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Abstract

Sigma delta modulators (SDMs) may suffer from limit cycles,
where the output bits may enter a repeating pattern. Current
methods of preventing this phenomenon introduce unwanted
noise, do not always succeed, and are implemented when not
needed. We present a more effective method for detecting and
removing unwanted limit cycles. This destroys the periodicity
of sigma-delta ADC modulator's output sequence and,
thereby, removes the limit cycles. Compared with
conventional methods, the SDM has less SNR penalty and the
mechanism is simple to implement. Moreover, the SDM has a
higher allowed input dynamic range than conventional
modulator  dithering schemes. Analog and digital
implementations of the limit cycle detection and removal
schemes are discussed for both feedforward and feedback
designs. Results are reported which demonstrate the success
of these methods.

1 Introduction

Sigma delta modulation is a popular method of converting
signals from analogue to digital and vice-versa. It typically
involves converting a signal into a low-bit, highly
oversampled representation. It benefits greatly from the
oversampling in that a feedback path may be used to shape
the quantization noise into high frequencies where it is not
noticeable. Due to its low circuit complexity and robustness
against circuit imperfections, 1-bit sigma delta-based analog-
to-digital and digital-to-analog converters are widely used in
audio applications, such as cellular phone technology and
high-end stereo systems.

Sigma delta modulation, originally conceived by de Jager[1],
is a well-established technique. However, theoretical
understanding of the concept is limited[2]. The most
important progress in the description of sigma delta
modulators is reported in the work of Risbo[3] and Hein[4],
while a useful linearization technique is described in [S] and
further elaborated on by Magrath[6]. Yet in all these
developments, there is no unified description of SDMs.

Instead, several models are provided, each of which describes
some aspects of an SDM to a certain accuracy.

Fundamental work on limit cycles in SDMs has usually been
constrained to low order SDMs[7-9], and hence is of little
practical value to engineers who use high order noise shaping
techniques. Recent work by the authors and their
collaborators has significantly advanced the theory of limit
cycles in sigma delta modulators[10-14]. Most notably, in
[12], results were derived concerning the character of limit
cycles for a general feedforward SDM (also called
interpolative SDM), and on their stability in particular. In
[11], similar results were obtained for feedback sigma delta
modulators.

Limit cycle prevention is typically achieved by adding a
signal, with a uniform or triangular probability distribution,
just prior to quantisation[15]. When this dithering sequence is
added, an output bit may be flipped (output bit changed from
+1 to -1, or from -1 to +1), and the periodic output pattern
might be destroyed. However, the dither decreases the signal-
to-noise ratio, the stability, and the dynamic range of the
sigma delta modulator. Furthermore, it is added when it is not
needed, and in many situations may not be sufficient to
destroy a limit cycle.

The work of the authors has lead to a greater understanding of
the cause and the behavior of limit cycles. We have exploited
this understanding to devise a more effective method of
detecting and removing limit cycles.

The paper is organized as follows. In Sec. 2, the mathematical
framework, based on a state space description of the SDM, is
presented. All the following sections are based on this
formulation. In Sec. 3, a method is presented to detect limit
cycles in feedforward SDMs. An alternative method, using
only shift registers, is described in Sec. 4. Properties of the
limit cycle removal mechanism are discussed in Section 5. In
Sec. 6, we diescuss the differences that must be taken into
account for limit cycle detection and removal in feedback
SDMs. Throughout, these methods are analysed to give
quantitative results concerning the probability of false limit
cycle detection, the time required for limit cycle removal, and
the choice of parameters.



2 State space description

A convenient way to describe the time domain behaviour of
an SDM is the state space description. This represents the
state of the SDM at any time as a matrix operation applied to
the state at the previous clock cycle. The power of the state
space description is that it allows us to create a very compact
description of the state of the SDM from time =0 to time r=n.
For an N" order feedforward (or iterative) SDM,

s(n+1)=As(n) + (u(n)-y(n)) d (1

where
y(n)= Sgn(z ¢s,(n)) (2)

This description gives the state of the SDM in terms of a
transition matrix A applied to the previous state vector, and a
vector d applied to the scalar quantisation error, u(n)-y(n).
Figure 1 gives an example of a typical fifth order sigma delta
modulator. The coefficients ¢ determine the noise shaping
characteristics, each T represents a unitary delay, and the loop
around each delay T represents an integrator.

For the 5" order modulator described in Figure 1,
d:(l,(),O,O,O)T and the transition matrix is
1 0000
1 1000
A=[0 1 100 3)
001 10
000 11

The compact representation gives the means to directly view
the consequences of a limit cycle. If the limit cycle has period
P we have, by definition,
y(n+P)= y(n) “4)
An important assumption in earlier work is that a periodic bit
output pattern implies a periodic orbit in state space variables.
In [12], it was proven that, in general, a limit cycle in the
output bitstream exists if and only if there is a limit cycle in
the state space variables. That is, (4) is equivalent to
s(n+P)= s(n) 5)
Although in its pure definition, a limit cycle is a periodic
pattern of infinite duration, in practical situations finite
duration periodic sequences can be equally annoying. Thus a
limit cycle detection and removal algorithm should be
successful even if Eq. (5) is only true for a finite number of
values, i.e., we must be able to detect and remove limit cycles
when Eq. (4) is approximately true for a finite time.
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Figure 1. States in a 5™ order SDM.

3 State space-based limit cycle detection

Eq. (5) provides a simple method of determining if a limit
cycle exists. At a given iterate which we set to 0, s(0) may

be stored in a buffer. For each successive iterate, 1,2,...i,...,
up to some value P__, s(i) is computed. If constant input is

applied and, for some i, s(i)= s(0), then the theorem

described in the previous section guarantees that a limit cycle
of period P exists.

This method, while exact, has several drawbacks. It requires
that a vector of size N be stored. At each time iterate, up to N
comparisons must be made. This is unnecessarily
complicated. More importantly, it does not allow for a simple
method of making approximate comparisons. When the state
space variables are very close to a limit cycle condition,
periodic output may be sustained long enough to be
problematic. An appropriate measure of the required
proximity of the state space variables needed for temporary
limit cycle behavior is not obvious and may not be simple to
compute.

We have devised a preferable alternative method which relies
on calculation of a single scalar quantity[16]. This quantity is
easily found from the operation of the SDM. Its key features
are outlined below.

e It allows us to find all limit cycles that occur up to a
given period.

e It allows us to find short term limit cycles which repeat
for only a small number of periods.

e It is robust to the choice of parameter settings.

e It may detect limit cycles which occur at any time
during the operation of the SDM

e [t is independent of the order of the SDM and its noise
shaping characteristics

e It is independent of the input to the SDM and its initial
conditions

e The mechanism of limit cycle detection operates at the
speed of the sigma delta modulator

e It may be used in tandem with any limit cycle removal
method.

As an example, consider the fifth order sigma delta modulator
given by[12],

¢,=0.5761069262,c,=0.1624753515,c,=0.0276093301,
¢,=0.0028053934,c,=0.0001360361

With an input of 0.7, and initial conditions s=0, it exhibits
limit cycle behavior. Figure 2 depicts a time series of the
input to the quantiser. The circled points represent those
where limit cycle behaviour has been identified. Clearly, limit
cycle behaviour has been correctly identified. The inability to
recognise a limit cycle during its initial periods is due to the
choice of parameters in the detection method and due to the
fact that a limit cycle may be defined by its repetitive nature,
which is not observed until after several repetitions.
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Figure 2. Plot of the input to the quantiser as a function of the
iterate. The circled points represent where limit cycle
behaviour has been identified.

4 Limit cycle detection at the SDM output

Shift registers and bit comparisons are often much easier to
implement than any circuitry (analog or digital) for
comparison of real numbers or voltages. Furthermore, one can
conceive of situations where it is easier to access the output
bitstream than the state space variables. Thus, we must
consider methods of detecting limit cycles using bit
comparisons alone.

A naive approach would be to implement many shift registers,
each one representing periodic output for a different limit
cycle. The current output could then be compared with each
shift register to see if it appears that limit cycle behavior is
occurring. However, this would require on the order of 2°
shift registers, and 2" comparisons.
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Figure 3. The probability of falsely detecting a limit cycle as a
function of shift register length.

We have devised a method, using only two shift registers,
which will find all possible limit cycles up to a given period
(which may be larger than the shift register length). It has all
the advantages of the state space method which were
described in Section 3. Furthermore, it is robust against any
additional parameters (such as shift register length) and easy
to implement.

False detections are very rare. If the output is truly random,
then false detections occur with a probability 2, where Q is
the length of the shift register. However, the output is far
from random. This is partly due to the fact that the input is not
random (bandlimited, with amplitude safely within stability
limits), but also because the sigma delta modulation prevents
certain sequences from occurring, regardless of input[10].
Figure 3 depicts false detections of limit cycle behaviour as a
function of the shift register length Q. Each data point was
generated using 100, 1 million point long sequences (after
initial startup transients were removed), where each sequence
has as input a sinusoid with a randomly generated frequency
between 80kHz and 130kHz, and set to random initial
conditions. It can be clearly seen that, though the probability
of a false detection is far greater than would be the case for a
truly random sequence, it is still low enough to be
insignificant.

5 Limit cycle removal

In [12], it was shown that, the application of dither just before
the quantiser, as in Figure 4, is a sub-optimal form of limit
cycle removal. This is because it has no effect on the state
space variables unless it results in a change to the output
bitstream. We have devised an alternative method with the
following advantages[16]:

e It may be applied continuously, or only when a limit
cycle has been detected.

e If used in tandem with a limit cycle detection
mechanism, it is independent of the choice of detection
method.

e It is guaranteed to remove any limit cycle.

e [tis independent of all SDM characteristics.

o Its effect on the SDM (other than removing limit cycles)
is minimal.

e [t is robust to the choice of parameter settings.

Since this modification is both minimal and guaranteed to
work, it is preferable to the commonly used alternative of
adding dither or noise to the input to the quantiser. However,
dithering may still be used if so desired (for instance, to
minimise noise modulation).

Compared to conventional dithering techniques that add
random noise to the input of the quantizer, this novel
technique has a higher allowed input dynamic range and
higher signal-to-noise-plus-distortion-ratio (SNDR). It may
also be implemented successfully without the use of a limit
cycle detector.
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Figure 4. A block diagram of a third order SDM with the
standard placement of dither.

One implementation of the limit cycle removal mechanism
involves the addition of a small amount of noise, placed such
that it is guaranteed to remove any limit cycle. Figure 5
demonstrates how the amount of added noise affects the time
it takes to destroy a limit cycle. This is a worst case scenario.
Not only have the initial conditions of the modulator been
chosen to guarantee that the dynamics fall exactly on a limit
cycle, but they have also been chosen so that the most stable
possible period 12 limit cycle is produced, and that the initial
conditions are as far as possible from those that would
produce a bit flip and thus destroy the limit cycle.
Nevertheless, even noise on the order of 10° (~-120dB) is
sufficient to eliminate the limit cycle long before it becomes
problematic. Again, this is a worst case scenario. Typically,
noise on the order of -140dB can be applied, which is suitable
for even high end audio applications.

6 Limit cycle detection in feedback SDMs

A popular alternative design to the feedforward, or
interpolative, SDM, is the feedback SDM. This is often used
when a superior anti-aliasing effect of the signal transfer
function is required[2, 11]. In Figure 6, the block diagram of a
3" order feedback SDM is depicted. This represents a typical
SDM design, which is often used in practical designs[17]. We
can easily see that, for the modulator presented here,

S(HH) =A s(ﬂ) + u(")d_y(n)c

() _ (n)
v =sgn(sy

where y(n)is the output bit at clock cycle #n, and s,(n) are

(6)

the integrator outputs, called state variables. The last
integrator output, s, (n), is also the quantizer input signal.

The propagation of the states s can be written in matrix
notation as:

n—1
s(ﬂ) — AHS(O) +[Z A(n*i*l)(u(i)d_y(i)c)] (7)
i=0
where ¢ is a vector of feedback coefficients, A is an NxN
transition matrix for an SDM of order N, and ¢=(cy,..., cN)T

and d describe how the input and feedback, respectively, are
distributed.
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Figure 5. Number of iterates before a limit cycle is removed
as a function of the added noise. Initial conditions were set
to the most stable period 12 limit cycle for a 5™ order
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It is interesting to compare this with the equivalent
feedforward design, where the state space equations are given
by (1) and (2). For both designs, the placement of the
transition matrix A in the state space equations is identical.
However, for feedforward designs, the coefficient vector has
no direct effect on the state space variables s, and only acts as
a weighting term on the quantisation. Whereas for the
feedback design, the coefficient vector acts as a constant that
is added or subtracted from the state space variables every
iteration. This implies that the dynamics of feedback and
feedforward designs are similar, although short term limit
cycles are much more rare in feedback SDMs.

Modifications must be made in limit cycle detection and
removal mechanisms, but both have been successfully applied
to this design.
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Figure 6. Block diagram of a third order feedback SDM.

(4] 1&9)

7 Conclusion

In this work, we have described some of the properties of
limit cycle detection and removal schemes which have been
implemented for feedforward and feedback SDMs. These
methods successfully detect any limit cycle up to a given
period and may remove any limit cycle. They have a very low
probability of false detection, are easy to implement, and
outperform  current techniques such as dithering.
Implementation details will be fully described in later work. It
is hoped that these methods may soon be realised in
commercial SDMs.
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