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Abstract—It has been established that a class of bandpass
sigma–delta modulators may exhibit state space dynamics which
are represented by elliptical or fractal patterns confined within
trapezoidal regions when the system matrices are marginally
stable. In this brief, it is found that fractal or irregular chaotic
patterns may also be exhibited in the phase plane when the system
matrices are strictly stable.

Index Terms—Bandpass sigma–delta modulators (SDMs),
chaos, fractals, stable system matrix.

I. INTRODUCTION

BANDPASS sigma–delta modulators (SDMs) have many
industrial and engineering applications because many sys-

tems are required to perform analog-to-digital conversions on
bandpass signals [1]. By using bandpass SDMs, simple and rel-
atively low-precision analog components could achieve the ob-
jectives. Because of this advantage, this area draws much atten-
tion from the researchers in the community. Consequently, some
methods for the analysis [6], [7] and design of bandpass SDMs
have been proposed [2]–[5].

Since the quantizer in the feedback loop of bandpass SDMs
introduces nonlinearities, limit cycles [6] and chaos [7] may
occur. Some researchers utilize the nonlinear behavior to sup-
press unwanted tones from the quantizers [9]–[11]. The most
common existing method is to place some unstable poles in
the system matrices, so that chaotic behaviors will be exhibited
in the systems, and the rich frequency spectra of these chaotic
output signals break down the dominant oscillations at the out-
puts. However, by placing some unstable poles in the system
matrices, the stability of the systems is degraded.

In the practical situation, there are leakages on the integrators
[8]. This originates from the internal resistances of the compo-
nents. Even though the leakages may sometimes be negligible,
engineers and circuit designers may impose leakage on the inte-
gratorssoas to improve thestabilityof theoverall systems.There-
fore, the eigenvalues of the system matrices are strictly inside the
unit circle, and the system matrices are actually strictly stable.

Although there are some analytical results on the bandpass
SDMs [7], most analysis is based on marginally stable system
matrices only. For the bandpass SDMs with strictly stable
system matrices, the existing results are primarily concerned
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with limit cycles, but not with fractal or irregular chaotic
behavior. In this brief, we show that fractal or irregular chaotic
behavior may also occur.

The organization of the brief is as follows. The analytical and
simulation results of bandpass SDMs with strictly stable system
matrices are given in Section II. Discussion and conclusion are
given in Section III.

II. ANALYTICAL AND SIMULATION RESULTS

The bandpass SDMs in [12] with leakages can be modeled as
follows:

for (1)

where is the state vector of the system,
is a vector containing the past

two consecutive points from the input signal

(2)

is the system matrix of the system

(3)

is the matrix associated with the nonlinearity, and

for (4)

in which the superscript denotes the transpose operator

otherwise
(5)

and . As opposed to standard low-
pass SDM systems, bandpass SDMs are designed to operate on
high-frequency narrowband signals by shaping the noise from
some frequency [7], where , in which de-
notes the sampling frequency. At the desired frequency , it
has noise transfer function zero and signal transfer function 1
[7]. When , the system is either a low-pass SDM
or a highpass SDM, which is out of the scope of the brief. The
leakage of the system depends on the values of . If is closer to
0, then the poles are closer to the origin and the leakage is more
serious. If is closer to 1, then the poles are closer to the unit
circle and the leakage is less significant. For an ideal lossless
bandpass SDMs, , the system reduces to that described in
[12], and the system matrices are marginally stable. Since

for (6)
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the value of can be viewed as symbols, and is called
a symbolic sequence.

In this brief, we only consider the cases when and
are real signals, that is and . We also
assume that is a constant input, that is for .

A. Limit Cycle Behaviors

Define

(7)

and

(8)

Since , exists. As is a full rank matrix
because , can be decomposed via eigen decomposition.
That is

(9)

Let be the period of the steady state of the output sequences
(if it exists), that is

(10)

in which and . Define

(11)
and

for (12)

We have the following lemma.
Lemma 1: The following statements are equivalent.
i) .

ii) for .

iii)
such that and

.
Proof: For i) implies ii), from (1), we have: ,

and

(13)
From (9) and (i), we have

(14)

Hence, we have

(15)

By substituting (15) into (1), the result follows directly.

For ii) implies i), since

for

(16)
then such that

for and (17)

Hence, the result follows directly.
For ii) implies iii), since

for

(18)
then such that

for and for (19)

Hence, the result follows directly.
For iii) implies i), since

for and for (20)

the result follows directly.
This completes the whole proof of the lemma.
Lemma 1 associates the steady state of periodic output with a

specific set of initial conditions and a corresponding dynamical
behavior of the system. According to Lemma 1, we can easily
see that the trajectories will converge to the set of fixed points

, and the periodicity of the steady states of
the output sequence is equal to the number of fixed points on
the phase plane. That implies that all the fixed points (more than
or equal to 2) cannot be in the same quadrant. For example, if

, then there are two fixed points on the phase plane and
these two fixed points are located in different quadrants.

The significance of Lemma 1 is that it provides useful infor-
mation for estimating the periodicity of the steady state of output
sequences via the phase portrait. Moreover, Lemma 1 provides
useful information to the SDM designers to avoid limit cycle
behavior.

It is worth noting that although the state vector is converging
to a periodic orbit, it never reaches these periodic points. That
means, the state vector is aperiodic even though the output se-
quence is eventually periodic. This result is different from the
case when and is a rational multiple of .

Moreover, although , for , depends
on , for , it does not depend on
directly. That is, the fixed points leading to a given symbol se-
quence are not directly depended on the initial conditions.

When , the output sequence will become constant
and there is only one single fixed point on the phase portrait.
The trajectory will converge to this fixed point, denoted as .
The significance of this result is that it allows SDM designers to
avoid fixed point behavior.

It is worth noting that the state vectors of the corresponding
linear system will converge to , which is not the
same as that of . Comparing these two values, there are dc
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Fig. 1. State variable x (k).

shifts and the dc shifts are exactly dropped at the output se-
quences, that is

(21)

in which
for (22)

In addition, this phenomenon is quite different from the case of
low-pass SDMs. In such a situation, the average output sequence
will approximate the input values even though limit cycle be-
havior occurs.

Although the nonlinearity is always activated, the rate of con-
vergence only depends on when the output sequence becomes
steady. This is because the dc terms do not affect the rate of con-
vergence. However, if we look at the transient response of the
system, that is, the time duration when the output sequence is
not constant, the system dynamics could be very complex.

Fig. 1 shows the response of the state variables of a bandpass
SDM with

and (23)

The state variables will converge to the same fixed value and the
output sequences will become constant for .

Fig. 2 shows the state trajectory of a bandpass SDM with

and (24)

The state trajectory will converge to two fixed points and the
output sequences are periodic with period 2 for .

Although Lemma 1 gives the necessary and sufficient condi-
tions for the occurrence of limit cycles, it is not easy to check
whether a periodic sequence is admissible or not. To address this
issue, define

(25)

and

. . .
...

. . .
. . .

...
(26)

Fig. 2. Phase portrait when M = 2.

Lemma 2: If the periodic sequence is admissible, then

(27)
Proof: From Lemma 1, if the periodic sequence is admis-

sible, then the state vectors will converge to

for (28)

Hence, (27) is satisfied and this completes the proof.
The importance of Lemma 2 is that it provides information

to check whether a periodic sequence is admissible or not, and
hence it can conclude whether limit cycles occur or not from the
filter parameters.

B. Fractal or Irregular Chaotic Behaviors

Equation (27) can be expressed as shown in (29), at the
bottom of the next page, for . Since

for , it can
be checked that Lemma 2 is not universal satisfied for all filter
parameters. That means, there exists some values of
and such that (29) is not satisfied. In this case,
the output sequence is aperiodic and the SDM exhibits neither
convergent nor limit cycle behaviors at the steady state. Hence,

(30)

where denotes the empty set. That means, there exists some
initial conditions that the SDM may exhibit either elliptical
fractal or irregular chaotic patterns.

Fig. 3(a)–(c) shows the state trajectories of a band-
pass SDM with filter parameters and

, input step size
and initial conditions , and

, respectively. It can be seen from the figures
that fractal patterns are exhibited on the phase plane and the
trajectories neither converge to the boundaries of the trapezoids
nor any fixed points in the phase portrait. Measurements of the
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Fig. 3. Phase portraits when output sequences are aperiodic.

fractal dimension are estimated at 1.78 for the box counting
dimension, 1.75 for the information dimension, and 1.72 for
the correlation dimension for all these three initial conditions.
Fig. 3(d)–(f) shows the state trajectories of a bandpass SDM
with filter parameters and , input step
size and initial conditions ,

and , respectively. It can be seen
from the figures that the SDM exhibit irregular chaotic patterns
on the phase plane. Compared to the fixed point case shown in
Fig. 1, the value or is the same. Fig. 3(g)–(i) shows the state
trajectories of a bandpass SDM with filter parameters
and , input step size and initial
conditions , and ,
respectively. It can be seen from the figures that the SDM also
exhibit irregular chaotic patterns on the phase plane. Compared
to the limit cycle case shown in Fig. 2, the value or is the
same. Hence, even though the value of is close to the unit
cycle, different behaviors may occur.

Fig. 4 shows the spectra of the corresponding output se-
quences of the above examples. It can be seen from the figures

that there are no periodic impulses on the spectra, which illus-
trates that these SDMs do not exhibit limit cycle behavior and
do not suffer from audio tonal effects.

Although there are some spikes in some of spectra of output
sequences of the above examples, by grouping those ac frequen-
cies that producing spikes together to form a set, say , and
defining the tonal suppressing ratio (TSR) as follows:

(31)

it can be checked easily that the tonal suppression ratios of the
above SDMs are 15.9137, 19.2737, 17.7570, 6.8905, 6.8985,
6.5896, 7.7505, 7.7816, and 7.7498 dB, respectively.

Since all the simulations are carried out using MATLAB
under a 64-bit computer. The numerical rounding error is
insignificant compared to the distance between the poles of the
system matrices and the unit circle. For example, the numerical
error due to a 64-bit computer is , while the distance be-

(29)
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Fig. 4. Corresponding frequency spectra of the output sequences.

tween the poles of the system matrix and the unit circle is
for , the ratio is just . Hence, the effect
of numerical rounding error can be regarded as insignificant.

One possible implication of the results obtained in this brief is
that it is not necessary to place unstable poles in the system ma-
trices of bandpass SDMs to generate signals with rich frequency
spectra in order to suppress unwanted tones from quantizers. It is
shown in this brief that fractal or irregular chaotic signals can be
generated via system matrices with strictly stable poles. Since the
output sequences are aperiodic, which consist of rich frequency
spectra, the unwanted tones could be suppressed using these ape-
riodic signals without the tradeoff of the stability of the systems.

III. DISCUSSION AND CONCLUSION

In this brief, we found that fractal or irregular chaotic patterns
may be exhibited in the phase portrait even though the system
matrices of bandpass SDMs are strictly stable. One implication
of the results obtained in this brief is that we can generate signals
with rich frequency spectra by using strictly stable system ma-
trices and hence unwanted tones generated by the quantizers are
suppressed. Thus, limit cycles may be avoided without a tradeoff
in the stability of the bandpass SDM.
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