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Abstract

In this paper, we find that, by computing the difference between two consecutive state vectors of second-order dou-
ble-loop sigma-delta modulators (SDMs) and plotting one component of the subtracted vectors against the other com-
ponent, irregular chaotic patterns will become two vertical lines. By multiplying a matrix on the subtracted vectors, it
can be further transformed to two fixed points. However, second-order interpolative bandpass SDMs still exhibit cha-
otic behaviors after applying the same transformations. Moreover, it is found that the Lyapunov exponent of state vec-
tors of second-order double-loop SDMs is higher than that of second-order interpolative bandpass SDMs, whereas the
Lyapunov exponent of transformed vectors becomes negative infinity for second-order double-loop SDMs and
increases for second-order interpolative bandpass SDMs. Hence, by examining the occurrence of chaotic behaviors
of the transformed vectors of these two SDMs, these two SDMs can be distinguished from their state vectors and their
transformed vectors without solving the state equations and knowing the information of input signals.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

It was well known that there are many important applications of SDMs in analog-to-digital conversions because
only simple, robust and inexpensive components can achieve the objectives [1-3]. However, since SDMs consist of dis-
continuous nonlinear elements, which are quantizers, behaviors of SDMs could be very complex even though SDMs are
as simple as second-order systems [4,5]. One of the most common complex behaviors is the exhibition of irregular
chaotic patterns on the phase portraits [4].
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However, since both second-order double-loop SDMs and second-order interpolative bandpass SDMs would exhibit
irregular chaotic patterns on the phase portraits, it is not easy to distinguish these two types of SDMs from their state
vectors without solving the state equations and knowing the information of input signals. This problem is important
because SDMs are sometimes disturbed by a mechanical shaking or an electric shocking. In these situations, filter
parameters in SDMs may be corrupted. In order to reconstruct signals, it is required to estimate the corresponding filter
parameters. Although there are infinite numers of choices of filter parameters, the most common one is either from sec-
ond-order double-loop SDMs or second-order interpolative bandpass SDMs. By distinguishing these two types of
SDMs, signals can be reconstructed.

Although there are some existing methods for solving nonlinear system identification problems, such as using the
fuzzy [7] and neural network [8] approaches, these approaches are too complicated for the identification of SDMs. This
is because input signals are usually oversampled and the number of discrete samples is very large. Hence, the compu-
tational complexity is too high for these methods which make them practically impossible. On the other hand, prop-
erties of SDMs are exploited in this paper. The proposed method is less computational complex compared to the
fuzzy [7] and neural network [8] approaches. Hence, it can be applied to distinguish these two types of SDMs from their
state vectors.

The outline of this paper is as follows. In Section 2, we show that, after computing the difference between two con-
secutive state vectors of second-order double-loop SDMs, there are only two vertical lines by plotting the component of
the vectors against the other component, whereas, this is not the case for second-order interpolative bandpass SDMs. In
Section 3, we explain why this method can be used to distinguish these two types of SDMs from their state vectors with-
out solving the state equations and knowing the information of input signals. Finally, the conclusion and summary of
our works are given in Section 4.

2. Results

For a lowpass SDM or a bandpass SDM with the natural frequency of the loop filter closed to zero, input signals are
usually slow time varying and can be approximated by a step signal because the oversampling ratio is usually very high.
Hence, a step input can be considered in this paper. For the second-order double-loop SDM shown in [4], the dynamical
behavior of the SDM can be represented by the following state space equation:

x(k + 1) = Ax(k) + Bs(k) +u[1 1]", (1)

for k = 0, where x(k) = [x;(k) xa(k)]T is the state vector, s(k) = [s1(k) s2(k)]T = Q(x(k)) is the quantized state vector,
u is the input step size,

Az[l 0} BE{O —1} andQ(y)E{l y >0, 2

11 0 -2 —1 otherwise.

Define

e(k) =x(k+1) —x(k), (3)
then it can be shown easily that

e(k) = [ei(k) ex(k)]" = [u—s2(k) xi(k) +u—252(k)]". )
Since u is a constant and s;(k) € {1,—1} for i=1,2,

eik)e{u—1,u+1} (5)
and

rr\gcn(xl (k) +u—-2<e(k) < nﬁx(xl (k) +u+2. (6)

If x,(k) is bounded, then e,(k) is also bounded, and there are two vertical lines shown on the plot of e,(k) against e(k).
It is worth noting that e(k) is obtained by highpass filtering of x(k). Hence, the mapping from X = {x(k)} to
E = {e(k)} is not a static projection of x(k). Furthermore, define

&(k) = [e1(k) @(k)]" = (A —Te(k), (7)
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where I is a 2 x 2 identity matrix, then
&k) = [0 u—s:(k)]". (8)

In this case, €(k) is obtained from a static projection of e(k). Since there are only two possible values of €(k), which are
[0 u—1]" and [0 u + 1], there are only two points on the plot of & (k) against & (k).

Fig. l1a shows the phase portrait of a second-order double-loop SDM with u = 0.161027 and x(0) =[0.077 0.08]" [4].
Fig. 1b shows the plot of e,(k) against e;(k). Fig. 1c shows the plot of &,(k) against e, (k). It can be seen from Fig. la that
an irregular chaotic pattern is exhibited on the phase portrait, while there are two vertical lines on the plot of e(k)
against e;(k), and two points on the plot of e,(k) against & (k).

Now, we apply the same transformation to second-order interpolative bandpass SDMs [5]. Second-order interpola-
tive bandpass SDMs can be represented by the following state space equation:

x(k+1) = Ax(k) + B (u[l 1" - s(k)), 9)
for k > 0, where
Cro 1 00
A= and B' = : (10)
—1 2cos0 d —2dcos0

Fig. 2a shows the phase portrait when d = —1, § = 0.05, u = —0.3 and x(0) = [0.1 — 0.5]". Fig. 2b shows the plot of
e-(k) against e(k), and Fig. 2c shows the plot of e, (k) against e (k). It can be seen from Fig. 2a that an irregular chaotic
pattern is exhibited on the phase portrait, while it seems to have four straight lines on the plot of e,(k) against e;(k) as
shown in Fig. 2b and four points on the plot of &,(k) against ¢, (k) as shown in Fig. 2c. However, if we zoom-in into
Fig. 2b and c, as shown in Fig. 2d and e, we find that they are not four straight lines and four points. In fact, the tra-
jectories are confined in very narrow regions within the neighborhood of four straight lines and four points respectively.
The width of the regions depends on 0. The Lyapunov exponents of x(k) and €(k) for the second-order interpolative
bandpass SDM are, respectively, 0.0619 and 0.0628, where the Lyapunov exponent is computed based on 50,000 sam-
ples of data and 30 total number of replacement steps [6]. It is worth noting that the Lyapunov exponent of é(k) is
higher than that of x(k). If the Lyapunov exponent is employed for the measure of chaotic behaviors, since both Lyapu-
nov exponents are positive, then x(k) and é(k) can be regarded as exhibiting chaotic behaviors and €(k) is more chaotic
than x(k) (in the sense of the Lyapunov exponent). Compared to that of x(k) and €(k) for the second-order double-loop
SDM, the corresponding values are 0.2341 and —oo, respectively. Since the Lyapunov exponent of x(k) for the second-
order double-loop SDM is higher than that of the second-order interpolative bandpass SDM, while the Lyapunov
exponent of e(k) is negative and much smaller than that of the second-order interpolative bandpass SDM, we can
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Fig. 1. (a) Phase portrait of a second-order double-loop SDM; (b) plot of es(k) against e;(k); (c) plot of &,(k) against ¢, (k).
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Fig. 2. (a) Phase portrait of a second-order interpolative bandpass SDM; (b) plot of ex(k) against e,(k); (c) plot of & (k) against e, (k);

(d) zoom-in of (b); (e) zoom-in of (e).

conclude that the state vectors of the second-order double-loop SDM is more chaotic than that of the second-order
interpolative bandpass SDM, but it is no longer chaotic after the transformation, while the transformation causes more
chaotic for the second-order interpolative bandpass SDM.

The importance of the above findings is that we can distinguish these two types of SDMs from their state vectors

without solving the state equations and the information of input signals.

3. Explanations

For second-order double-loop SDMs,
e(k) = (A —I)x(k) + Bs(k) +u[1 1]",

for kK = 0, and
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for k = 0. Since

0 0

A-I= L 0} (13)
and

(A-T) =0, (14)

the matrix A — I is not a full rank matrix. Hence, the dimension of the signal is reduced after the projection. As a result,
exactly two vertical lines and two points are exhibited on the plots of e,(k) against e(k), and &,(k) against e, (k), respec-
tively. For second-order interpolative bandpass SDMs, since

A-l= {71 2005107 1} (15)
and
, ) 0 2(cos0—1)
w-= {2(1—005(9) (20059—1)2—1}7 (16

the matrix A’ — I is a full rank matrix, the dimension of the signals is preserved after the projection. Hence, they are
not four straight lines and four points on the plots of e,(k) against e|(k), and &,(k) against &, (k), respectively. However,
if 0 is small enough, that is  — 0, then

A’—Iz{:i ” (17)

and
(A —1)> =~ 0. (18)

In this case, it appears to be four straight lines and four points on the plot of e,(k) against ¢;(k) and &,(k) against &, (k),
respectively. This accounts for the phenomena.

4. Conclusion

In this paper, we have explored the difference between irregular chaotic patterns exhibited on the phase portraits of
second-order double-loop SDMs and second-order interpolative bandpass SDMs. We have shown that by computing
the difference between two consecutive state vectors, and plotting one component of the vectors against the other com-
ponent, a simple regular pattern is resulted on the phase portrait for second-order double-loop SDMs. However, irreg-
ular chaotic patterns are still exhibited on the phase portrait for second-order interpolative bandpass SDMs. It is found
that the Lyapunov exponent of state vectors of the second-order double-loop SDM is higher than that of the second-
order interpolative bandpass SDM, while that of the transformed vectors of the second-order double-loop SDM is neg-
ative and much smaller than that of the second-order interpolative bandpass SDM. Also, the Lyapunov exponent of the
transformed vectors increases for the second-order interpolative bandpass SDM. Hence, the proposed simple method
can be used to distinguish these two types of SDMs from their state vectors without solving the state equations and the
information of input signals.
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