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Fuzzy Impulsive Control of High-Order Interpolative
Low-Pass Sigma—Delta Modulators
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Abstract—In this paper, a fuzzy impulsive control strategy is
proposed. The state vectors that the impulsive controller resets to
are determined so that the state vectors of interpolative low-pass
sigma—delta modulators (SDMs) are bounded within any arbitrary
nonempty region no matter what the input step size, the initial
condition and the filter parameters are, the occurrence of limit
cycle behaviors and the effect of audio clicks are minimized, as
well as the state vectors are close to the invariant set if it exists.
To work on this problem, first, the local stability criterion and the
condition for the occurrence of limit cycle behaviors are derived.
Second, based on the derived conditions, as well as a practical
consideration based on the boundedness of the state variables
and a heuristic measure on the strength of audio clicks, fuzzy
membership functions and a fuzzy impulsive control law are
formulated. The controlled state vectors are then determined by
solving the fuzzy impulsive control law. One of the advantages
of the fuzzy impulsive control strategy over the existing linear
control strategies is the robustness to the input signal, the initial
condition and the filter parameters, and that over the existing
nonlinear control strategy are the efficiency and the effectiveness
in terms of lower frequency of applying the control force and
higher signal-to-noise ratio (SNR) performance.

Index Terms—Fuzzy impulsive control, high order, interpolative
sigma—delta modulators (SDMs).

1. INTRODUCTION

HE sigma-—delta modulation technique has been proposed
Tand applied in analog-to-digital (A/D) and digital-to-
analog (D/A) conversion for many years [1]. It is particu-
larly popular in the past few years because of the advance in
electronic technology that makes the devices practical with
low implementation cost [2]. Since sigma—delta modulators
(SDMs) can achieve very high signal-to-noise ratios (SNRs),
it is widely applied in many systems required A/D and D/A
conversions, such as in the consumer and professional audio
processing systems [2], communication systems [3], and preci-
sion measurement devices [4].

In order to improve the SNR, high-order SDMs are preferred.
However, high-order SDMs suffer from instability problems.
Although there are many existing linear control strategies for
stabilizing interpolative SDMs, such as variable structure com-
pensation (sliding mode control strategy) [5] and time delay
feedback control strategy [6], etc, these linear control strategies
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stabilize the loop filter by changing the effective poles of the
loop filter. Since the loop filter is usually designed to have a very
high SNR, it is not guaranteed that the SNR of the controlled
SDMs is still maintained or even improved if the effective poles
of the loop filter are changed. Moreover, the parameters in the
controller depend on the loop filter parameters, so it is not guar-
anteed that a particular class of controllers can stabilize all types
of interpolative SDMs. Furthermore, the controlled SDMs may
still be unstable when the magnitude of the input signal is in-
creased. In addition, it cannot be guaranteed that the controlled
SDMs are stable for all initial conditions in the state space.

In order to control the SDMs without changing the effective
poles of the loop filter, nonlinear control strategy, such as the clip-
ping control strategy, was employed [2]. For the clipping control
strategy, as the state variables are always reset to the same values,
periodic output sequences may result and this periodic behavior
is known as limit cycle behavior. This situation is found very fre-
quently when the input signal is very slow time varying or the
clipped level is set at very low value. For audio applications [2],
the occurrence of limit cycle behaviors results to the annoying
audio tones, which should be avoided. Besides, there may be a
large jump between the unclipped and clipped state levels. As
a result, audio clicks may be observed, which should also be
avoided. Furthermore, as the set of the state vectors under the
clipping control strategy is usually not the same as the invariant
set, the clipping force may be applied very frequently.

In order to solve these problems, an impulsive control strategy
is proposed in this paper, in which it is to reset the state vec-
tors to different positions in the state space whenever the control
force is applied. Hence, the occurrence of limit cycle behaviors
and the effect of audio clicks can be minimized with the guar-
antee of the bounded state variables. Moreover, if the invariant
set exists, then we only need to reset the state variables of the
loop filter once and the state vectors of the SDMs are guaran-
teed to be within the invariant set forever if the effects of limit
cycle behaviors and audio clicks do not consider. However, there
are usually an infinite number of state vectors in the invariant
set, this paper is to determine the state vectors that the impul-
sive controller resets to. Since the SDMs consist of a quantizer,
nonlinear behaviors, such as fractal and chaotic behaviors, com-
bined with the practical consideration on the boundedness of the
state variables and a heuristic measure on the strength of audio
clicks, cause a difficulty to solve the state vectors analytically.
To solve this problem, a fuzzy approach is employed because
employing fuzzy approach can simplify the complicated prob-
lems and capture heuristic knowledge in the system.

The outline of this paper is as follows. In Section II, we in-
troduce the notations which appear throughout this paper. In
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HO et al.: FUZZY IMPULSIVE CONTROL OF HIGH-ORDER INTERPOLATIVE LOW-PASS SDMS

+
u(k) —4
_ A

(k)

Fig. 1. Block diagram of an interpolative SDM.

Section III, the conditions for the occurrence of limit cycle be-
haviors and the local stability criterion of the SDMs are derived,
which are used for the formulation of fuzzy membership func-
tions and fuzzy impulsive control law. In Section IV, a fuzzy
impulsive control strategy is proposed. In Section V, some sim-
ulation results are presented to illustrate the effectiveness of the
fuzzy impulsive control strategy. Finally, a conclusion is sum-
marized in Section VL.

II. NOTATIONS

The block diagram of an interpolative SDM is shown in
Fig. 1. The input to the SDM and the output of the loop filter
are denoted as, respectively, u(k) and y(k). We assume that
the loop filter is a single input single output real system and
the input is also real, that is, u(k) € R, so y(k) € R. The
transfer function of the loop filter is denoted as F(z). F(z)
is assumed to be causal, rational and proper with the order
of the polynomial of z~! in the numerator being equal to
that in the denominator and there is a delay in the numerator.
We make those assumptions because this type of SDMs is
commonly used in the industry [2]. Denote the coefficients in
the denominator and numerator of F(z) as, respectively, a; for
t=0,1,...,Nand b; forj =1,..., N, where NV is the order
of the loop filter. Then

N i
D=1 0277
Zﬁo a2t

Since this paper is based on the feedforward structure of the
SDMs, without loss of generality, we assume that the loop filter
is realized via the direct form because the expressions will be
much simplified. For other minimal realizations, they can be
converted to the direct form realization using simple transfor-
mations. Hence, the SDMs can be described by the following
state space equation:

F(z) = M

x(k+1) = Ax(k) + B (u(k) —s(k)) 2)

for £ > 0, where

on (k)]
= [y(k - N)7

x(k) = [z1(k), ...,
y(k =D 3

is the state vector of the SDMs
[u(k = N), ..., u(k—1)]" 4)

[s1(k), ..., sn(k)]"
= [Q(y(k — N)), Qlytk—1NI" ()

u(k)
s(k)
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in which @ is a one bit quantizer defined as follows:
_JL y=20
Q) = { —1, otherwise. )

Since the oversampling ratio of the SDM is usually very high,
the input can be approximated as a step signal. Hence, we further
assume that u(k) = @ for k > 0.

In many practical situations, the magnitude of the state vari-
ables of the SDM should not be larger than certain values. For
the direct form realization, since all the state variables are the
delay versions of the output of the loop filter, we denote the de-
sired bound on the state variables as V... That is, |z; (k)| < Vi.
fori = 1,2,...,N and k£ > 0. Otherwise, the SDM is guar-
anteed to yield an unwanted behavior. Denote B, as the set of
the desired state vectors. That is, B, = {x : |z;| < V. fori =
1,2,...,N}.

III. CONDITIONS FOR OCCURRENCE OF LIMIT CYCLE
BEHAVIORS AND LOCAL STABILITY CRITERION

As discussed in Section I, limit cycle behaviors should be
avoided. Hence, before we propose the fuzzy impulsive control
strategy, the conditions for exhibiting limit cycle behavior are
discussed below. This is essential for formulating a fuzzy mem-
bership function for avoiding the occurrence of limit cycle be-
havior.

Suppose the eigen decomposition of matrix A exists. That
is, there exists a full rank matrix T and a diagonal matrix D
which consist of the eigenvectors and eigenvalues of matrix A,
respectively, such that A = TDT™'. We make this assump-
tion because it is satisfied for most of SDMs employed in the
industry [2]. Denote \; and §; forz = 1,2, ..., N be the eigen-
values and the corresponding eigenvectors of the matrix A. Let
ngq be the number of eigenvalues of matrix A on the unit circle
with their phases are integer multiples of (27)/(P), that is,
Ny N_n, = 02k (P) for k; € Z andi = 1,2,...,nq. De-
note L; for: = 1,2,..., N be the ith row of

S AT Bk +7) - sk +7) )

=0

where P € Zt and kg > 0. Letr; forj = 1,2,..., N be the
jthrow of I — AT whereIisan N x N identity matrix. Denote

Up = {x(0) : r;x(ko) = L, fori=1,2,...,N —ng}.

©))
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Lemma 1: The number of linearly independent rows
in the matrix I — AT is N — ng, that is, Jde;, € R for
i = 1,2,....N —ngand n = 1,2,...,ng such that
Zf\i}"d = TN _ny4n. If Up # @, where © de-
notes the empty set, and Zf\:lnd ¢inli = Ln_p,4n for
n = 1,2,...,nq, then the SDMs exhibit limit cycle behavior
with period P, and ¥ p is the corresponding nonempty set of
initial condition. If Up = @ or In € {1,2,...,n4} such that
ZZ\S” ¢inLi # LN_n,+n. then there will not exist any fixed
point or periodic state sequence.

Proof: Denote Q = I — A”. Since A = TDT ! and

CinTq

AifN_n, = ela2mk)/(P) for k; € Z andi = 1,2,...,nq, we
have
QT =[(1-A]) &, ..., (1 =25_.,) énn,s0, .., 0]
(10)
and
rank(QT) =rank ([(1 - A]) &y, ...
(1=AN_0,) €nn,s0,...,0]). (11)

Since T is a full rank matrix, {£;, ..., €y _,, } are linearly inde-
pendent. As 1 =\’ # Ofori = 1,2,..., N—ng4,rank(QT) =
N —ng4. However, rank(QT) < rank(Q). Hence, rank(Q) >
N — ng. Since

Q=[(1-A)&..... o] T

12)

(1 - ’\ﬁ—nd)gj\und,(),...,

rank(Q) < N — ng4. Hence, rank(Q) = N — ngy. As a result,
the number of linearly independent rows in the matrix I — A"
is N — ng.

Since Up # @,3x(0) € RN such that r;x(ky) = L; fori =
1,2,. N—nd.AsEfVln"cmL = Ln_ nd+nforn—1
mZﬁT%mrﬂ%)=

N=
..,nd. Since Y, 1" Cinli = IN_py4n forn = 1,2,...,

Ly_p 4n forn = 1,2,

Nd, T N-ny+nX(ko) = LN—n 4n forn =1,2,..., ng. Hence
r;x(ko) = L; forn =1,2,...,N. This 1mphes that
P-1 ‘
(- A")x(ko) = Y A" B(u(ko + ) = s(ko + 7))-
7=0
(13)

As a result, we have x(ko) = x(ko + P). Hence, the SDMs
exist limit cycle behaviors with period P for k > k. Obviously,
U p is the corresponding nonempty set of initial condition.
When Up = @ or dn € {1,2,...,nq} such that
Zf\:lm ¢inLli # LN_y,4n, then there does not exist x(0)
such that x(ko + P) = x(ko). Hence, there will not exist any
fixed point or periodic state sequence, and this completes the
proof [}
The importance of this Lemma is to characterize the set of
initial condition that corresponds to the limit cycle behaviors
with period P for k > kg. This set of initial condition will be
used for the formulation of fuzzy rules shown in Section IV.
This result is a generalization of [2]. In [2], it mainly con-
siders the DC pole cases, thatis k; = 0 fori = 1,2,...,n4.
However, we reveal that even though there is not DC pole, but
if there exist some poles on the unit circle with their phases are
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nonzero integer multiple of (27)/(P), then the matrix Q will
also drop rank. Besides, when there are more than one DC poles
in the loop filter transfer function, if the degeneracy is equal to
the multiplicity of the eigenvalues of matrix A, then the eigen
decomposition of matrix A exists and Lemma 1 is still applied.

As discussed in Sections I and II, stability is an important
issue. Hence, the stability analysis is performed before the
fuzzy impulsive control strategy is proposed. Although the
global stability of the SDMs is usually preferred because global
stability implies local stability, sometimes global stability
cannot be achieved. Only local stability can be achieved and
local stability may be enough for some applications, such as
for audio applications [2].

The local stability is discussed as follows. Define the forward
and backward dynamics of the system as 8¢ : R — R and
Ry, : RV — RN, respectively. That is

x(k 4+ 1) = R¢(x(k)) in which x(k + 1)
= Ax(k) + B( - Q(x(k))) (14)
and
x(k — 1) = Xy, (x(k)) in which x(k)
= Ax(k—1)+B(u-Q(x(k—1))) (15)
respectively. Denote
N-1 N
o' (k) = byi + Z by_i(t— Q(zi(k))) — Z an—izi(k)
1= 1= (16)
and
x(k) = ["” (k) = Qifv(k)“N)bN w1 (k),. .., le(k)]
a7
Then
Aﬂm+Bm—Q@wm=[mw> ax—1(k),ox (k)
by . (k) — Q (' (k)an) by \ 1"
(o) - riteiv )]
(18)
If |2' (k)| > |bn|, then
Q(a' (k) — Q' (k)an)by) = Q(a' (k). (19)
Hence
Q@%mm—Q(ﬂm‘wammm)
an
= Q@' (Way) - Q' (Fay) = 0 (20)
and
Ax(k) + B(tu - Q(x(k)))
= [z1(k), ..., on (k)] = x(k) 1)
If |2/ (k)| < |bn|, then
Q(a'(k) — Q(a'(k)an)bn)
= —Q(a'(k)an)Q(bn) (22)
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" et - o (ZB =2 G
= Q(2'(k)an) + Q(a'(k)an)Q(anby). (23)
If Qlanby) = —1, then
Q' (May) -  (THEZ AT B
24)
and
Ax(k) + B(a — Q(x(k))) = x(Fk). (25)

Hence, if |z'(k)| > |by| or |2'(k)| < |bn]| and Q(anbyn) =
—1, then the backward dynamics of the SDMs can be defined
as

2’ (k) — Q(J;’(lﬂ)aN)bN7131(]@7 coxn-1(k) '

(26)

Ny (x(k)) =

an

Suppose the above conditions are satisfied Vk € Z. Denote

p = {x(0) : X¢(x(k)) € p,for k > 0,and

Ny, (x(k)) € p,fork <0} (27)

and amap S : p — g such that
$(x) = Ax + B(u - Q(x)). (28)
Lemma 2: If |2/(k)] > |bn| or |2/(k)] < |bn]| and

Q(anby) = —1, then g is an invariant set under . That is,
S(p) = . Hence, if kg € Z such that x(kg) € g, then
x(k) € pVk € Z.

Proof: The result follows directly from the definition M.

Although it was reported in [7] that if the invariant set ex-
ists and there exists an initial condition in the invariant set, then
the local stability is guaranteed. However, the conditions on the
existence of the invariant map are not explored and this relation-
ship is explored in Lemma 2.

It is worth noting that if 3ky € Z such that x(ko) € RN \p,
then x(k) € RV \pVk € Z, and x(k) may diverge. Hence, it is
not sufficient to conclude the global stability of the SDMs.

The importance of Lemma 2 is that it provides information
for formulating a fuzzy membership function to achieve local
stability.

IV. Fuzzy IMPULSIVE CONTROL STRATEGY

A. Fuzzy Impulsive Control Strategy

Fig. 2 shows the block diagram of how the fuzzy impulsive
controller influenced the SDMs. As discussed in Section I, the
fuzzy impulsive controller determines the controlled state vec-
tors and reset the state variables of the loop filter to the con-
trolled state variables via a reset circuit. To determine the con-
trolled state vectors, two step procedures are employed. The first
step of the procedure is the training phase in which the invariant
set and the set of state vectors that exhibits limit cycle behav-
iors are learnt through training. By generating a set of DC sig-
nals inputted to the system with different initial condition, the
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Fig.2. Block diagram of the interpolative SDM under the fuzzy impulsive con-
trol strategy.

state vectors are tested if they form an invariant set and exhibit
limit cycle behaviors or not. The second step of the procedure
is the control phase in which the controlled state vectors are de-
termined and the state variables are reset to the corresponding
values. The details are discussed in below.

As discussed in Section I, we want to minimize the effect
of audio clicks. To achieve this goal, we want to minimize the
distance between the original state vectors x(ko + 1) and the
controlled state vectors x°(ko + 1). However, x(ko + 1) may
be outside the desired bounded region By, so we define a vector
X" € By suchthat ||x(ko + 1) — x"||2 is minimum and our goal
is to minimize the distance between x°(ko + 1) and x” via a
triangular fuzzy membership function as follows:

1
~
/j’continuous( kO + ]- <H fz kO + 1 ))
(29)
where
fi(x%(ko +1),x")
oot =Vee -y < (ko + 1) < Vi
=) SRR Ve <at(o 1) <ot GO
0, otherwise.

Since a triangular fuzzy membership function is employed and
x" € BOylflcontinuous(Xc(kO + 1)) = 1 when Xc(kO + 1) =
X", fheontinuous (X (Ko + 1)) = 0 when x°(ko 4+ 1) € RV \B,,
and 0 S Ncontinuous(xc(ko + 1)) S 1VX(‘(1€0 + 1) € §RN-
Hence, ficontinuous(X°(ko + 1)) force the new state vectors
x°(ko + 1) to be within By. Note that if x(kg + 1) € By, then
x" = x(ko + 1) and there will be no audio click effect by set-
ting x°(ko + 1) = x". Since feontinuous (X (ko + 1)) captures
the knowledge on the closeness between x°(kg 4+ 1) and x",
and the effect of audio clicks is minimized if x“(ko + 1) is
closed to x", this fuzzy membership function can minimize the
effect of audio clicks.

As discussed in Sections I and II, the local stability criterion
is an important issue. According to Lemma 2, if |2/ (k)| > |by]|
or |z'(k)| < |by| and Q(anby) = —1, then x(k) € pVk € Z
if 3ko € Z such that x(ko) € p. However, the trajectory may
not be inside By because p is usually not equal to By. In order to
guarantee that the trajectory is bounded within By, we want the
controlled state vectors to be inside ¢N By, thatis, x°(ko + 1) €
p N By. Supposing that o N By # ©. This implies that there
exist state vectors that achieve local stability within the set of the
desired bounded state variables. Denote xP € o N By such that
| (ko + 1) — xP||2 is minimum. If pN By # @, |2/ (k)| > |bx|
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or [z/(k)] < |bn| and Q(anby) = —1, then we define the
following triangular fuzzy membership function:

/flstable( kO + ]- (H fz kO + 1 ))

Since a triangular fuzzy membership function is employed
and xP € BOa/Lstable(XC(kO + 1)) = 0 when Xc(ko + 1) €
RN\ B, pistable(x¢(ko +1)) = 1 when x°(ko +1) = xP
and 0 < fiseaple(X¢(ko + 1)) < 1Vx (ko + 1) € RY. Hence,
stable(X (ko + 1)) force the new state vectors x°(ko + 1) to
be within By. If x(ko + 1) € p N By, then x? = x(ko + 1).
By setting x“(ko +1) = x?, the local stability criterion is
satisfied. Since pstanie(x¢(ko + 1)) captures the knowledge on
the closeness between x¢(ko + 1) and xP, which also reflects
the closeness between x¢(ko + 1) and the set of state vectors
that achieved local stability within the desired bounded region,
this fuzzy membership function can capture the local stability
criterion into the system.

However, if pN By = @, then x? does not exist. Orif 3k’ € Z
such that |2/(k)| < |bn]| and Q(anby) = 1, then the local
stability criterion is not guaranteed. In this case, the SDM may
suffer from an instability problem. In order to avoid this case to
be happened, if p N By = @, or if Ik’ € Z such that |2/ (k)| <
|by| and Q(anby) = 1, then we define

1
N

€1y

“(ko + 1))

— 6stable7
= 07

where 1 > dstable > 0 and Ogtable 1S very closed to zero.
The reasons why small value of ;.11 can avoid the instability
problem are discussed in Section IV.B. Since the fuzzy mem-
bership value of the state vectors outside By is exactly equal to
zero, this fuzzy membership function will force the new state
vectors X“(ko + 1) to be within By.

As discussing in Section I, the occurrence of limit cycle be-
haviors should be avoided. Since | Jypq ¥ p is the set of state
vectors that exhibiting limit cycle behavior, we do not want to
move the new state vectors X°(kg + 1) into Uy p+ o ¥ p. More-
over, we do not want to move x°(ko + 1) into Uy, <, {x(k)}
too. This is because after a certain number of iterations, the state
vectors may go to the same points in the state space and cause
limit cycle behaviors to occur. Define

PER(ko) = ( U \pr> U

vVP>0

.u'stable(x
Xc(ko + 1) € By

(ko +1) € RN\B, Y

(33)

U =)

Vk<ko

If PER(ko) N By = By, then all the state vectors in By may
result limit cycle behaviors and this situation should be avoided.
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On the other hand, if PER (ko) N By = @, then we cannot find a
state vectorx? € ByNPER (ko) such that ||x(ko + 1) — x||2 is
minimum. Hence, if PER(kg) N By = By or PER(ko) N By =
@, we define the fuzzy membership function as

,U'aperiodic(xc(ko + 1))
— 6ap0riodic; Xc(ko + 1) S Bo (34)
— 10, Xc(k‘o + 1) S %N\BO

where 1 > daperiodic > 0 and aperiodic 1S also very closed
to zero. Similarly, the reason why small value of d.periodic
can avoid the occurrence of limit cycle behaviors is dis-
cussed in Section IV.B. Otherwise, we define the fuzzy
membership function as shown in (35) at the bottom of
the page. Since f; is a triangular fuzzy membership func-
tion and x9 € By, flaperiodic(X°(ko +1)) = 0 when
x(ko+1) € Bp N PER(kp) because x? = x(ko+1)
when x(ko + 1) € By N PER(ko), taperiodic(X°(ko + 1)) =0
when x¢(ko + 1) € RV\ By and 0 < Haperiodic(X°(ko + 1)) <
1IVx“(ko+1) € RY. Hence, Haperiodic(X°(ko + 1)) force
the new state vectors x°(ko+ 1) to be within By. Since
Paperiodic(X°(ko + 1)) captures the knowledge on the sepa-
ration between x¢(ko + 1) and By N PER(kg), which also
reflects the separation between x°(ko + 1) and the set of state
vectors within the desired bounded region that exhibits limit
cycle behaviors, fiaperiodic(X“(ko + 1)) can be used to avoid
the occurrence of limit cycle behaviors.

Once the fuzzy membership functions are defined, we can
define the fuzzy impulsive control law as follows.

If Ax(ko) + B(a— Q(x(ko))) € RN\By, then the fuzzy
impulsive controller will reset the state variables of the loop
filter to x°(ko + 1) where x°(kg + 1) is the state vector such
that the following function is maximized:

fhxe (ko +1) (X (ko + 1))

= max Mstable(X
xc(k0+1)e§RN( stable(

(Xc(k() + 1))l1/continuous(xc(k0 + 1)))1/3

Otherwise, no control force is applied to the SDMs.

Lemma 3: Vi € R, Vx(0) € RN, Va; € Rfori =
0,1,...,N and Vb; € R for j = ., N,x°(k) € By for
k > 0.

Proof: It can be seen that Vo € R, Vx(0) € RY Va; € R
fori = 0,1,...,N,Vb; € Rforj = 1,...,N,Vkg > 0
and Vx“(ko + 1) € B07ucommuous( “(ko + 1)) > 0 and
fstable(X(ko +1)) > 0. If PER(kg) N By = By or
PER(kO) N BO = o, then /Laperlodlc( (k'0+1)) > 0.
Although fiaperiodic(X°(ko + 1)) = 0 if PER(ko) N By #
Bo,PER(ko) N By 7£ ©, and X(k‘o + 1) € By N PER(I{J(]),
since PER(kg) N By # Bo,3x(ko+ 1) € Bo\PER(ko)

C(ko + 1))/1'aperiodic

(36)

/J'aporiodic(
0,

xe(ho + 1)) = 4 1= (TS0 £ (ko + 1))

1
N

Xc(k‘o + 1) € By
x(ko + 1) € RN\ By

(35)
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such that faperiodic(X°(ko + 1)) > 0. Hence, 3x°(ko + 1) €
Bo\PER(kq) such that fixe(,41)(x°(ko +1)) > 0. As a
result, if Ax(ko) + B(a — Q(x(ko))) € RN\By, then the
fuzzy impulsive controller will reset the state vector of the
loop filter to x¢(ko + 1) where x¢(ko + 1) € Bo\PER(ko). If
Ax(ko) + B(u — Q(x(ko))) € By, since no control force is
applied to the SDM, x¢(ko + 1) = x(ko + 1) € By. Hence,
x¢(k) € By for k > k. Thus, Vko > 0,x°(k) € By for k > 0.
And this completes the proof [}

It is worth noting that different values of @,x(0),a; for
t = 0,1,...,N and b; for j = 1,..., N, will affect the
existence of p and Uv p>o Yp. However, Lemma 3 is still
applied even though p = @ or p = By, and Uyp. VP = @
or Uv P>0 Up = DBy. Hence, Lemma 3 guarantees that the
controlled trajectory is bounded within By no matter what the
input step size, the initial condition and the filter parameters
are. This is very important because we do not want the tra-
jectory of the SDM to be unbounded if the input step size is
increased, or the initial condition or the loop filter of the SDMs
are changed. Another advantage of this fuzzy impulsive control
strategy is that we can alter the maximum bound of the state
variables easily by setting the value of V... appropriately, which
is independent of the input step size, the initial condition and
the filter parameters.

Lemma 4: Yu € R, vx(0) € RN, Va; € R
for ¢+ = 0,1,...,N and Vb; € R for j =
L...,N,||x(k+1) — x"||2 < 2Vee VN for k > 0.

Proof: Since Vi € R,¥x(0) € RV ,Va; € R fori =
0,1,...,Nand Vb; € Rforj = 1,...,N,x(k) € By for
k > 0, the result follows directly m

The importance of this Lemma is that it guarantees the norm
of the difference between x" and x°(k + 1) being bounded by
2Vee VN , no matter what the input step size, the initial condition
and the filter parameters are. As discussed in above, we do not
want the norm of the difference between x” and x°(k + 1) to
be too large because the effect of audio clicks may be too large
for these situations.

Lemma 5: If ko € Z such that PER(k) N By # By for
k > ko, and Ax(ko) + B(u — Q(x(ko))) € RV \By, then
AM > 0 such that x°(k) = x°(k + M) for k > ko.

Proof: The proof follows directly from Lemma 3 [}

The importance of this Lemma is that it states the condition
that limit cycle behaviors do not occur when the fuzzy impulsive
control strategy is applied at once. We will show the contrast in
Section V that the clipping control strategy usually results in
the limit cycle behaviors, while our approach will minimize the
occurrence of limit cycle behaviors.

B. Parameters in the Fuzzy Impulsive Controller

There are only three parameters in the fuzzy impulsive con-
trol strategy. They are Vi, daperiodics and Ostable. Vee is the max-
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imum allowable bound on each state variable and this value is
determined based on the real situations, such as the hardware
constraints and the safety specifications, etc. For example, if the
hardware operates normally in a safe condition only when the
state variables are bounded by 20 V, then V.. may be set ac-
cordingly. For the parameters Oaperiodic and dstable, the fuzzy
impulsive controller works properly Vd,periodic € (0,1] and
Véstable € (0, 1]. However, since 8aperiodic represents the fuzzy
membership value of how to avoid the occurrence of limit cycle
at Xc(ko + ].) when PER(k(]) N By = By or PER(k()) NBy =
@, and all the state vectors in By may cause the trajectory to ex-
hibit limit cycle behaviors if PER(kq) N By = By, we suggest
the SDM control designers to set this value as a small number
closed to zero, such as 1073, For 8saple, since it represents
the fuzzy membership value of the local stability of the SDM
at x°(ko+ 1) when p N By = ©, or if 3k’ € Z such that
|z’ (k)| < |bn| and Q(anyby) = 1, and in this case, the SDM
may exhibit divergent behavior if the fuzzy impulsive control
strategy is not applied, we recommend the SDM control de-
signers to set this value as a small number closed to zero too,
for example, 1073.

C. Complexity Issue

Although more fuzzy rules and sophisticated fuzzy engine
will improve the performance of the SDMs, this will increase
the complexity of the system and may cause real time processing
problems, particular for audio applications [2]. The Nyquist rate
for audio signal is 44.1 kHz [2], since the input signals are typ-
ically oversampled at 64 or 128 [2], the number of samples in-
putted to the SDM per second is 2.8224 M or 5.6448 M. Because
several megasamples are needed to process per second, only
three basic fuzzy rules are captured and only a simple fuzzy en-
gine is used to reduce the complexity for processing. According
to the simulation results shown in Section V, these three basic
rules and a simple fuzzy engine is enough for achieving the
objectives.

D. Implementation of the Fuzzy Impulsive Controller

As discussed in the above, the fuzzy impulsive controller
resets the state variables of the loop filter to the controlled
state variables of x°(ko + 1) if Ax(ko) + B(u — Q(x(ko))) €
RN\ By, and x°(kg + 1) is calculated based on (36). Numerical
solvers, such as MATLAB or MATCAD, can be employed for
solving (36). To reset the state variables of the loop filter, many
existing reset circuits can be employed [8].

V. SIMULATION RESULTS

To illustrate our results, a fifth-order SDM with the loop filter
transfer function is illustrated in (37) at the bottom of the page.
This fifth-order SDM is commonly employed in the industry [2].

20271 — 74272 4 103.04972~3 — 64.00152~* + 14958425

1—5271410.0025272 — 10.00752~3 + 5.0075z~% — 1.00252~°

(37
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Fig. 3. Plot of the maximum absolute value of the state variables (realized in
direct form) against the input step size when x(0) = [0, 0, 0, 0, 0]7.

The SDM can be implemented via the Jordan form [2] and can
be realized as the following state space equation:

x(k+1) = Ax(k) + B(u(k) — y(k)) (38)
for £ > 0, where
y(k) = Q(Cx(k)) (39)
r1 0 0 0 0
1 1 -0.0018 0 0
A=10 1 1 0 0
0 0 1 1 —0.000685
LO O 0 1 1
!
0
B= |0
0
LO
- 920 T
6
C= 1 ) (40)
0.09375
L 0.00589

Assume that the initial condition of this SDM is zero, that is,
%x(0) = [0, 0, 0, 0, 0]7. By using a simple transformation, this
SDM can be realized by the direct form and the corresponding
initial condition is x(0) = [0, —5, 28.5, 32.25, 35.9793]%
when u = 0.75. We can check that the trajectory of this SDM
is bounded for this initial condition (%(0) = [0, 0, 0, 0, 0]T)
if the input step size is approximately between —0.71 and 0.75,
and may diverge if the input step size is outside this range. The
relationship between the maximum absolute value of the state
variables (realized in the direct form) and the input step size is
plotted in Fig. 3. From the simulation result, we can see that
even though the trajectory is bounded for this range of input
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step size, the maximum absolute value of the state variables is
between 20.0523 and 59.4633, which may be too large for some
practical applications [2]. Fig. 3 also shows the plot of the max-
imum absolute value of the state variables (also realized in the
direct form) for & > 0 versus the input step size when the fuzzy
impulsive control strategy is applied at V.. = 20. According to
Lemma 3, the maximum absolute value of the state variables of
the controlled SDM is bounded by V. for £ > 0 and Vu € R,
even though |@| > V.. Hence, we can guarantee that the state
variables are bounded by 20.

This SDM is not globally stable. That means, 3%(0) € RY
such that the trajectory is unbounded. For example, when
u = 0.75, Fig. 4(a) and (b) shows the responses of z1 (k) with
%x(0) = [0, 0, 0, 0, 0]T and %(0) = [0.001, 0, 0, 0, 0]T,
respectively. It can be seen from Fig. 4(a) and (b) that
even though the SDM exhibits acceptable behavior when
x(0) = [0, 0, 0, 0, 0]7 and the difference between these two
initial conditions is very small, the SDM exhibits divergent
behavior when %(0) = [0.001, 0, 0, 0, 0]7 and the behaviors
of the SDM for these two different initial conditions are very
different. On the other hand, according to Lemma 3, the max-
imum absolute value of the state variables is always bounded by
Ve for k > 0 and Vx(0) € RY if the fuzzy impulsive control
strategy is applied. Fig. 4(c) and (d) show the corresponding
state responses when the fuzzy impulsive control strategy is
applied at V.. = 40. From the simulation result, we see that
the SDM exhibits acceptable behavior with the state variables
bounded by V.. for both of these two initial conditions.

For comparison with other control strategies, consider the
time delay feedback control strategy proposed in [6], in which
the controller is in the form of —K (1 — z~!). Denote \; for
1 =1,2,...,6 be the poles of the effective loop filter. Since A;
fort =1,2,...,6 depends on the value of K, it can be shown
that max;=12,__¢ |A\i| > 1 VK. € R and the minimum value of
max;=12, 6 |Ai| occurs at K, = 0. When K. = 0, it reduces
to the uncontrolled case. By selecting a value of K. which is
very closed to zero, for example K. = 2 x 10~°, and setting the
initial condition and the input step size as the previous values,
that is, x(0) = [0, —5, 28.5, 32.25, 35.9793, 39.5612]7 and
% = 0.75 (the initial condition is determined based on zero ini-
tial condition of the Jordan form), it is found that the trajectory
diverges as shown in Fig. 5. Hence, the time delay feedback con-
trol strategy fails to stabilize this SDM.

To compare the fuzzy impulsive control strategy to the
clipping control strategy, that is, set x;(k) = V..Q(zi(k))
if |x;(k)] > Vie fori = 1,2,..., N, it is found that limit
cycle behaviors may occur if the clipping control strategy is
applied. Fig. 6 shows the magnitude response of s(k) when
u = 0.75,%(0) = [0, 0, 0, 0, 0] and the clipped level is set
at 40. It can be seen from Fig. 6 that there is an impulse located
at (w/2) if the clipping control strategy is applied, which
demonstrates that the SDM exhibits a limit cycle with period 2.
On the other hand, the spectrum is quite flat for the SDM when
the fuzzy impulsive control strategy is applied with V.. = 40,
which demonstrates that the SDM exhibits acceptable behavior
and the limit cycle behavior is avoided.

Fig. 7 shows the SNR of SDMs under the clipping control
strategy with the clipped level set at 28. SNR is calculated
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Fig. 4. Response of &, (k) when @ = 0.75 and (a) initial condition x(0) = [0, 0, 0, 0, 0]” when no control strategy is applied, (b) initial condition X(0) =
[0.001, 0, 0, 0, 0] when no control strategy is applied, (c) initial condition X(0) = [0, 0, 0, 0, 0]” when the fuzzy impulsive control strategy with V.. = 40
is applied, and (d) initial condition X(0) = [0.001, 0, 0, 0, 0]” when the fuzzy impulsive control strategy with V.. = 40 is applied.
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Fig. 5. Response of 21 (k) with input step size @ = 0.75 and initial condition
x(0) = [0, =5, 28.5, 32.25, 35.9793, 39.5612]” when the time delay
feedback control strategy with K. = 2 x 1077 is applied.

using [9], where the frequency of the input sinusoidal signals
is (2/3) of the passband bandwidth. The oversampling ratio is
64, and initial conditions are given by %(0) = [0, 0, 0, 0, 0]
It can be seen from Fig. 7 that the SNR of both the clipping
and fuzzy impulsive control strategies with the state variables
bounded by 28 are the same when the input magnitude is less
than 0.52. This is because both the maximum absolute value
of the state variables (realized in the direct form) do not ex-
ceed 28 in this input magnitude range. However, if the input
magnitude exceeds this range, the SNR corresponding to the

—— Under clipping approach
—— Under fuzzy impulsive control
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Fig. 6. Magnitude response of the output sequence when % = 0.75 and initial
condition x(0) = [0, 0, 0, 0, 0] for both the clipping and fuzzy impulsive
control strategies are applied with the state variables bounded by 40.

clipping control strategy may drop to less than 1.2562 dB be-
cause of the occurrence of limit cycle behaviors. On the other
hand, the SDM performs normally under the fuzzy impulsive
control strategy. Hence, the SNR of the SDM under the fuzzy
impulsive control strategy has an average of 41.8281 dB im-
provement compared to the clipping control strategy for outside
this input magnitude range.

It can be seen from Fig. 8 that the probability of the control
force to be applied by the fuzzy impulsive control strategy is
0.0135 for the input magnitude range greater than or equal to
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0.52, as opposed to a probability of 0.6926 for the clipping con-
trol strategy. Hence, the number of reset action on the state vari-
ables of the loop filter is much reduced when applying fuzzy
impulsive control strategy. This is because the fuzzy impulsive
control strategy tends to reset the state vectors inside the in-
variant set if it exists and the state vectors will tend to stay in-
side the invariant set without applying control force again soon
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Fig. 9. Response of 21 (k) with initial condition X(0) = [0, 0, 0, 0, 0] and
input step size # = 0.59 (a) when no control strategy is applied. (b) when the
fuzzy impulsive control strategy with V.. = 2 is applied.

afterwards. This demonstrates that the fuzzy impulsive control
strategy is more efficient than the clipping control strategy.

To verify the independence of the filter parameters on the
fuzzy impulsive control strategy, consider another fifth-order
SDM with the transfer function [2] shown in (41) at the bottom
of the page. u(k) This SDM is also widely used in the industry
[2]. The trajectory of this SDM with & = 0.59 and %X(0) =
[0, 0, 0, 0, 0]7 is shown in Fig. 9(a), and it can be seen from
Fig. 9(a) that the trajectory diverges. On the other hand, when
the fuzzy impulsive control strategy is applied with V.. = 2, ac-
cording to Lemma 3, the maximum absolute value of the state
variables (realized in the direct form) is always bounded by V...
for k > 0,Va; € Rfori = 0,1,...,N and Vb; € R for
7 =1,..., N, as shown in Fig. 9(b).

VI. CONCLUSION

In this paper, we have proposed the fuzzy impulsive control
strategy for the stabilization of high-order interpolative SDMs
in which the occurrence of limit cycle behaviors and the effect
of audio clicks are minimized. Since the effective poles of the
loop filter are not affected by the control strategy, the SNR per-
formance of the SDMs is maintained or improved after control.
Moreover, the controlled trajectory is guaranteed to be bounded
no matter what the input step size, the initial condition and the
filter parameters are. Comparisons between the fuzzy impulsive
control strategy and some existing control strategies show that
the fuzzy impulsive control strategy is much effective in terms of
producing much higher SNR and efficient in terms of requiring
less control force applied to the system.

0.791927! — 2.8630272 + 3.90942 73 — 2.38732% 4 0.54982~°

(41)

1—52z=1410.00232=2 — 10.00692—3 4 5.0069z~% — 1.00232—5
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