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ABSTRACT 

Sigma delta modulation is a popular form of audio analogue-to-digital and digital-to-analogue conversion, but 
suffers from stability problems for many designs and many input signals. A general theory of stability in sigma delta 
modulators has been developed which predicts the stability of a high order one bit sigma delta modulator (SDM) 
under a variety of designs. In this paper, the theoretical approach to stability as it applies to boundedness of states is 
explained. Several low pass SDM designs are developed which are intended for audio analogue to digital 
conversion, and predicted results for stability of these designs are given. Stability is examined both in terms of the 
maximum allowable DC input amplitude and the theoretical sufficient conditions for stable behavior. Theoretical 
results are compared with simulated results, and where possible, with experimental results from a realisation of a 
third order SDM with adjustable parameters. Practical observations are then made concerning the effect of 
noiseshaping, pole/zero placement, and cut-off frequency on the stability. 

 

1. INTRODUCTION 

Sigma delta modulation is one of the most popular 
methods for analog to digital (and digital to analog) 
conversion for audio applications. Yet despite the 
widespread use of sigma delta modulators (SDMs), a 

satisfactory theory of their stability is still lacking. In its 
simplest form, this implies that in general, the maximum 
allowable input signal which can produce stable 
behavior for a given design cannot be easily derived.  

There has been much research into stability issues in 
SDMs, but many essential questions remain unsolved. It 
is fairly easy to show the stability limits of the first 
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order SDM, but for the standard second order SDM,  
proof of boundedness is not trivial. A linear 
programming approach is used by Farrell and Feely[1]. 
They assumed that there have been some number n- 
iterations with negative output. From this, they identify 
the maximum values of the state space variables for the 
first positive output bit. This value is used to identify 
the maximum number of positive output bits which 
results, n+. They then find the maximum number of 
negative output bits which result from the n+ positive 
bits. This new value of n- is strictly less than n+ and 
hence the oscillations are bounded. This successfully 
finds the bounds on the second order SDM and may be 
extended to second order SDMs with leaky or chaotic 
integrators and their results bear strong agreement with 
simulation.  

To the best of our knowledge, there is no generally 
accepted, successful analytical approach to stability in 
high order SDMs (order greater than 2). Risbo[2] 
discussed stability of SDMs in detail, primarily from a 
nonlinear dynamics perspective. But, with the exception 
of first order SDMs, he did not attempt a method for its 
determination. A computational approach to finding the 
invariant sets, which consist of initial conditions giving 
rise to stable behavior, is derived by Schreier[3-5]. 
Although neither analytical nor rigorous, it is significant 
because source code is available, and because results are 
provided which may be confirmed or denied by other 
methods. Hein and Zakhor’s approach[6] is to use the 
limit cycles as a measure of stability. Their method is 
not rigorous in that it postulates that the limit cycles 
have a convergent bound on the state space variables, 
and that this is also the bound for non-limit cycle 
behaviour. Wang[7] converted a third order modulator 
to a continuous time system by looking at the vector 
field equations. By considering only boundary points, 
he is able to convert the 3 dimensional flow into a 2 
dimensional return map. Fixed points of this map then 
yield insight into stability of the SDM. Zhang[8, 9] used 
a model of the quantizer to estimate stability of a third 
order SDM. The linearization implies that important 
phenomena have been omitted. Furthermore, there is 
little comparison of their results with simulation. 
Another work by Zhang[10] bears a strong resemblance 
to the linear programming approach of Feely. 

One promising approach is based on representing the 
sigma delta modulator’s loop transfer function as a 
parallel decomposition of first order  filters. Using this 
decomposition, an Nth order SDM may be considered to 
be comprised of N first order modulators which interact 

only through the quantizer. The stability condition of 
the system is then determined by the stability conditions 
of each of the first order modulators but shifted with 
respect to the origin of the quantizer function. 
Significantly, this theory does not involve 
approximating the quantiser as an additive noise source 
and hence suffers none of the drawbacks of the linear 
model. 

The benefits of using parallel decomposition for 
analysis of SDMs was first realized in seminal work by 
Steiner and Yang, but at that time presented only as a 
framework for understanding stability behavior in low 
order designs[11], or as a general framework for 
analysis of high order designs[12]. It was later extended 
by Mladenov, et al [13, 14] in order to provide exact 
formulas for stability of certain hypothetical high order 
designs. The work presented herein further extends and 
validates this approach by providing concrete results 
concerning the stability of realistic high order designs 
that may be applied to audio A/D conversion.  

In this paper, the theory given in [13, 14]  is applied to 
both designs described in the literature, and to new high 
order designs based on standard filter design techniques 
such as Butterworth, Chebyshev, and 
iteration/optimization techniques. These designs were 
chosen such that they will yield performance, 
particularly in terms of the Signal to Noise ratio, 
suitable for use as an analog-to-digital converter to be 
applied to audio signals. These techniques are used to 
generate low pass filter coefficients for the signal 
transfer function (or alternatively, high pass filter 
coefficients for the noise transfer function). Then, the 
loop filter is found using G(z)= (1/NTF(z))-1. A partial 
fraction expansion is then applied so that the loop filter 
may be implemented in parallel form and the theoretical 
analysis mentioned above can be applied. 

The theoretical stability of these designs is then 
compared with simulated results. An experimental third 
order SDM with adjustable coefficients was also 
constructed. The design employed variable resistors 
which allow all coefficients within the design to be 
modified. This experimental design showed good 
agreement with both a PSpice model of the circuitry and 
the Matlab simulations of the logic level 
implementation. 

The level of DC input at which the SDM goes unstable 
is reported and compared for theoretical and simulated 
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systems. The effect of pole/zero placement, filter cut-off 
frequency, and general noiseshaping characteristics on 
stability is also discussed. Initial results confirm the 
existing theory, and discrepancies may be accounted for 
in part by the fact that current theory provides sufficient, 
but not necessary, conditions for stable behavior. 

2. THEORY  

For better understanding, in this chapter we will 
briefly present the theoretical results given in [13-16]. 
This theory provides a technique by which the stability 
of an SDM may be found based on the placement of the 
poles where the loop filter is represented in parallel 
canonical form. In Section 2.1, we describe the parallel 
decomposition. We then describe how the stability of 
each of the first order sections in the decomposition 
may be found in Section 2.2. Section 2.3 shows how 
this may then be used to determine the stability of an 
arbitrary order SDM with real poles, and in Section 2.4, 
this is extended to high order SDMs where we consider 
one complex conjugate pole pair in the loop filter. It 
should be noted that not all cases have been fully 
developed. The stability of real poles equal to one, more 
than one pair of complex poles inside the unit circle, or 
any number of complex poles on or outside the unit 
circle, remain an area of active research. 

2.1. Parallel Decomposition Of Sigma Delta 
Modulators 

Page 3 of 15 

The structure of a basic SDM is shown in Figure 1, and 
consists of a filter with transfer function G(z) followed 
by a one-bit quantizer in a feedback loop. The system 
operates in discrete time. 

+
+

-

u G(z) yx

 
Figure 1. Basic structure of the sigma delta 
modulator. 

 
The input to the loop is a discrete-time sequence u(n)∈[-
1, 1], which is to appear in quantized form at the output. 
The discrete-time sequence x(n) is the output of the 
filter and the input to the quantizer. Clearly a single-bit 
quantizer, which gives an output of +1 when its input is 
positive and –1 when its input is negative, will not 
provide a good approximation to its input signal. In 

other words the quantization noise will be large. This is 
the reason for the use of the feedback loop, which acts 
in such a way as to shift this quantization noise away 
from a certain frequency band. If an input signal from 
within this frequency band is applied to the loop, most 
of the noise imposed by the quantization process will lie 
outside the frequency band of interest and can 
subsequently be filtered out, leaving a good 
approximation to the input signal. 

Let us consider a Nth order modulator with a loop filter 
with a transfer function in the form 
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Suppose the transfer function has N real distinct roots of 
the denominator. Then using partial fraction expansion 
we get 

1
1

1 1
1

11
1

1 1
1

...
( )

(1 )...(1 )

...
1 1

N
N

N

N

N

a z a z
G z

z z

b zb z
z z

λ λ

λ λ

− −

− −

−−

− −

+ +
=

− −

= + +
− −

 (2) 

where the coefficients bi, i=1,2,…,N of the fractional 
components can be found easily using the well known 

formula 
1
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The corresponding block diagram of the modulator is 
given in Figure 2. 
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Figure 2. Block diagram of the modulator using 
parallel form of the loop filter. 
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Based on this presentation the state equations of 
the SDM are 

1

1
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where λ1, λ2 …,λN are poles (or modes) of the loop filter 
and the quantizer function is a sign function 
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sgn( )

1, 0
x

x
x
≥⎧

= ⎨− <⎩
 

A brief overview of the results for the stability of first 
order SDM described by 

( 1) ( ) ( ) sgn[ ( )
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]x n x n u n xλ+ = + − n

]

  (4) 

is given in [11, 15]. 

The above presentation demonstrates that high order 
modulators could be considered as built up of first order 
modulators, which interact only through the quantizer 
function. Because of this interaction the stability of the 
high order SDM depends on the stability of each of the 
first order modulators, where they have been shifted 
with respect to the origin of the quantizer function. 

To simplify the notations, we will drop the indexes and 
will rewrite equation (3) in the following form 

( 1) ( ) ( ) sgn[ ( ) ( )x n x n u n bx n yλ+ = + − + n  (5) 

where 

1
( ) ( )

N

i i
i
i k

y n b x n
=
≠

=∑  (6) 

This equation describes a first order shifted system and 
in what follows we will investigate the stability of this 
system. 

2.2. Stability of shifted first order SDMs 

The shifted first order system is described by equation 
(4). Because of the ideal quantizer, the system can be 
viewed as two linear systems connected at point –y(n)/b 
and thus the equations describing the dynamics of the 
first order SDM from (4) are 
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The fixed points of the system are 
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In what follows we will consider the input signal u(n) to 
be from the interval u(n)∈[-Δu, Δu], Δu>0 and because 
of this the shift y(n) belongs to the interval [-Δy, Δy], 
Δy>0. 

2.2.1. Stable Mode, λ<1 

The flow diagram of the system is given in Figure 3. 

virtual fixed point virtual fixed point-y(n)/b

λ<=1

fixed point fixed point-y(n)/b

λ>1

x(n)

x(n)

  
Figure 3. Flow diagrams of the first order system for 
the case of λ≤1 and λ>1. 

Depending on the parameters b, y(n) and input signal 
u(n) the system can have two stable virtual fixed points 
(the case given in the figure) and a compact region 
exists between them (in fact this is an invariant set in 
state space, which has the property that all subsequent 
states lie in the original set for a certain class of input 
signals). For another set of parameters one of the virtual 
fixed points becomes a real fixed point. In each of the 
cases the system is stable but in the second one, there is 
no compact region. The system moves towards a single 
attractor at the stable fixed point. Anyway, if the initial 
condition is between the origin and the real fixed point 
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of system (4) the state flow finishes at the equilibrium 
point (due to asymptotic movement to the single 
equilibrium point). It should be noted that this is not a 
desired SDM behavior. The SDM behavior appear when 
the first order system has two virtual fixed points and 
the state of (4) jumps between them. Thus the desired 
bitstream appear at the output of the quantizer. 
Sufficient conditions for this are object of another 
research. 

2.2.2. Unstable Mode, λ>1 
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The stability in this case is connected with existence of 
a compact region between the unstable fixed points (not 
virtual). It is important to point out that b>0. Otherwise 
the dynamic of the system is described by  
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and it is easy to observe that the above system is always 
unstable, because at least one of the fixed points is 
virtual. 
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Figure 4.  Map (4) given by (7) for the case of λ>1 

Let's consider the map (4), given by (7) depicted in 
Figure 4. 

For a compact region (CR), to exists the fixed point 
should not be virtual i.e. 
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This should be true for the worst case i.e. 
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Taking into account that 0)1( <− λ  and b>0 we get 
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The second condition for the existence of a CR is that 
the CR has to be included into the region between the 
fixed points i.e. the stable region (SR). The maximum 
jump of the variable x(n) from the Negative Half Line 
(NHL), with respect to –y(n)/b, to the Positive Half Line 
(PHL), with respect to –y(n)/b, is [–y(n)/b]λ+[u(n)+1] 
and the maximum jump from PHL to NHL is [–
y(n)/b]λ+[u(n)-1]. Hence in the worst case 
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Solving the above inequalities with respect to y(n) we 
find that a compact region can only exist if b>0 and  

0
(2 ) (2 )( )
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b
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Because the above should be valid for all y and for y=0 
as well then  or λ<2, i.e. 1<λ<2. Due to 
this  and hence if (10) is satisfied then (9) 
will be satisfied as well. 

1<

Considering again these two conditions, the maximal 
shift of the input signal Δu, which ensures that the 
compact region (CR) is included into the region 
between the fixed points i.e. the stable region (SR) is 
given by 
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λ
λλ −+−Δ−<Δ 2)1(

b
yu  (11) 
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Note that condition (10) is a sufficient but not necessary 
condition. It has been derived for the worst case and if 
satisfied, the first order modulator is stable for the range 
of input signal given by (11). However, if (10) is not 
satisfied the modulator could be stable for certain input 
signal. 

2.3. Stability of High Order SDMs with Real 
Poles 

Taking into account the parallel presentation considered 
in [11, 12], the stability of the high order SDM depends 
on the stability of each of the first order modulators. If 
all modes λk, are stable, i.e. λk<1 then the corresponding 
high order SDM is stable in the sense of boundness of 
the states. If there exists even one unstable mode λk, i.e. 
1<λk<2, the stability conditions for shifted modulators 
given above should be applied. 

In this case the shift yk(n) depends on the values of the 
other variables xi(n) i.e. 
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The above should still be true when xk makes the 
maximal "jumps" into the PHL or into the NHL. 

Without loss of generality we will consider the first p 
modes λk of the high order SDM to correspond to 
1<λk<2, k=1,2,…,p whereas the remaining N-p modes 
correspond to λk<1, k=p+1,…,N. In this case only the 
first p coefficients bk must be positive and the remaining 
N-p coefficients could have any real value. 

The maximal "jumps" of the state variables 
corresponding to the first p modes in the PHL and the 
NHL are 

kλ−1
nu −1)(  and 
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points of the system with respect to xk, k=1,2,…,p). 
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NHL, are 
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or real fixed points of the system with respect to xk, 
k=p+1,…,N). 

Therefore from (13) for the worst case with respect to 
the input signal one can obtain 
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Note that we apply (14) only for the shifts connected to 
the first p modulators. The other N-p first order 
modulators are stable, because for their corresponding 
λk, λk≤1, k=p+1,…,N. 

If there exists a region [ , , such that 
 and for this region conditions (14) are 

satisfied, then the SDM will be stable for all input 
signals from this region. 

] [ 1,1u u−Δ Δ ⊆ − ]
[ , ]u u u∈ −Δ Δ

Taking into account equation (14) we get 
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More detailed considerations of the above inequality 
shows that in order to ensure a consistent solution of 
(16) with respect to Δu 

1 1

(2 )
0, 1,2,...,

1 1 ( 1)

p N
ii k k

i i pi i k k
i k

bb b
k p

λ
λ λ λ λ= = +

≠

−
− − < =

− − −∑ ∑  (16) 

Hence the maximal shift of input signal Δu ensuring the 
stability is given by 
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Note that inequalities (17) should be valid 
simultaneously for each k, k=1,2,…,p. 

Therefore, together with bk>0, k=1,2,…,p, equation (16) 
gives the sufficient conditions for the stability of the 
SDM, namely 

1 1
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For the poles outside the unit circle, k=1,2,…,p, we have 
that (2-λk)/λk<1. This implies that the inequality, Eq. 
(18), can only hold for one value of k. Hence, Eq. (18) 
provides a sufficient condition for stability when p=1 
i.e. there is at most one unstable mode, and this 
sufficient condition cannot hold when there is more than 
one pole outside the unit circle.  

It is clear now that in the case of repeated poles 
(λ1,…,λm=λ ) of the loop transfer function, the SDM is 
stable only when the corresponding modes are stable i.e. 
λ≤1. 

Let us consider more precisely the case of identical 
poles. Without losing the generality we will consider 
that the pole λ1 is repeated with order 2 i.e. λ1=λ2=λ. In 
this case (2) becomes 
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And the state equations may be given as 
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If λ is an unstable mode, i.e. 1<λ<2 then the 
corresponding first and second modulators should be 
stable in the sense of boundedness of the states. The 
first one can satisfy the conditions given by (11). The 
second one in fact is a linear system described by 

n

1 )

(20) 

2 2( 1) ( ) (x n x n xλ+ = + n   (21) 

where the state variable x1 could be considered as an 
input signal for this system. If 1<λ<2 then all possible 
symbolic sequences represent admissible periodic orbits 
of x1. Because of this, depending on the initial 
conditions a certain periodic orbit of x1 could influence 
the instability in x2. 

2.4. Stability of High Order SDMs with 
Complex Poles 

In the general case the loop filter transfer function can 
have complex conjugated roots. For better 
understanding, we will present the theoretical solution 
given in [13], where this case is described in detail.  
Without loss of generality we will consider only one 
pair of complex conjugated roots. In this case (2) 
becomes  
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The denominator of the last part of (22) has a complex 
conjugated pair of roots. The main idea is to use a 
complex form of expansion of the last part of G(z). 
Therefore (22) becomes 
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where 

γδγδ
βαλβαλ

jbjb
jj

NN

NN

+=−=
−=+=

−

−

,
,

1

1       (24) 

i.e. λN-1, λN and bN-1, bN are complex conjugated 
numbers. 

Because of this we can use the same parallel 
presentation given in figure 2. However, the values of 
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the last two blocks are complex. It should be stressed 
that the output signal of these two blocks is real. In 
order to make things more clear, and without loss of 
generality we will consider only these blocks. They 
correspond to a second order SDM with complex 
conjugated poles of the loop filter transfer function 
G(z). The block diagram of this modulator is given in 
figure 5. Here both signals x1 and x2 are complex 
conjugated, namely  

)1()1()1(
)1()1()1(

2

1

+−+=+
+++=+

kjnkmkx
kjnkmkx   (25) 

Because of this the input of the quantizer is real i.e. 

+
+

-

u y

+ z-1 δ-jγ

α+jβ

+ z-1

α−jβ +

δ-jγ

 

Figure 5. Block diagram of second order modulator 
with complex conjugate pair of poles.  

1 2( ) ( ) ( ) ( ) 2 ( ) 2 ( )j x k j x k m k n kδ γ δ γ δ γ− + + = + (26) 

As in the case of real poles, the modulator could be 
considered as two first order modulators interacting 
only through the quantizer function. The difference now 
is that the signals connected with both modulators are 
complex, but the input and output signals (u and y) are 
the “true” signals of the modulator. This model will help 
us to make analysis simple. We will consider the state 
of the first order modulators as a point in a complex 
plane (m,n). Depending on whether the input 2δm +2γn 
of the quantizer is positive or negative the state equation 
of the second order modulator could be described as 
follows:  

1 1

2 2

( 1) ( ) ( ) [ ( ) 1],2 ( ) 2 ( ) 0
( 1) ( ) ( ) [ ( ) 1],2 ( ) 2 ( ) 0

x k j x k u k m k n k
x k j x k u k m k n k

α β δ γ
α β δ γ

+ = + + − + ≥
+ = + + − + ≥

(27) 

and 

1 1

2 2

( 1) ( ) ( ) [ ( ) 1],2 ( ) 2 ( ) 0
( 1) ( ) ( ) [ ( ) 1], 2 ( ) 2 ( ) 0

x k j x k u k m k n k
x k j x k u k m k n k

α β δ γ
α β δ γ

+ = + + + + <
+ = + + + + <

(28) 

where x1 and x2 are given by (26). In fact 2δm+2γn is a 
line through the origin in the plane (m,n) and depending 
on in what half the point x1 is (because x1=m+jn), the 
description of the modulator is (27) or (28). The 
analysis of the behavior of both first order “complex” 
modulators is similar to the analysis of the first order 
“real” modulators, given in Section 2.2. Here we always 
should keep in mind that both modulators work 
cooperative, because their signals are conjugated. These 
modulators do not exist in the real SDM. They are 
introduced (like in the “real” case as well) to help us to 
carry out the analysis of the behavior of the whole 
system.  

2.4.1. Stable Mode, |λN-1|=|λ N|<1 

In this case both modulators have two stable equilibrium 
points (in every half plane):  

• first modulator: 
11
1

λ−
−u  and 

11
1

λ−
+u  i.e. 

 [ ]
22)1(

)1()1(
βα

βα
+−

+−− ju  and [ ]
22)1(

)1()1(
βα

βα
+−

+−+ ju  

• second modulator: 
21
1

λ−
−u  and 

21
1

λ−
+u  i.e. 

 [ ]
22)1(

)1()1(
βα

βα
+−

−−− ju  and [ ]
22)1(

)1()1(
βα

βα
+−

−−+ ju  

These fixed points could be virtual or real. Taking into 
account equations (26) to (28), the fixed points of both 
modulators are “virtual” when 2δ (1 −α) + 2γβ > 0  and 
“non-virtual” when 2δ (1 −α) + 2γβ < 0 . Both complex 
modulators are stable and the second order modulator is 
stable as well. As was mentioned in section 2.2, the 
SDM behavior appears when the first order system has 
two virtual fixed points and the states of (28), (29) jump 
between them. Thus the desired bitstream appears at the 
output of the quantizer.   

According to [13], in the general case, when the last two 
first order modulators are “complex”, i.e. correspond to 
a stable complex conjugated pair of roots; condition 
(18) has the form  

2
1 1

2 2
21 1

(2 ) 2 | (1 ) |
( 1) 1 (1 )

N
i

i i

bbλ δ α γβ
λ λ λ α β

−

=

− − +> − +
− − − +∑     (29) 
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and the maximal range of input signal ∆u ensuring the 
stability is expressed by  

2
1 1

2 2
2 1 1

2
1

2 2
21

2 (1 ) (2 )
1 ((1 )

2 (1 )
1 1 (1 )

N
i

i i
N

i

i i

b b

u
bb

δ α γβ λ
λ λα β

δ α γβ
λ λ α β

−

=
−

=

− + −− +
− − +

Δ <
− +

− +
− − − +

∑

∑

1)λ −
(30) 

2.4.2. Unstable Mode, |λ1|=|λ2|>1 

In this case both modulators have two unstable fixed 
points (in every half plane). Depending on parameters, 
these points could be “non-virtual” or “virtual”. In the 
case of virtual fixed points, both “complex” modulators 
are unstable and the whole system is unstable. In the 
case of real fixed points, the possibility for SDM 
behavior is connected with the existence of a compact 
region in the complex plane. This case is a subject for 
further research.  

2.5. Theory conclusions 

To summarise the results on stability of high order 
SDMs from the previous sections, we have the 
following; 

1. Any SDM comprised entirely of parallel sections 
with poles inside the unit circle is inherently stable.  

2. Any SDM with only real poles is guaranteed to be 
stable if Eq. 18 holds, and Eq. 17 provides the 
maximum input for stability. Eq. 18 also implies that the 
sufficient conditions for stability are violated if at least 
2 real poles are outside the unit circle. 

3. Any SDM comprised entirely of parallel sections 
with poles inside the unit circle and one complex 
conjugate pair inside the unit circle is inherently stable.  

4. Any SDM comprised entirely of parallel sections 
with some real poles outside the unit circle and one 
complex conjugate pair inside the unit circle is 
guaranteed to be stable if Eq. 29 holds, and Eq. 30. 
provides the maximum input for stability. Eq. 18 also 
implies that the sufficient conditions for stability are 
violated if at least 2 real poles are outside the unit circle. 
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It should be emphasized, that present theoretical study 
includes only the cases considered above; real poles not 
equal to 1, or complex poles inside the unit circle. It is a 
subject of further research to cover the cases when the 
poles are at the unit circle, and the case when a complex 
pair of poles is outside the circle. 

3.  EXPERIMENT 

3.1. Simulation 

Within the Matlab environment we have created a sigma 
delta modulator model using the parallel decomposition 
technique, according to the theory described in the 
previous section. The general block diagram of this 
model has been shown in Fig.2 and Fig.5. In many 
realistic loop filter designs, there is one first order 
section with a real pole and the others are grouped into 
biquad sections. Transforming a second order sections 
into first order sections results in two first order sections 
nits with complex conjugate poles, leading to complex 
signals. For this reason, the experimental 
implementation, described in Section 3.2, retains the 
second order sections, whereas the simulation may use 
the equivalent complex first order sections.  

Initially, for performance comparison with existing 
SDM structures, we ran simulations with the parallel 
modulator model and the modulator model from the 
DStoolbox for Matlab[17] using the same loopfilter 
transfer function on both models. The third order noise 
transfer function obtained by the DStoolbox, for a 64 
times oversampling ratio, was: 

 
3 2

3 2

2.999 2.999 1NTF(z)= 
2.1992 1.6876 0.4441
z z z

z z z
− + −

− + −
       

The relationships between the loop filter, signal transfer 
function and noise transfer function may be given 
by[18]: 

1 1( ) 1 1
1 ( ) ( )

G z
STF z NTF z

= − =
−

−   (31) 

which gives the loop filter transfer function: 

2

3 2

0.7998 1.341424 0.552171367G(z)= 
2.999 2.999 1

z z
z z z

− +
− + −

     (32) 



Tsenov, Mladenov and Reiss Theoretical, Simulated & Experimental Stability 
of SDMs

 

AES 124th Convention, Amsterdam, The Netherlands, 2008 May  17–20 

Using partial fraction expansion, this may be given in 
parallel form: 

1 1

1 1

10.5599 (-4.8801 - 3.9952i) (-4.8801 + 3.9952i)( )
1 1 (0.9995+0.0316i) 1 (0.9995-0.0316i)

z zG z
z z

− −

− −= + +
− − −

1

1

z
z

−

−
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Simulations confirmed that there was no difference 
between the parallel and series implementations, with 
both implementations achieving a signal to noise ration 
of 83.5db SNR. The power spectrum for both 
implementations is shown in Fig.6 for an input signal 
with amplitude 0.5 and frequency 2/3 the bandpass 
cutoff, 1/64. 

 

Figure 6. Power spectrum of the output signal for an 
SDM when using the loop filter obtained from (32) 

The main advantage of using the parallel decomposition 
is that it provides us with a means of verifying stability, 
equations (29) and (30). Thus, using the loop filter 
transfer function from (32), we then moved the real pole 
outside the unit circle, while keeping the complex 
conjugate poles fixed. We then measured the change in 
the stability range and the change in the SNR as the real 
pole is moved. The results from these simulations are 
given in section 4. 

Since G(z) has the form of a filter function and we know 
from equation (31) that we can obtained it from Signal 
or Noise transfer functions we also started a loopfilter 
transfer function seeking procedure. We wanted to see 
how the modulator will behave when using different 
filter functions for the loopfilter with different cutoff 
value in order to obtain transfer functions that give us 
good performance. The cutoff frequency was a scaled 
value from 0 to 1, where 1 represents fs/2. In this case 
we had two approaches: one to obtain lowpass filter 
transfer function that give us STF(z) and the second is 

to obtain highpass filter transfer function in order to 
derive the loopfilter functions from them. We used four 
filter types – one Butterworth and three Chebyshev type 
II with 3,6 and 20db stopband ripple. For every model 
we make a SNR performance measurement, 

calculation from (30) and check of condition (29), 
that guarantees stable operation. The obtained results 
from this procedure are given in section 4. 

UΔ

3.2. Realisation of high order SDMs with 
adjustable parameters 

When making the PSpice model we had to account for 
the fact that the circuitry to operated in the s domain. 
For that reason a transformation between G(z) and G(s) 
is needed. Our third order transfer function with one real 
pole and a complex conjugate pair of poles may be 
given as 

 

1 1 1
1

1 1
1

1 21
11

1 1 2
1 1 2

( ) ( )( )
1 1 ( ) 1 ( )

1 1
N N

b z j z j zG z
z j z j
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λ α β α β
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(33) 

Using the bilinear transform: 

1 22 .
11 2

sT zz psT T z

+ −= =
+−

1  (34) 

where T is the sampling period. For the real pole, 

1
1

1
1
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1

b z bG z
z zλ λ

−

−= =
− −
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1 (1 )2 2
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−
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−
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−
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+ ++
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 (35) 

This transfer function is the transfer function of a first 
order allpass filter. When we substitute the obtained 
coefficients into the allpass filter structure it has the 
characteristics of a lowpass filter. 
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Fig.7 First order allpass filter For the complex conjugate pole pair, 

 ( )
( )

( )
( )
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Again, using the bilinear transform, 

2 2 2

2 2( ) ( )
2 ( )

zG z G p
z z

γ γα
α α β

−= →
− + +

 Fig.8 Second order allpass filter 

( )
( ) ( )

2 2 2

22 2 2 2 2 2 2

( ) ( ) 2 2 (1 )2 2( )
2 1 ( ) 1 (1 2 )4

T T p Tp
G p

T p Tp

γα γ γα γ α

α α β α β α α β

− − + + −
=

+ + + + − − + − + +  

In order to set the circuitry according to the G(p) the 
model consists of a third order SDM with adjustable 
coefficients. The design employs variable resistors 
which allow all coefficients within the design to be 
modified in accordance to the stationary set values of 
the capacitors. This PSpice design has shown good 
agreement with the Matlab model at the logic level 
implementation. Fig.9 depicts the third order modulator  
PSpice model. 

22

22 2 2 2 2 2 2

( 1) 2 2 (1 )2( )
(2 1 ) (1 ) 1 24

Ts Ts
G p

Ts sT

γ α γα γ α

α α β α β α α β

− + + + −
=

+ + + + − − + − + +  
which is the transfer function of a second order all pass 
filter. hen substituted with the calculated values like the 
first order unit has behavior of a lowpass filter. 
General form of the schematic of a first order lowpass 
filter is given in Fig.7, while in Fig.8 the general form 
of a second order allpass filter is depicted: 4. RESULTS 

  

We used a modulator structure with 64 times 
oversampling ratio for the experiments and simulations. 
For the case where we have the G(z) obtained by the 
DStoolbox we have this loopfilter function: 

        
2

3 2

0.7998 1.341424 0.552171367G(z)= 
2.999 2.999 1

z z
z z z

− +
− + −

 

 
Fig.9 Third order modulator in PSpice 

Page 11 of 15 



Tsenov, Mladenov and Reiss Theoretical, Simulated & Experimental Stability 
of SDMs

 

AES 124th Convention, Amsterdam, The Netherlands, 2008 May  17–20 

The loopfilter transfer function has the following poles, 
p1=1, p2,3=0.9995±0.0316i. 
In this specific pole configuration case we can’t check 
Δu, because the present theory does not provide a result 
when we have a pole lying on the unit circle. However, 
by moving p1 inside or outside the unit circle, the theory 
can be applied. Moving p1inside the unit circle leads to 
severe SNR drop and in this case it is not of interest, 
because we know that when all the poles are inside the 
unit circle the modulator will be stable. Moving p1 
slightly outside the unit circle initially leads to a 
performance increase before the SNR drops.  
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Figure 10.  SNR of the SDM given by Eq. (32) when 
moving the real pole position of the loop filter 
exponentially outside the unit circle, from 1+2-20 to 
1.5.  

 

Fig. 10 depicts the SNR values obtained when moving 
the real pole outside the unit circle. The maximum SNR 
obtained when testing with sine wave as input signal 
was 86.55 dB, which is higher than the initial function. 
For all the values of the plotted range up to a real pole 
position of 1.0625, the stability condition (29) was 
fulfilled (where we have value of 1 its fulfilled and 
when we have 0 it is not). The modulator was stable 
when simulating and testing with DC signals up to 
almost 1 for all of these cases as the condition (29) and 
Δu value predicted, despite the fact that we had a pole 
outside the boundaries of the unit circle. 

 

 
Figure 11. Plot of the power spectrum when using 
modified G(z) from (32) with position of the real pole 
at values 1.000005 and 1.25 

 

When moving the pole further beyond p1=1.0625, the 
stability check for condition (29) was not fulfilled and 
when increasing the value of p1 further, we had a loss of 
stability. When sinusoidal input was used, the SDM lost 
its stability at  p1>1.25. One quick comparison is shown 
in Fig. 11 where the power spectrum is shown for two 
pole position cases. The highest SNR is obtained for 
p1=1.000005, whereas for p1=1.25 there is a lot of noise 
in the signal bandwidth and the SNR degrades 
significantly. 
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Figure 12.  The stability condition, simulated 
maximum DC input, and theoretical maximum input 
Δu when moving the real pole position of the loop 
filter, Eq. (32), exponentially outside the unit circle, 
from 1+2-20 to 1.5.  

Fig. 12 compares Δu, validity of the stability condition, 
and maximum stable DC input as the real pole is moved 
outside the unit circle. By comparing the theoretical 
sufficient condition for stability with the measured 
stable range, we have a direct comparison between 
theory and simulation.  

Interestingly, for p1 between 1+2-9 and 1+2-4, stable 
behavior was observed with larger DC input than 
predicted by theory. This is most likely because the 
theoretical condition for stability, in this case Eq. 30, is 
a sufficient but not necessary condition. Thus, stability 
may still occur even when this has been violated, as is 
indeed the case for high DC input and real pole 
significantly outside the unit circle.  

As noted in Section 3, we used 4 filter types with two 
different approaches to obtain a variety of loop filter 
transfer functions. The first approach was to find a 
lowpass filter function which gives the signal transfer 
functions (STF), and then derive G(z) using equation 
(31). SDM performance and stability was then found 
using this obtained transfer function for the loop filter. 
We used a cutoff frequency range varying from 0.0075 
to 0.0525 by increments of 0.0025 scaled to fs/2. In 
order to obtain filter transfer function coefficients for 
filter design software, we used the ‘butter’ and ‘cheby2’ 
Matlab functions that give the filter coefficients for 
lowpass (STF) or highpass (NTF) Butterworth and 
Chebyshev II filter designs for specified order and 
cutoff value. All the third order functions that were 

obtained had one real pole and a pair of complex 
conjugated roots.  

Using this approach for the Butterworth filter functions 
did not provide a sigma delta behavior of the modulator 
when testing with sine wave input. When testing with 
DC input in simulations the modulator was stable, but 
the stability condition (29) was not fulfilled for the 
whole cutoff test range. Using Chebyshev II filters with 
3, 6, or 20db stopband ripple produced modulators 
which were stable when tested with both sine wave and 
DC input signal.  Fig. 13 provides a combined plot 
showing the SNR for the different filter types for 
different cutoff values. For a cut-off frequency of 
0.0425, we obtained SNR higher than 80dB on both 
Chebyshev type II filters with 3 and 6db stopband 
ripple. The 20db ripple filter provided poor results for 
the whole range compared with the others and for all 
filter functions increase of the cutoff value did not 
produce better results. 
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Figure 13.  SNR versus cutoff performance for STF 

designed using the Chebyshev II filter. 

For all of these transfer functions the Δu value was close 
to 1, and the modulator was stable in simulations up to 
1. Sometimes when the complex pole pair was a little 
outside the unit circle and the real pole was inside we 
get a complex value for Δu and condition (29) not 
fulfilled. For all the cases with higher SNR we have 
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condition (29) fulfilled and Δu almost equal to 1, which 
make these transfer functions quite applicable.  

The second approach was to find the NTF(z) and then 
use Eq. (31) to derive the loop filter transfer function. 
This time with all the filter types in simulations the 
modulator produced stable behavior for the range 
depicted in Fig.14. 
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Figure 14.  SNR versus cutoff performance for 
highpass functions: NTF to G(z) derivation 

 

In contrast with the STF G(z) case, and with 
Butterworth design techniques, we have a definite 
fulfillment of condition (29) for all the cases considered. 
We observed that in this case the functions obtained 
from Chebyshev filters produced lower SNR than when 
low pass filter design for the STF is used to produce the 
loop filter transfer function. All these functions with 
small fluctuations produced Δu around 1, where an 
example plot for this is show in Fig.15. Despite the fact 
that condition (29) was not fulfilled for loop filter 
transfer functions derived from Chebyshev highpass 
filters, both they and the Butterworth ones were stable 
when simulating with DC and sinewave test signals. For 

the Butterworth filter design increasing the cutoff value 
lead to a severe drop in the SNR . 
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Figure 15.  Δu versus cutoff for highpass 
Butterworth function: NTF to G(z) derivation. 

We also observed a strong agreement between the 
Pspice model and the results obtained with the Matlab 
model. We observed stable modulator behaviour when 
using appropriate filter transfer functions. Fig.16 depicts 
a plot of the SDM input/output signals in the time 
domain using a sinusoidal test signal. 
 

 
 
Figure 16.  Plot of the sinewave input signal and 
output bitstream when testing the sigma delta 
modulator with Pspice. 

5. CONCLUSIONS 

In this paper we extend and verify the proposed method 
for stability analysis of high order SDMs. The method is 
based on a parallel decomposition of the modulator. The 
decomposition is presented for both real and complex 
roots of the denominator of the loop filter transfer 
function. Using this decomposition the general Nth order 
modulator could be considered as made up of N first 
order modulators, which interact only through the 
quantizer function. The decomposition helps us to 
extract the sufficient conditions for stability of the Nth 
order modulator. They are determined by the stability 
conditions of each of the first order modulators but 
shifted with respect to the origin of the quantizer 
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function, because of the influence of all other first order 
modulators. The results have been confirmed by both 
theory and simulation. 

The results presented here represent a work in progress. 
As of this writing, the experimental system has been 
constructed and tested. It produces the expected sigma 
delta modulator behavior, but it remains to be seen if it 
will produce similar stability results as were found from 
theory and simulation. Furthermore, the theory needs to 
be extended to more cases, such as poles on the unit 
circle, repeated complex poles, or complex poles 
outside the unit circle.  
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