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ABSTRACT 

Long-term musical structures provide information concerning rhythm, melody and the composition. Although 
highly musically relevant, these structures are difficult to determine using standard signal processing techniques. In 
this paper, a new technique based on the time-domain empirical mode decomposition is explained. It decomposes a 
given signal into its constituent oscillations that can be modified to produce a new version of the signal. It enables us 
to analyse the long-term metrical structures in musical signals and provides insight into perceived rhythms and their 
relationship to the signal. The technique is explained, and results are reported and discussed. 
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1. INTRODUCTION 
Extraction of musically relevant structures is an 
essential task prior to musical content analysis. Analysis 
of the individual melodies, themes, phrases and notes 
provide a better perspective of the signal. Different 
frequency bands carry different levels of information. 
So it is potentially useful to separate the high frequency 
noise and transients from the middle frequency 
harmonics and melodic information and low frequency 
long-term information. We can then process each part 
separately. We can also modify or change the content of 
each part and recombine them to produce a modified 
version of a given signal. 

This paper concerns applying a new technique based on 
the time-domain Empirical Mode Decomposition 
(EMD) to determine a hierarchical structure of the 
signal. The signal is decomposed into a summation of 
zero-mean AM-FM1 (Amplitude or Frequency 
Modulated) components, called the Intrinsic Mode 
Functions (IMF) [1]. 

The Fourier transform has two severe restrictions: 
stationarity and linearity. The wavelet transform, which 
is a multiple-resolution STFT, can be used to analyse 
the non-stationary signals, but still assumes the linearity 
                                                           
1 The Modes may contain Amplitude or Frequency Modulated 
components. 
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condition. Alternatively, EMD can be used as a reliable 
means to analyse non-linear and non-stationary signals.  

Lerdahl and Jackendoff [2] define four main musical 
structures:  

• Grouping structure to explain the segmentation of 
music as motives, phrases, themes, etc…  

• Metrical structure, the structure of the strong and the 
weak beats.  

• Time-span reduction, which is the rhythmic structure 
according to which the fundamental frequencies are 
heard.  

• Prolongational reduction which expresses the sense 
of tension and relaxation in music and shows the 
harmonic and melodic continuity and progression.  

Here we show that using the EMD, hierarchic rhythmic 
structures can be extracted, where each empirical mode 
is a reduced version of the preceding modes. EMD can 
be used to obtain both short-term features like 
fundamental frequency, chord and onset, and long-term 
structures like rhythm and tempo contours [3]. One 
advantage of directly finding the long-term structures, 
rather than calculating them through temporal analysis 
(e.g. determining tempo through the onsets) is to avoid 
the errors in temporal measurements transfer to the 
long-term estimations.  

Other audio signal processing applications of the 
empirical modes may be segregation of polyphonic 
texture, filtering [4], noise reduction [5] and 
compression of the audio signal by omission of the 
perceptually unimportant modes.  

This paper is organized as follows. Section 2 introduces 
the EMD and explains the algorithm. Simulated 
experiments on various audio signals are described in 
Section 3. We demonstrate that these experiments reveal 
the long-term structures as described by Lerdahl and 
Jackendoff [2]. Section 4 concludes the article with a 
discussion of future research. 

2. EMPIRICAL MODE DECOMPOSITION  

Empirical Mode Decomposition is an adaptive tool to 
analyse non-linear or non-stationary signals which 
segregates the constituent parts of a signal based on its 
local behaviour. No pre-processing is required since it is 

able to analyse non-zero mean signals, and is suitable to 
analyse the riding waves which may have no zero-
crossing between two consecutive extrema. It can be 
used as a filter bank [4], and for signal period analysis 
[6]. 

Unlike the Fourier and wavelet transforms, EMD has no 
fixed basis. It is similar to PCA and ICA in that the 
basis for the decomposition is signal-dependent. EMD 
involves calculating the IMFs for the signal, where the 
IMFs must satisfy the following two conditions:  

1) The number of extrema and the number of zero-
crossings must either be equal or differ at most by one. 
That is, there is only one extremum between two zero-
crossings. 

2) At any point, the mean value of each IMF must be 
zero.  

The Intrinsic Mode Functions are calculated by 
performing the following sifting process [1]: 
 

1- Through local analysis of the signal, all the minima 
and maxima are located. An interpolation function 
connects all the maxima; the same is done for the 
minima. This gives the upper and lower envelopes. 

2- The local mean (mean of the upper and lower 
envelopes) is calculated: m1 

3- The local mean is subtracted from the original 
signal to obtain the local details:   

                             11 )( mtXh −=  (1 ) 

4- h1 then becomes the new signal and the sifting 
process, steps 1 through 3, are repeated until the 
mean of the local detail becomes negligible, due to a 
stopping criterion. A threshold must be assigned for 
this variance between the two consecutive results: 
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Where, 1 ( )kh t is the result of the kth iteration on equation 
(1) and T is the measurement period. The threshold is 
normally set between 0.05 and 0.3 [1, 7].  
The maximum number of iterations is another stopping 
criterion. Its value can be chosen between 4 and 10 to 
yield meaningful modes [7]. A high value for the 
maximum number of iterations causes extra calculations 
and may lead to over-decomposition of the signal.  
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Once a stopping criterion is met, the first residue r1 is 
obtained. It is the first IMF. 
5- The residue in step 4 is subtracted from the signal 

for the first residue and from the previous mode for 
the others. Then steps 1-5 are performed to calculate 
the next IMF. 

6- The algorithm iterates on step 5, until it becomes a 
monotonous function that cannot produce any new 
IMF. 

It has been shown that, for estimation of the signal 
envelopes, using cubic spline interpolation yields better 
results than linear or polynomial interpolations [7]. The 
resulting curve is sufficient for estimation of the local 
mean, while avoiding the ‘over-decomposition’. 
The original signal may be re-constructed using the 
following summation: 

         
1

( )
n

n
i

IMF i r
=

+∑                            (3) 

Where ( )IMF i  is the ith Intrinsic Mode Function; n is 
the number of the Modes; and rn is the last residue 
(residue of the nth mode). 

In practice the interpolation in step 1 will not be perfect. 
This is due to insufficient data, and the uncertainty in 
the end-values of the envelopes. Furthermore, it is 
important to have enough samples for the peak detection 
step. Otherwise we will face the resulting error in the 
calculated modes. The influence of sampling on the 
behaviour of EMD is elaborated in [8]. 

There are 3 main issues with this procedure: how to 
define the stopping criteria, how to detect peaks, and 
how to deal with end effects in construction of the 
envelope. 

The end effect has been discussed in several previous 
papers on the EMD [1, 4-6]. It pertains to the difficulty 
in estimation of the bottom and top envelopes of a 
signal near the beginning or end of the signal. The 
envelopes are typically created using cubic spline 
interpolation, but at the endpoints there is not enough 
data to perform a cubic spline.  
Huang [1] suggested adding false peaks such as to yield 
typical waveforms at each end, with envelopes starting 
from zero to the first peak and from the last peak to 
zero. If the peaks occur at 1 2( ), ( )...t P t P , then this may 
be accomplished by setting a peak at: 
                           0 1 2 1( ) ( ) [ ( ) ( )]t P t P t P t P= - -                    (4)    
And similarly, setting a peak after the last peak. It may 
be necessary to add several peaks near each endpoint. 
Other methods include setting a peak at the first data 

point with amplitude equal to that of the first data point, 
this guarantees that the envelope converges onto or near 
the data. We have tried both methods and several more, 
but none guarantees success.  

The accuracy of the peak detection algorithm also 
significantly affects results. Peaks can be missed, false 
peaks can be added, and peak amplitudes can be 
miscalculated. These result in a poor envelope. A single 
false peak or grossly miscalculated peak amplitude can 
result in an error in the envelope which perpetuates, and 
may even grow, through subsequent shiftings and 
calculation of modes. 

Detection of peaks is improved by having a high sample 
rate. A sample rate of Fs is sufficient to resolve 
frequencies up to Fs/2, but that implies that frequency 
content near Fs/2 will have only 2 points per period. 
This makes accurate detection of peaks very difficult. 
One possible solution is preprocessing, i.e., perform an 
FFT, remove all the high frequency content, and then 
perform an inverse FFT. This may smooth out the most 
difficult peaks.  

The stopping criteria for sifting is less significant, in 
that different choices of stopping criteria will yield 
different results, but not necessarily incorrect results. 
The main criteria defined by Huang are that the 
component has no riding waves and that the mean 
envelope is zero [1]. No riding waves simply mean that 
there are no maxima below zero and no minima above 
zero. This also implies that the number of zero crossings 
differ from the total number of maxima and minima by 
at most one. The second criterion for stopping the 
sifting, that the mean envelope is zero, is far more 
difficult. Errors in peak detection and end effects may 
result in significant deviation of the mean envelope, and 
hence lead to more sifting. 

The implementation of the EMD that has been 
performed here is based on freely available MATLAB 
code by Rilling, et. al. [4, 7]. Spline interpolation has 
been used with false peaks added near the endpoints. 
The stopping criterion in Equation (2) was typically set 
to 0.1, and no pre-processing was applied. 

3. EXPERIMENTS & RESULTS 
Using a computer with a sound card, and an ordinary 
microphone, samples of 16-bit precision at a sampling 
rate of 44.1 kHz were acquired. The samples were 
performed by the first author on a Persian Santur 
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instrument. The Santur is a trapezoidal string 
instrument, played by a pair of delicate hammer sticks. 
It is often referred to as a Hammered Dulcimer in 
English [9]. 

3.1 Experiment 1 

Figure 1 shows the scores for an array of the following 
notes: A3-C4-E4-A4-C5-E5-A5. The fundamental 
frequencies are 220, 261.6, 329.6, 440, 523.25, 659.25 
and 880 Hertz respectively [10].  

Figure 2 shows the spectrum of the two-octave A minor 
arpeggio played on a Santur. A 256 point window has 
been used. The change in the harmonic content at the 
onset of each note can be clearly seen. 

The same signal has been analysed by the EMD. With a 
Maximum Iterations of 20, the arpeggio is decomposed 
to 13 empirical modes, marked as F1-F13 and a residue 
(figure 3). 

 
Figure 1 A two-octave A minor arpeggio 

 

Figure 2 Spectrum of a two-octave A minor arpeggio. 

The EMD acts as an adaptive filter bank. The first few 
IMFs contain the high frequency noise and the harmonic 
information, and the lower modes show the long-term 
behaviour of the signal. Although, here only the first 7 
IMFs can be heard, the next modes still convey 
important information. They tell us about the metrical 
and rhythmic structures. For example, comparing the 
IMF 12 with the signal, we observe that the peaks of the 
sinusoid in IMF 12 occur close to A onsets. So IMF12 
peaks can be interpreted as the strong beat, i.e. the 

metrical structure; and IMF 13 separates the two 
arpeggios into measures, each happening in a quarter-
cycle of the oscillation in IMF13. It shows the rhythmic 
structure as described by Lerdahl and Jackendoff [2]. 

The signal can be reconstructed, with summing up all 
the modes and the residue according to equation 3. 

 

Figure 3 Decomposition of the sample in figure 1: 
signal, its 13 IMFs and the residue 

 

3.2 Experiment 2 

In the second test, two A4-C5 and C5-E5 notes were 
played several times as a retarding rhythmic pattern 
(figure 4), where the tempo is gradually decreasing. 
Tempo is the speed of the rhythm of a piece, measured 
as the number of beats per minute. A tempo tracking 
system is explained in [11]. 

Figure 5 shows the EMD results with a Maximum 
Iterations of 5. Inspection of the IMFs in this figure 
allows one to speculate on the relationship between the 
IMFs and the harmonic content of the original signal. 
By comparing the frequency content of the IMFs with 
the frequencies of the note sequence, it can be seen that 
IMF1 has strong frequencies that match the 5th 
harmonic of A4 and the 4th harmonic of C5; similarly, 
IMF2 has the 5th harmonic of C5; IMF3, 2nd harmonic 
of A4; IMF4, F0 of C5; IMF5, F0/2 of C5; IMF6 F0/2 
of A4.  

 
Figure 4 A retarding sequence of A4-C5 and C5-E5 

chords 
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The half-pitch components in the signal could be 
interpreted as the sympathetic vibration of A3 strings. 
The sympathetic vibration happens when a string is not 
played, but vibrated by another sound of the same F0 or 
a multiple of that. Further research is required to verify 
these conjectured relationships. 
 

 

Figure 5 A decreasing tempo sequence of A4-C5 and 
C5-E5 notes: signal, its 14 IMFs and the residue 

The explanation for this phenomenon is given with the 
fact that the EMD acts as an adaptive filter bank. With 
increasing the mode index, frequencies of the 
oscillations become lower. A higher value for the 
maximum number of iterations would decompose the 
signal into more modes, but would significantly increase 
the amount of processing required. Too high of a 
maximum value may also lead to over-decomposition of 
the signal.  

The period of IMF11, which is changing through time, 
shows the onset times. And with decreasing the tempo, 
the periods of IMF13 & IMF14 increase. So they might 
be used for tempo tracking. IMF13 has a period 6 times 
the distance of the first 2 notes, though it is arranging 
the notes in groups of 6 similar to the time span 
segmentation suggested by Lerdahl and Jackendoff [2]. 
The same can be said for IMF14 but with a larger period 
(10 notes). The residue shows a decreasing trend as the 
tempo decreases. Figures 6-a through 6-c show IMF4 
(C5’s F0), IMF13 and IMF14 in a larger view.  

Similarly, other tests were done on increasing and 
decreasing tempo patterns of an A4 note and on some 
melodic patterns. They reinforce this statement that the 
last few modes in an EMD decomposition of a signal 
follow the rhythmic and metrical structure.  

  

 (6-a) 

 

  (6-b) 

    

    (6-c) 

Figure 6 IMF4, IMF13 and IMF14 of figure 3  
     a) IMF4   b) IMF13 c) IMF14 
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Using the EMD, a rhythmic analysis of the signal can be 
performed. The obtained modes are hierarchically 
ordered and the EMD operates as a filter bank with 
noise and higher frequency components in the first few 
IMFs, and lower frequency components in the lower 
modes.  

4. CONCLUSIONS 

This work is concerned with applying the Empirical 
Mode Decomposition to extract meaningful musical 
structures from audio. The EMD is a powerful means 
for the analysis of nonlinear non-stationary signals. It 
decomposes the signal to a summation of zero-mean 
AM-FM components, called Intrinsic Mode Functions. 
EMD has no analytical representation and is based on 
the local behaviour of the signal. It can be used for the 
analysis of long-term structures which are difficult to 
determine using standard frequency domain or wavelet 
techniques.  

Using the EMD, the signal is decomposed into a set of 
hierarchically ordered modes, where each empirical 
mode is a reduced version of the preceding modes 
(figures 3 and 4). EMD operates as a filter bank with 
noise and higher frequency components in the first few 
IMFs, and lower frequency components in the lower 
modes. This hierarchical representation of a musical 
piece can be used for noise reduction, or adaptive 
segregation of different frequency bands in an audio 
signal. Future work may be on automatic analysis of the 
long-term structures like the Scale and the rhythm in a 
musical piece. This will assist in automated music 
labeling. Also, the IMFs can be individually modified or 
changed, to produce a modified version of the signal. 
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