5db SNR. The power spectrum for both
implementations is shown in Fig.6 for an input signal
with amplitude 0.5 and frequency 2/3 the bandpass
cutoff, 1/64.

Output Spectrum

-20

SNR=83.5dB at 64 OSR
-40

" ¥ WNIIM

-80

dBFS

=100

-1 .
e Normalized Frequency 0.1

0.2 0.30.40.5
Figure 6. Power spectrum of the output signal for an
SDM when using the loop filter obtained from (32)

The main advantage of using the parallel decomposition
is that it provides us with a means of verifying stability,
equations (29) and (30). Thus, using the loop filter
transfer function from (32), we then moved the real pole
outside the unit circle, while keeping the complex
conjugate poles fixed. We then measured the change in
the stability range and the change in the SNR as the real
pole is moved. The results from these simulations are
given in section 4.

Since G(z) has the form of a filter function and we know
from equation (31) that we can obtained it from Signal
or Noise transfer functions we also started a loopfilter
transfer function seeking procedure. We wanted to see
how the modulator will behave when using different
filter functions for the loopfilter with different cutoff
value in order to obtain transfer functions that give us
good performance. The cutoff frequency was a scaled
value from 0 to 1, where 1 represents f;/2. In this case
we had two approaches: one to obtain lowpass filter
transfer function that give us STF(z) and the second is

to obtain highpass filter transfer function in order to
derive the loopfilter functions from them. We used four
filter types — one Butterworth and three Chebyshev type
IT with 3,6 and 20db stopband ripple. For every model
we make a SNR performance measurement,
AU calculation from (30) and check of condition (29),
that guarantees stable operation. The obtained results
from this procedure are given in section 4.

3.2. Realisation of high order SDMs with
adjustable parameters

When making the PSpice model we had to account for
the fact that the circuitry to operated in the s domain.
For that reason a transformation between G(z) and G(s)
is needed. Our third order transfer function with one real
pole and a complex conjugate pair of poles may be
given as

1 P N

G(Z): bIZ _1+ (5 ]7)2 — (§+J}/)Z _1:
Az =@ P 1-@— B (a3

_ blzfl BN_1271+BNZJ

C1-Az" 1-diz ' —dyz?

Using the bilinear transform:

1+37/ 2z
ﬂ/ ?

where T is the sampling period. For the real pole,

(34)

,1 B b
“== 42 PRy
b—STh
Glp)= sT ST A
1+ / A(l+/l)+(l—/1)
1-5T
/ (335)
b sTb
C1=A 20-2) _k—kys
- sTA+A)  kys+1
2(1-2)

This transfer function is the transfer function of a first
order allpass filter. When we substitute the obtained
coefficients into the allpass filter structure it has the
characteristics of a lowpass filter.
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For the complex conjugate pole pair,

3 (y+6))z" (y-6j)z" a
(2= 1-(a-pj)z" +1—(0{+ﬂj)z‘l B (36)
2pz7 =2y

120z +(*+p7)z7

Again, using the bilinear transform,
2yz-2yx

G(z)= G
&= mr@p 0P

G (- )= 1T 5)) * +200tp+ 2701 -a)
)=

(ariva+ )T (- @B T+ (1-2a+ a4 )
G 15 T3 (a4 )+ 2p0s +2y(1- )

p)= 2

Qa+1+a*+5)s? TA+(1—az—ﬁz)sr+1—2a+a2+ﬁ2
which is the transfer function of a second order all pass
filter. hen substituted with the calculated values like the
first order unit has behavior of a lowpass filter.
General form of the schematic of a first order lowpass

filter is given in Fig.7, while in Fig.8 the general form
of a second order allpass filter is depicted:

®2 E:

o1
I
11

Fig.7 First order allpass filter

VIN —

Fig.8 Second order allpass filter

In order to set the circuitry according to the G(p) the
model consists of a third order SDM with adjustable
coefficients. The design employs variable resistors
which allow all coefficients within the design to be
modified in accordance to the stationary set values of
the capacitors. This PSpice design has shown good
agreement with the Matlab model at the logic level
implementation. Fig.9 depicts the third order modulator
PSpice model.

4, RESULTS

We used a modulator structure with 64 times
oversampling ratio for the experiments and simulations.
For the case where we have the G(z) obtained by the
DStoolbox we have this loopfilter function:

0.7998z" —1.3414242+0.552171367

G —
@ 229992 12.999z—1

Fig.9 Third order modulator in PSpice
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The loopfilter transfer function has the following poles,
pi=1, p23=0.9995+0.0316i.

In this specific pole configuration case we can’t check
Au, because the present theory does not provide a result
when we have a pole lying on the unit circle. However,
by moving p,; inside or outside the unit circle, the theory
can be applied. Moving p;inside the unit circle leads to
severe SNR drop and in this case it is not of interest,
because we know that when all the poles are inside the
unit circle the modulator will be stable. Moving p,
slightly outside the unit circle initially leads to a
performance increase before the SNR drops.

-20 18 16 -14 -12 -10 -8 -6 -4 -2

2 2 2 2 2 2 2 2 2
Distance of real pole outside the unit circle

Figure 10. SNR of the SDM given by Eq. (32) when
moving the real pole position of the loop filter
exponentially outside the unit circle, from 142 to
1.5.

Fig. 10 depicts the SNR values obtained when moving
the real pole outside the unit circle. The maximum SNR
obtained when testing with sine wave as input signal
was 86.55 dB, which is higher than the initial function.
For all the values of the plotted range up to a real pole
position of 1.0625, the stability condition (29) was
fulfilled (where we have value of 1 its fulfilled and
when we have 0 it is not). The modulator was stable
when simulating and testing with DC signals up to
almost 1 for all of these cases as the condition (29) and
Au value predicted, despite the fact that we had a pole
outside the boundaries of the unit circle.

Output Spectrum

SNR=86,5db at 64 OSR
20 and Pole1=1.000005

40

” r*'l;‘:kli'!i‘%l" "
N

80

dBFS

-120 1 Ll s
Normalized Frequency 0.1 02030405

‘Output Spectrum

-20

-40

~ iy | rl‘lrlwl'rli

dBFS

-80
-100

e Normalized Frequency 01 02 030405
Figure 11. Plot of the power spectrum when using
modified G(z) from (32) with position of the real pole

at values 1.000005 and 1.25

When moving the pole further beyond p;=1.0625, the
stability check for condition (29) was not fulfilled and
when increasing the value of p, further, we had a loss of
stability. When sinusoidal input was used, the SDM lost
its stability at p;>1.25. One quick comparison is shown
in Fig. 11 where the power spectrum is shown for two
pole position cases. The highest SNR is obtained for
p1=1.000005, whereas for p;=1.25 there is a lot of noise
in the signal bandwidth and the SNR degrades
significantly.
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1

81

67T

R I Au - theoretical

- = Au - simulated, DC input

2T —— Stability condition (1 true, 0 false)
>
3 04

24

44

-6+

-84

-1

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2

N

2 2 2 2 2 2 2 2 2
Distance of real pole outside the unit circle

Figure 12. The stability condition, simulated
maximum DC input, and theoretical maximum input
AU when moving the real pole position of the loop
filter, Eq. (32), exponentially outside the unit circle,
from 1+2%" to 1.5.

Fig. 12 compares Au, validity of the stability condition,
and maximum stable DC input as the real pole is moved
outside the unit circle. By comparing the theoretical
sufficient condition for stability with the measured
stable range, we have a direct comparison between
theory and simulation.

Interestingly, for p; between 1+2° and 1427, stable
behavior was observed with larger DC input than
predicted by theory. This is most likely because the
theoretical condition for stability, in this case Eq. 30, is
a sufficient but not necessary condition. Thus, stability
may still occur even when this has been violated, as is
indeed the case for high DC input and real pole
significantly outside the unit circle.

As noted in Section 3, we used 4 filter types with two
different approaches to obtain a variety of loop filter
transfer functions. The first approach was to find a
lowpass filter function which gives the signal transfer
functions (STF), and then derive G(z) using equation
(31). SDM performance and stability was then found
using this obtained transfer function for the loop filter.
We used a cutoff frequency range varying from 0.0075
to 0.0525 by increments of 0.0025 scaled to f/2. In
order to obtain filter transfer function coefficients for
filter design software, we used the ‘butter’ and ‘cheby?2’
Matlab functions that give the filter coefficients for
lowpass (STF) or highpass (NTF) Butterworth and
Chebyshev 1II filter designs for specified order and
cutoff value. All the third order functions that were

obtained had one real pole and a pair of complex
conjugated roots.

Using this approach for the Butterworth filter functions
did not provide a sigma delta behavior of the modulator
when testing with sine wave input. When testing with
DC input in simulations the modulator was stable, but
the stability condition (29) was not fulfilled for the
whole cutoff test range. Using Chebyshev II filters with
3, 6, or 20db stopband ripple produced modulators
which were stable when tested with both sine wave and
DC input signal. Fig. 13 provides a combined plot
showing the SNR for the different filter types for
different cutoff values. For a cut-off frequency of
0.0425, we obtained SNR higher than 80dB on both
Chebyshev type II filters with 3 and 6db stopband
ripple. The 20db ripple filter provided poor results for
the whole range compared with the others and for all
filter functions increase of the cutoff value did not
produce better results.

STF(2)---->G(2)

90

85

80 &\

75

At
-l

55 4

SNR(Db)

I
|
|
—
-

50

45

40 T T
09 09 Q*Q Qo QY
—&— Chebyll 3db

ST, I R,
L Y 34 v v
N R N

—#— Chebyll 20db

Cutoff value —@— Chebyll 6db

Figure 13. SNR versus cutoff performance for STF
designed using the Chebysheyv II filter.

For all of these transfer functions the Au value was close
to 1, and the modulator was stable in simulations up to
1. Sometimes when the complex pole pair was a little
outside the unit circle and the real pole was inside we
get a complex value for Au and condition (29) not
fulfilled. For all the cases with higher SNR we have
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condition (29) fulfilled and Au almost equal to 1, which
make these transfer functions quite applicable.

The second approach was to find the NTF(z) and then
use Eq. (31) to derive the loop filter transfer function.
This time with all the filter types in simulations the
modulator produced stable behavior for the range
depicted in Fig.14.

NTF(z)---->G(2)
7/\7
/\/ \/

85

—4— Chebyll 20db
—&— Chebyll 3db
—®— Chebyll 6db
—< Butterworth

75 +—

70
65 -

6014

50

SNR(dB)

Cutoff value

Figure 14. SNR versus cutoff performance for
highpass functions: NTF to G(2) derivation

In contrast with the STF>G(z) case, and with
Butterworth design techniques, we have a definite
fulfillment of condition (29) for all the cases considered.
We observed that in this case the functions obtained
from Chebyshev filters produced lower SNR than when
low pass filter design for the STF is used to produce the
loop filter transfer function. All these functions with
small fluctuations produced Au around 1, where an
example plot for this is show in Fig.15. Despite the fact
that condition (29) was not fulfilled for loop filter
transfer functions derived from Chebyshev highpass
filters, both they and the Butterworth ones were stable
when simulating with DC and sinewave test signals. For

the Butterworth filter design increasing the cutoff value
lead to a severe drop in the SNR .

Au for Butterworth NTF-->G(z) function

case
0.999997

0.999996
= 0.999995 /\ /\/\ /\
<1 0999994 { ../ \.. . VVIVION 2R VIO
0.999993
099992 +—4+—+1r+—+—+—"—"+—"—+—7"+—"T"T"7—"7—"""r
® 9 & P PP PP
O M P> MV D M >
Q'Q Q° (5'0 0'0 Q'Q (5'0 0'0 Q‘Q O'Q (}'0
Cutoff value
Figure 15. Au versus cutoff for highpass

Butterworth function: NTF to G(2) derivation.

We also observed a strong agreement between the
Pspice model and the results obtained with the Matlab
model. We observed stable modulator behaviour when
using appropriate filter transfer functions. Fig.16 depicts
a plot of the SDM input/output signals in the time
domain using a sinusoidal test signal.

\.[lutp ut signal

™~ Input signal

-0V
s Time

300us
Figure 16. Plot of the sinewave input signal and
output bitstream when testing the sigma delta
modulator with Pspice.

5. CONCLUSIONS

In this paper we extend and verify the proposed method
for stability analysis of high order SDMs. The method is
based on a parallel decomposition of the modulator. The
decomposition is presented for both real and complex
roots of the denominator of the loop filter transfer
function. Using this decomposition the general N order
modulator could be considered as made up of N first
order modulators, which interact only through the
quantizer function. The decomposition helps us to
extract the sufficient conditions for stability of the N™
order modulator. They are determined by the stability
conditions of each of the first order modulators but
shifted with respect to the origin of the quantizer
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function, because of the influence of all other first order
modulators. The results have been confirmed by both
theory and simulation.

The results presented here represent a work in progress.
As of this writing, the experimental system has been
constructed and tested. It produces the expected sigma
delta modulator behavior, but it remains to be seen if it
will produce similar stability results as were found from
theory and simulation. Furthermore, the theory needs to
be extended to more cases, such as poles on the unit
circle, repeated complex poles, or complex poles
outside the unit circle.
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