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SUMMARY

In this paper, we analyse the stability of the sinusoidal responses of second-order interpolative marginally
stable bandpass sigma delta modulators (SDMs) with the sum of the numerator and denominator poly-
nomials equal to one and explore new results on the more general second-order interpolative marginally
stable bandpass SDMs. These results can be further extended to the high-order interpolative marginally
stable bandpass SDMs. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since sigma delta modulators (SDMs) can perform analog-to-digital (A/D) conversion using
simple, robust and inexpensive circuits, and can achieve very high signal-to-noise ratio (SNR)
because of the noise shaping characteristics [1], SDMs are found in many industrial and consumer
electronic products. One of the advantages of employing bandpass SDMs over the lowpass SDMs
is to reduce the sampling frequency by operating the SDMs on high frequency narrowband signals,
so bandpass SDMs become more popular and have been investigated in the communications, signal
processing and circuits and systems societies extensively [2–5].
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Since SDMs consist of a quantizer, which is a non-linear component, in the feedback loop, the
dynamical behaviours of SDMs could be very complex even though the loop filters in the SDMs
are as simple as second order, rational, strictly proper and causal filters with a unit delay in the
numerator [2–5]. It was found that the trajectory of second-order bandpass SDMs may exhibit
one or more ellipses or elliptic fractal patterns confined within two trapezoids when zero or step
inputs are applied [2–5]. Although these results help for understanding the dynamical behaviours
of second-order bandpass SDMs, bandpass inputs should be employed for the analysis because
bandpass SDMs shape away the noise from bandpass regions and operate at bandpass signals. Some
simulation results based on bandpass inputs have been performed in Reference [2]. In Reference
[6], statistical properties of the error signals have been investigated, but the behaviours of the
SDMs have not been discussed. In Reference [7], periodic behaviours of the output sequences
have been discussed, but chaotic and divergent behaviours of the SDMs have not been explored.

In this paper, we start at studying the sinusoidal responses of the SDMs introduced in References
[2–5], then we explore new results on the more general second-order interpolative marginally stable
bandpass SDMs and extend these results to the high-order interpolative marginally stable bandpass
SDMs. The outline of this paper is as follows. The notations are introduced in Section 2. Both the
analytical and simulation results are presented in Section 3. Finally, a conclusion is summarized
in Section 4.

2. NOTATIONS

Consider the second-order interpolative marginally stable bandpass SDMs introduced in [2–5].
The transfer function of the loop filter of the SDMs is denoted as F(z) = (2 cos �z−1 − z−2)/(1−
2 cos �z−1 + z−2), where � is the filter parameter depending on the sampling frequency and the
operating frequency of the SDMs. For this second-order marginally stable bandpass loop filter,
� is also the natural frequency of the loop filter and the SDMs shape away the noise from this
frequency. Denote the input of the SDMs and the output of the loop filter are, respectively, u(k)
and y(k). Then the SDM can be described by the following state space equation [2–5]:

x(k + 1) =Ax(k) + B(u(k) − s(k)) for k � 0 (1)

y(k) =Cx(k) + D(u(k) − s(k)) for k � 0 (2)

where x(k)≡[x1(k) x2(k)]T ≡ [y(k − 2) y(k − 1)]T is the state vector of the SDMs and the state
variables are defined as the delay version of the output of the loop filter, u(k) ≡[u(k−2) u(k−1)]T
is a vector containing the past two consecutive points from the input signal u(k),

A≡
[

0 1

−1 2 cos �

]
(3)

is the system matrix,

B≡
[

0 0

−1 2 cos �

]
(4)

is the matrix associated with the input of the loop filter, C and D are the matrices associated with
the output of the loop filter. Since the state variables are chosen as the delay version of the output
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of the loop filter, C and D are the last row of matrices A and B, respectively, and

s(k) ≡[Q(x1(k)) Q(x2(k))]T for k � 0 (5)

is the quantized state vector, in which the superscript T denotes the transpose operator,

Q(y)≡
{
1 y � 0

−1 otherwise
(6)

is a one bit quantizer and � ∈ (−�, �)\{0}. When � ∈ {−�, 0, �}, the system will become either
lowpass or highpass SDMs, which are out of the scope of this paper because this paper only
focuses on the bandpass SDMs. Since s(k) consists of only four possible values: [1 1]T, [1 −1]T,
[−1 − 1]T, and [−1 1]T, s(k) can be viewed as a symbolic sequence and symbolic dynamical
approach is employed for the analysis of the SDMs.

In this paper, since we study the sinusoidal responses, the input signal u(k) is represented in
the form of u(k) = c sin(�k + �) + d for k � 0, where c, �, � and d are the amplitude, frequency,
phase shift and DC offset of the input signals, respectively. Without loss of generality, we can
assume that � �= 0. For �= 0, the input signal becomes a step signal and it is reduced to the zero
or step response case, which is equivalent to the case when c= 0 and d is equal to the DC level
of the input signal. Moreover, we only consider the case when the natural frequency of the loop
filter �, the input signal u(k) and the initial condition x(0) are real, that is, �, c, d, �, � ∈ � and
x(0)∈ �2. As a result, y(k) is also real.

3. RESULTS

In this section, we first study the second-order interpolative marginally stable bandpass SDMs with
sum of numerator and denominator polynomials equal to one. Then, we will extend the results to
the case when the sum of numerator and denominator polynomials not equal to one.

3.1. SDMs with sum of numerator and denominator polynomials equal to one

When the output of the loop filters is bounded and the output sequences are eventually periodic
with periodM starting at the time index kM0 , we can define the admissible set of eventually periodic
output sequences �≡⋃M�1 �M for k � k0, where �M is the admissible set of eventually periodic
output sequences with period M for k � kM0 and k0 = maxM�1 kM0 , in which M∈Z+. �M can be
represented as

�M ≡ {sM ≡ (s(kM0 ), s(kM0 + 1), . . . , s(kM0 + M − 1)) : s(kM0 + i)

= s(kM0 + i + pM) for i = 0, 1, . . . , M − 1 and p ∈ Z+}
Define the discrete-time Fourier coefficients of the eventually periodic output sequences with period
M for k � kM0 as ap for p= 0, 1, . . . , M − 1, that is

ap ≡ 1

M

kM0 +M−1∑
k=kM0

s(k)e− j2�pk/M for p = 0, 1, . . . , M − 1
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Then, the following lemma characterizes the constraints on ap for p= 0, 1, . . . , M − 1:

Lemma 1
If y(k) is bounded, the output sequences are eventually periodic with period M for k � kM0 ,
|�| �= |�| and 2�p/M �= |�| for p= 0, 1, . . . , M −1, then ap for p= 0, 1, . . . , M −1 has to satisfy
the following two constraints:

M−1∑
p=0

apamod(q−p+M,M) =
{
1 q = 0

0 q = 1, 2, . . . , M − 1
(7)

and

Q

(
M−1∑
p=0

ap f1(k, p) + f2(k)

)
=

M−1∑
p=0

ape
j2�pk/M for k � kM0 (8)

where

f1(k, p) = C8e
j2�pk/M + C9 cos �k + C10 sin �k for p= 0, 1, . . . , M − 1 and k � kM0 (9)

f2(k) = (x1(0)−Q(x1(0)))(sin(k−1)�−2 cos � sin k�)+(x2(0)−Q(x2(0)))(2 cos � sin(k+1)�− sin k�)

sin �

+C1 + C2 cos(�k) + C3 + C2 cos�

sin�
sin(�k) + C4 cos(�k) + C5 + C4 cos �

sin �
sin(�k) (10)

for k � 0, and mod(�, M) represents the remainder of �/M , in which

C1 = d(2 cos � − 1)

2(1 − cos �)
(11)

C2 = sin�Re{C6} + cos� Im{C6}
sin�

(12)

C3 = −Im{C6}
sin�

(13)

C4 = sin �Re{C7} + cos � Im{C7}
sin �

(14)

C5 = −Im{C7}
sin �

(15)

C6 = c(sin � + sin(� − �)e− j�)(2 cos � − e− j�)

4 sin

(
� + �

2

)
sin

(
� − �

2

) (16)

C7 = d(1 − 2 cos� + e− j�) + c(e j� − 1)(sin � + sin(� − �)e− j�)

4 sin

(
� + �

2

)
sin

(
� − �

2

)
(1 − e− j�)

(17)
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C8 = e− j2�p/M − 2 cos �

4 sin

(
�

2
+ �p

M

)
sin

(
�

2
− �p

M

) (18)

C9 = 1

2 j sin �

(
e j�

1 − e j2�p/Me j�
− e j�

1 − e j2�p/Me− j�

)
(19)

C10 = 1

2 j sin �

(
e− j ((�/2)−�)

1 − e j2�p/Me− j�
− e j ((�/2)−�)

1 − e j2�p/Me+ j�

)
(20)

Re{�} and Im{�} denote, respectively, the real and imaginary part of �.

Proof
Since y(k) is bounded and the output sequences are eventually periodic with period M for k � kM0 ,
the Fourier representation of the eventually periodic output sequences with period M for k � kM0
exists. Since (Q(y(k)))2 = 1 for k � 0, Equation (7) has to be satisfied. Besides, since |�| �= |�|
and 2�p/M �= |�| for p= 0, 1, . . . , M −1, then by computing the outputs of the loop filter due to,
respectively, the zero input and without quantizer feedback, the zero initial condition and without
quantizer feedback, and zero initial condition and zero input, Equation (8) has to be satisfied,
where the coefficients in Equation (8) are obtained by grouping the terms correspondingly. Hence,
this completes the proof. �

The importance of Lemma 1 is that it provides information to check whether a binary eventu-
ally periodic sequence with period M for k � kM0 is an eventually periodic admissible sequence
generating a bounded trajectory for the SDMs or not. For the absolute value of the input sinusoidal
frequency and that of the harmonics of the eventually periodic output sequence with period M
for k � kM0 not equal to that of the natural frequency of the loop filter, if we cannot find an initial
condition x(0) and a starting time index kM0 such that Equations (7) and (8) are satisfied, then the
test sequence is not an eventually periodic admissible sequence generating a bounded trajectory
for the SDMs.

Since the input signals are periodic, the output of the loop filter and the output sequences
are assumed to be bounded and eventually periodic with period M for k � kM0 , respectively, the
spectrum of y(k) will consist of impulses. As a result, fixed points and limit cycles may occur
but fractal and irregular chaotic patterns would not exhibit on the phase portrait. Figure 1 shows
some phase portraits of these SDMs. Although the output sequences are eventually periodic with
period M for k � kM0 , there are many different patterns exhibiting on the phase portraits as shown
in Figure 1.

In Lemma 1, we assume that both the absolute value of the input sinusoidal frequency and that
of the harmonics of the eventually periodic output sequences with period M for k � kM0 are not
equal to the absolute value of the natural frequency of the loop filter. However, as the bandpass
SDMs shape away the noise from the natural frequency of the loop filter, the input sinusoidal
frequency is usually equal to the natural frequency of the loop filter. This case will be discussed
in the following lemma.
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Figure 1. Phase portraits of second-order interpolative bandpass SDMs when the output sequences are
eventually periodic with period M for k�kM0 .
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Lemma 2
Suppose y(k) is bounded and the output sequences are eventually periodic with period M for
k � kM0 . Let q be a positive rational number. |�| = |�| = q� if and only if ∃p∗ ∈ {0, 1, . . . , M − 1}
such that p∗ = M |�|/2� and ap∗ = c/2e− j ((�/2)−�).

Proof
Since the output sequences are eventually periodic with period M for k � kM0 and y(k) is bounded,
the Fourier representation on the eventually periodic output sequences with period M for k � kM0
exists. If ∃p∗ ∈ {0, 1, . . . , M − 1} such that p∗ = M |�|/2�, then there exists an impulse located at
the natural frequency of the loop filter on the spectrum of the output sequences. This sinusoidal
component may cause resonance effect and has to be cancelled by the input sinusoidal signals
because y(k) is bounded. Hence, the input signals have to contain a sinusoidal component located
at the natural frequency of the loop filter and this proves that |�| = |�|. To prove |�| is a rational
multiple of �, since p∗ = M |�|/2� and p∗ is an integer, the result follows directly. For the converse,
when |�| = |�|, in order to cancel the resonance effect generated by the input sinusoidal component,
the Fourier component of the output sequences should have a component located at the natural
frequency of the loop filter with the value ap∗ = (c/2)e− j ((�/2)−�). This proves the converse and
completes the whole proof. �

The importance of Lemma 2 is for the proof of Theorem 1 that is stated below. From Lemma 2,
we see that, unlike linear systems, the trajectory of the non-linear SDMs does not necessarily diverge
even though the input sinusoidal frequency is equal to the natural frequency of the loop filter.

Figures 2(b), (d) and (a) show, respectively, the frequency spectrum of x1(k), the frequency
spectrum of y(k) and the phase portrait of the SDMs when u(k) = 0.05 sin(�k/2) for k � 0,
� = �/2 and x(0)=[0.1 0.2]T, in which the red and black lines in Figures 2(b)–(d) represent,
respectively, the frequency spectrum of the corresponding spectra and the magnitude response due
to the initial condition of the loop filter. It can be seen from Figure 2(a) that the trajectory is
bounded. Figure 2(c) shows the frequency spectrum of s1(k). It can be seen from Figure 2(c) that
s1(k) is eventually periodic and the SDM exhibits limit cycle behaviour. Since � = �/2, according
to Lemma 2, we can conclude that there exists an impulse located at the natural frequency of
the loop filter on the spectrum of eventually periodic output sequences, which is also the input
sinusoidal frequency, and the corresponding Fourier coefficient is (c/2)e− j ((�/2)−�), as shown in
Figure 2(c).

Now we extend Lemma 2 to the cases when the output sequences are aperiodic.

Theorem 1
If y(k) is bounded, then |�| = |�| if and only if there exists an impulse located at the natural
frequency of the loop filter on the spectrum of output sequences. Furthermore, for bounded y(k)
and |�| = |�|, s(k) is aperiodic if and only if � is not a rational multiple of �.

Proof
The proof is similar to that of Lemma 2, so it is omitted here. �

The importance of this theorem is to provide information to check whether there is an impulse
located at the natural frequency of the loop filter on the spectrum of the output sequences or not.
When the output of the loop filter is bounded, the existence of an impulse located at the natural
frequency of the loop filter on the spectrum of the output sequences of the SDMs is equivalent
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Figure 2. (a) Phase portrait of the second-order interpolative bandpass SDM; (b) frequency spectrum of
x1(k); (c) frequency spectrum of s1(k); and (d) frequency spectrum of y(k).

to the fact that the absolute value of the input sinusoidal frequency is equal to that of the natural
frequency of the loop filter. Moreover, if y(k) is bounded and |�| = |�|, then the occurrence of
limit cycles is equivalent to the fact that the absolute value of the input sinusoidal frequency or
that of the natural frequency of the loop filter is a rational multiple of �. Based on these two
results, it suggests that the absolute value of the input sinusoidal frequency, as well as that of the
natural frequency of the loop filter, should not be set at a rational multiple of � for avoiding the
occurrence of limit cycles.

If y(k) is bounded, |�| = |�| and � is not a rational multiple of �, then fractal or irregular
chaotic patterns may be exhibited on the phase portrait. Figures 3(b) (d) and (a) show, respectively,
the frequency spectrum of x1(k), the frequency spectrum of y(k) and the phase portrait of the
SDM when u(k) = 0.1 sin(1.5k) for k � 0, � = 1.5 and x(0)= [0.1253 0.2877]T, in which the
red and black lines in Figures 3(b)–(d) represent, respectively, the frequency spectrum of the
corresponding spectra and the magnitude response due to the initial condition of the loop filter.
It can be seen from Figure 3(a) that the trajectory is bounded. According to Theorem 1, since
|�| = |�|, we can conclude that there exists an impulse located at the natural frequency of the
loop filter on the spectrum of output sequences, which is also the input sinusoidal frequency, as
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Figure 3. (a) Phase portrait of the second-order interpolative bandpass SDM; (b) frequency spectrum of
x1(k); (c) frequency spectrum of s1(k); and (d) frequency spectrum of y(k).

shown in Figure 3(c). In this example, since the natural frequency of the loop filter is 1.5, which
is not a rational multiple of �, so according to Theorem 1, s(k) is aperiodic. Figure 3(c) shows
the frequency spectrum of s1(k). It can be seen from Figure 3(c) that s1(k) is aperiodic and the
SDM exhibits chaotic behaviour, as predicted by the theorem. Figure 4 shows another example
when u(k) = 0.01 sin(−1.746k) for k � 0, � = −1.8416 and x(0)=[0.01 0.01]T . In this case, the
trajectory is still bounded. Since |�| �= |�|, so according to Theorem 1, there does not exist an
impulse located at the natural frequency of the loop filter on the spectrum of output sequences, as
shown in Figure 4(c).

Next, we will explore the conditions when y(k) is unbounded.

Lemma 3
Suppose that the output sequences are eventually periodic with period M for k � kM0 and |�| =
|�| = q�, where q is a positive rational number. If ∀p∗ ∈ {0, 1, . . . , M−1}, ap∗ �= (c/2)e− j ((�/2)−�),
then |y(k)| → +∞ for k → + ∞.

Proof
The proof follows directly from Lemma 2, so it is omitted here. �
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Figure 4. (a) Phase portrait of the second-order interpolative bandpass SDM; (b) frequency spectrum of
x1(k); (c) frequency spectrum of s1(k); and (d) frequency spectrum of y(k).

The importance of Lemma 3 is to provide information to check whether the output of the loop
filter diverges or not. It is worth noting that even though the output sequences are eventually
periodic with period M for k � kM0 , the resonance effect introduced by the input signals may not
be canceled by that of the eventually periodic output sequences when the corresponding Fourier
coefficient of the eventually periodic output sequences is not equal to (c/2)e− j ((�/2)−�). If this
is the case, then the output of the loop filter will diverge. Compared to the results reported in
Reference [5] that the second-order interpolative bandpass SDMs are globally stable for both zero
and step inputs no matter where the initial conditions are, the global stability for the sinusoidal
response cases is not guaranteed.

Figures 5(a), (c), (e) and Figure 5(b) show, respectively, the response of x1(k), the frequency
spectrum of x1(k), the frequency spectrum of y(k) and the phase portrait of the SDM when
u(k) = 10 sin(�k/10) for k � 0, � = �/10 and x(0)=[0.3273 0.1746]T, in which the red and black
lines in Figures 5(c)–(e) represent, respectively, the frequency spectrum of the corresponding spectra
and the magnitude response due to the initial condition of the loop filter. Figure 5(d) shows the
frequency spectrum of s1(k). It can be seen from Figure 5(d) that s1(k) is eventually periodic and
the SDM exhibits limit cycle behaviour with period 20. According to Lemma 3, since |�| = |�| = q�
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Figure 5. (a) Response of x1(k); (b) phase portrait of the second-order interpolative bandpass SDM; (c)
frequency spectrum of x1(k); (d) frequency spectrum of s1(k); and (e) frequency spectrum of y(k).

where q is a positive rational number, and ∀p∗ ∈ {0, 1, . . . , M − 1}ap∗ �= (c/2)e− j ((�/2)−�), we can
conclude that the trajectory is unbounded, as shown in Figure 5(a) and (b).

3.2. SDMs with sum of numerator and denominator polynomials not equal to one

Now we extend the results to the case when the sum of the numerator and denominator polynomials
of the loop filter is not equal to one. That is, by denoting the loop filter of a second-order interpolative
marginally stable bandpass SDMs as F ′(z) = (�z−1 + �z−2)/(1− 2 cos �z−1 + z−2), where � and
� are real and (�, �) �= (−2 cos �, 1).

Theorem 2
If �>0, then ∃x(0) ∈ �2 such that |y(k)| → +∞ for k → +∞.

Proof
The proof is shown in Reference [8]. �

The importance of this theorem is to provide information to check whether the output of the
loop filter diverges or not. If �>0, then the output of the loop filter may be unstable. Hence, it is
important to choose the numerator coefficients such that ��0.
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Figure 6. (a) Plot of x2(k) against x1(k); (b) frequency spectrum of x1(k); (c) frequency spectrum of s1(k);
and (d) frequency spectrum of y(k).

3.3. High-order interpolative marginally stable bandpass SDMs

Although there are limits on the applications of second-order interpolative marginally stable band-
pass SDMs, high-order ones are found many applications and part of the results in Theorem 1 is
applied for those high-order ones. If the absolute value of the input sinusoidal frequency is not
equal to that of the natural frequencies of the loop filter and there is no impulse located at the
natural frequencies of the loop filter on the spectrum of the output sequences, then the output
of the loop filter is bounded. Figure 6 shows responses of 8 order interpolative marginally stable
bandpass SDMs designed via the Matlab sigma-delta toolbox [9] with oversampling ratio 64 and
centre frequency �/2. It can be checked that the natural frequencies of the loop filter are e± j1.5497,
e± j1.5625, e± j1.5791 and e± j1.5919. Assume that the input of the SDM is u(k) = 0.1 sin(�k/2)
for k�0. Then the absolute value of the input sinusoidal frequency is not equal to that of the
natural frequencies of the loop filter. Figures 6(b), (d) and (a) show, respectively, the frequency
spectrum of x1(k), the frequency spectrum of y(k) and the plot of x2(k) against x1(k) under zero
initial condition, in which the red and black lines in Figures 6(b)–(d) represent, respectively, the
frequency spectrum of the corresponding spectra and the natural frequencies of the loop filter. It
can be seen from Figure 6(c) that there is no impulse located at the natural frequencies of the loop
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filter on the spectrum of the output sequences, so the trajectory is bounded. It can be seen from
Figure 6(a) that x1(k) is bounded and the trajectory is confirmed with certain region in the state
space.

4. CONCLUSION

Most of the existing stability analysis of SDMs is restricted to time domain analysis and step
responses for lowpass systems. In this work, we have used frequency domain analysis to investigate
the stability of bandpass SDMs with respect to sinusoidal responses. The main contribution of this
paper is to study the admissibility conditions on the Fourier coefficients of the eventually periodic
output sequences that generate bounded trajectories, and to analyse the stability of sinusoidal
responses of second-order interpolative bandpass SDMs in the frequency domain. In Lemma 1,
we provided conditions as to whether an eventually periodic output sequence is an admissible
sequence for generating a bounded trajectory. From Lemma 2 we showed that the trajectory of
an SDM does not necessarily diverge even though the input sinusoidal frequency is equal to the
natural frequency of the loop filter. Theorem 1 then generalizes Lemma 2 to the aperiodic case
and provides information for the occurrence of fractal and chaotic behaviours. Finally, Lemma 3
provided conditions for the divergent behaviour. These theoretical results were confirmed by
simulation on a variety of SDMs with different sinusoidal responses and can be further extended
to high-order interpolative bandpass SDMs. High-order bandpass SDMs are useful in many practical
systems because the oversampling ratios of bandpass SDMs are usually lower than that of lowpass
SDMs. By applying the developed theory in this paper, the stability of these bandpass SDMs can
be checked easily.
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