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Abstract 

Sigma delta modulators (SDMs) may suffer from limit cycles, 
where the output bits may enter a repeating pattern. Current 
methods of preventing this phenomenon introduce unwanted 
noise, do not always succeed, and are implemented when not 
needed. We present a more effective method for detecting and 
removing unwanted limit cycles. This destroys the periodicity 
of sigma-delta ADC modulator's output sequence and, 
thereby, removes the limit cycles. Compared with 
conventional methods, the SDM has less SNR penalty and the 
mechanism is simple to implement. Moreover, the SDM has a 
higher allowed input dynamic range than conventional 
modulator dithering schemes. Analog and digital 
implementations of the limit cycle detection and removal 
schemes are discussed for both feedforward and feedback 
designs. Results are reported which demonstrate the success 
of these methods. 

1 Introduction 

Sigma delta modulation is a popular method of converting 
signals from analogue to digital and vice-versa. It typically 
involves converting a signal into a low-bit, highly 
oversampled representation. It benefits greatly from the 
oversampling in that a feedback path may be used to shape 
the quantization noise into high frequencies where it is not 
noticeable. Due to its low circuit complexity and robustness 
against circuit imperfections, 1-bit sigma delta-based analog-
to-digital and digital-to-analog converters are widely used in 
audio applications, such as cellular phone technology and 
high-end stereo systems.  
Sigma delta modulation, originally conceived by de Jager[1], 
is a well-established technique. However, theoretical 
understanding of the concept is limited[2]. The most 
important progress in the description of sigma delta 
modulators is reported in the work of Risbo[3] and Hein[4], 
while a useful linearization technique is described in [5] and 
further elaborated on by Magrath[6]. Yet in all these 
developments, there is no unified description of SDMs. 

Instead, several models are provided, each of which describes 
some aspects of an SDM to a certain accuracy. 
Fundamental work on limit cycles in SDMs has usually been 
constrained to low order SDMs[7-9], and hence is of little 
practical value to engineers who use high order noise shaping 
techniques. Recent work by the authors and their 
collaborators has significantly advanced the theory of limit 
cycles in sigma delta modulators[10-14]. Most notably, in 
[12], results were derived concerning the character of limit 
cycles for a general feedforward SDM (also called 
interpolative SDM), and on their stability in particular. In 
[11], similar results were obtained for feedback sigma delta 
modulators. 

Limit cycle prevention is typically achieved by adding a 
signal, with a uniform or triangular probability distribution, 
just prior to quantisation[15]. When this dithering sequence is 
added, an output bit may be flipped (output bit changed from 
+1 to -1, or from -1 to +1), and the periodic output pattern 
might be destroyed. However, the dither decreases the signal-
to-noise ratio, the stability, and the dynamic range of the 
sigma delta modulator. Furthermore, it is added when it is not 
needed, and in many situations may not be sufficient to 
destroy a limit cycle.  

The work of the authors has lead to a greater understanding of 
the cause and the behavior of limit cycles. We have exploited 
this understanding to devise a more effective method of 
detecting and removing limit cycles.  

The paper is organized as follows. In Sec. 2, the mathematical 
framework, based on a state space description of the SDM, is 
presented. All the following sections are based on this 
formulation. In Sec. 3, a method is presented to detect limit 
cycles in feedforward SDMs. An alternative method, using 
only shift registers, is described in Sec. 4. Properties of the 
limit cycle removal mechanism are discussed in Section 5. In 
Sec. 6, we diescuss the differences that must be taken into 
account for limit cycle detection and removal in feedback 
SDMs. Throughout, these methods are analysed to give 
quantitative results concerning the probability of false limit 
cycle detection, the time required for limit cycle removal, and 
the choice of parameters.  



2 State space description 3 State space-based limit cycle detection 

A convenient way to describe the time domain behaviour of 
an SDM is the state space description. This represents the 
state of the SDM at any time as a matrix operation applied to 
the state at the previous clock cycle. The power of the state 
space description is that it allows us to create a very compact 
description of the state of the SDM from time t=0 to time t=n.  

Eq. (5) provides a simple method of determining if a limit 
cycle exists. At a given iterate which we set to 0,  may 
be stored in a buffer. For each successive iterate, 1,2,…i,…, 
up to some value , s(i) is computed. If constant input is 
applied and, for some i, , then the theorem 
described in the previous section guarantees that a limit cycle 
of period P exists. 

(0)s

maxP
( )  (0)i =s s

For an Nth order feedforward (or iterative) SDM,  
( 1) ( )  ( ( ) - ( ))  n n u n y n+ = +s As d



)

)s

 (1) 
where 

1

( ) sgn( ( ))
N

i i
i

y n c s n
=

= ∑  (2) 

This method, while exact, has several drawbacks. It requires 
that a vector of size N be stored. At each time iterate, up to N 
comparisons must be made. This is unnecessarily 
complicated. More importantly, it does not allow for a simple 
method of making approximate comparisons. When the state 
space variables are very close to a limit cycle condition, 
periodic output may be sustained long enough to be 
problematic. An appropriate measure of the required 
proximity of the state space variables needed for temporary 
limit cycle behavior is not obvious and may not be simple to 
compute. 

This description gives the state of the SDM in terms of a 
transition matrix A applied to the previous state vector, and a 
vector  d applied to the scalar quantisation error, u(n)-y(n). 
Figure 1 gives an example of a typical fifth order sigma delta 
modulator. The coefficients c determine the noise shaping 
characteristics, each T represents a unitary delay, and the loop 
around each delay T represents an integrator. 
For the 5th order modulator described in Figure 1, 
d=(1,0,0,0,0)T and the transition matrix is 

We have devised a preferable alternative method which relies 
on calculation of a single scalar quantity[16]. This quantity is 
easily found from the operation of the SDM. Its key features 
are outlined below. 
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• It allows us to find all limit cycles that occur up to a 

given period. 
• It allows us to find short term limit cycles which repeat 

for only a small number of periods. The compact representation gives the means to directly view 
the consequences of a limit cycle. If the limit cycle has period 
P we have, by definition, 

• It is robust to the choice of parameter settings.  
• It may detect limit cycles which occur at any time 

during the operation of the SDM ( )  (y n P y n+ =  (4) 
• It is independent of the order of the SDM and its noise 

shaping characteristics An important assumption in earlier work is that a periodic bit 
output pattern implies a periodic orbit in state space variables. 
In [12], it was proven that, in general, a limit cycle in the 
output bitstream exists if and only if there is a limit cycle in 
the state space variables. That is, (4) is equivalent to 

• It is independent of the input to the SDM and its initial 
conditions 

( )  (n P n+ =s  (5) 

• The mechanism of limit cycle detection operates at the 
speed of the sigma delta modulator 

• It may be used in tandem with any limit cycle removal 
method. Although in its pure definition, a limit cycle is a periodic 

pattern of infinite duration, in practical situations finite 
duration periodic sequences can be equally annoying. Thus a 
limit cycle detection and removal algorithm should be 
successful even if Eq. (5) is only true for a finite number of 
values, i.e., we must be able to detect and remove limit cycles 
when Eq. (4) is approximately true for a finite time. 

 
As an example, consider the fifth order sigma delta modulator 
given by[12],  
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With an input of 0.7, and initial conditions s=0, it exhibits 
limit cycle behavior. Figure 2 depicts a time series of the 
input to the quantiser. The circled points represent those 
where limit cycle behaviour has been identified. Clearly, limit 
cycle behaviour has been correctly identified. The inability to 
recognise a limit cycle during its initial periods is due to the 
choice of parameters in the detection method and due to the 
fact that a limit cycle may be defined by its repetitive nature, 
which is not observed until after several repetitions. 

 
Figure 1. States in a 5th order SDM. 
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We have devised a method, using only two shift registers, 
which will find all possible limit cycles up to a given period 
(which may be larger than the shift register length). It has all 
the advantages of the state space method which were 
described in Section 3. Furthermore, it is robust against any 
additional parameters (such as shift register length) and easy 
to implement.  

Figure 2. Plot of the input to the quantiser as a function of the 
iterate. The circled points represent where limit cycle 

behaviour has been identified. 
 

4 Limit cycle detection at the SDM output 

Shift registers and bit comparisons are often much easier to 
implement than any circuitry (analog or digital) for 
comparison of real numbers or voltages. Furthermore, one can 
conceive of situations where it is easier to access the output 
bitstream than the state space variables. Thus, we must 
consider methods of detecting limit cycles using bit 
comparisons alone. 
A naïve approach would be to implement many shift registers, 
each one representing periodic output for a different limit 
cycle. The current output could then be compared with each 
shift register to see if it appears that limit cycle behavior is 
occurring. However, this would require on the order of 2P 
shift registers, and 2P comparisons.  
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Figure 3. The probability of falsely detecting a limit cycle as a 

function of shift register length.  

Figure 3

False detections are very rare. If the output is truly random, 
then false detections occur with a probability 2-Q, where Q is 
the length of the shift register. However, the output is far 
from random. This is partly due to the fact that the input is not 
random (bandlimited, with amplitude safely within stability 
limits), but also because the sigma delta modulation prevents 
certain sequences from occurring, regardless of input[10]. 

 depicts false detections of limit cycle behaviour as a 
function of the shift register length Q. Each data point was 
generated using 100, 1 million point long sequences (after 
initial startup transients were removed), where each sequence 
has as input a sinusoid with a randomly generated frequency 
between 80kHz and 130kHz, and set to random initial 
conditions. It can be clearly seen that, though the probability 
of a false detection is far greater than would be the case for a 
truly random sequence, it is still low enough to be 
insignificant. 

 5 Limit cycle removal 

In [12], it was shown that, the application of dither just before 
the quantiser, as in Figure 4, is a sub-optimal form of limit 
cycle removal. This is because it has no effect on the state 
space variables unless it results in a change to the output 
bitstream. We have devised an alternative method with the 
following advantages[16]: 
 
• It may be applied continuously, or only when a limit 

cycle has been detected. 
• If used in tandem with a limit cycle detection 

mechanism, it is independent of the choice of detection 
method. 

• It is guaranteed to remove any limit cycle. 
• It is independent of all SDM characteristics. 
• Its effect on the SDM (other than removing limit cycles) 

is minimal. 
• It is robust to the choice of parameter settings.  
 

Since this modification is both minimal and guaranteed to 
work, it is preferable to the commonly used alternative of 
adding dither or noise to the input to the quantiser. However, 
dithering may still be used if so desired (for instance, to 
minimise noise modulation).  
Compared to conventional dithering techniques that add 
random noise to the input of the quantizer, this novel 
technique has a higher allowed input dynamic range and 
higher signal-to-noise-plus-distortion-ratio (SNDR). It may 
also be implemented successfully without the use of a limit 
cycle detector.  
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Figure 4. A block diagram of a third order SDM with the 

standard placement of dither. 
 
One implementation of the limit cycle removal mechanism 
involves the addition of a small amount of noise, placed such 
that it is guaranteed to remove any limit cycle.  
demonstrates how the amount of added noise affects the time 
it takes to destroy a limit cycle. This is a worst case scenario. 
Not only have the initial conditions of the modulator been 
chosen to guarantee that the dynamics fall exactly on a limit 
cycle, but they have also been chosen so that the most stable 
possible period 12 limit cycle is produced, and that the initial 
conditions are as far as possible from those that would 
produce a bit flip and thus destroy the limit cycle. 
Nevertheless, even noise on the order of 10-6 (~-120dB) is 
sufficient to eliminate the limit cycle long before it becomes 
problematic. Again, this is a worst case scenario. Typically, 
noise on the order of -140dB can be applied, which is suitable 
for even high end audio applications. 

Figure 5

Figure 5. Number of iterates before a limit cycle is removed 
as a function of the added noise. Initial conditions were set 

to the most stable period 12 limit cycle for a 5th order 
SDM (corner frequency of 100kHz, OSR=64x44.1kHz). 
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It is interesting to compare this with the equivalent 
feedforward design, where the state space equations are given 
by (1) and (2). For both designs, the placement of the 
transition matrix A in the state space equations is identical. 
However, for feedforward designs, the coefficient vector has 
no direct effect on the state space variables s, and only acts as 
a weighting term on the quantisation. Whereas for the 
feedback design, the coefficient vector acts as a constant that 
is added or subtracted from the state space variables every 
iteration. This implies that the dynamics of feedback and 
feedforward designs are similar, although short term limit 
cycles are much more rare in feedback SDMs. 
Modifications must be made in limit cycle detection and 
removal mechanisms, but both have been successfully applied 
to this design. 6 Limit cycle detection in feedback SDMs 
 A popular alternative design to the feedforward, or 

interpolative, SDM, is the feedback SDM. This is often used 
when a superior anti-aliasing effect of the signal transfer 
function is required[2, 11]. In Figure 6, the block diagram of a 
3rd order feedback SDM is depicted. This represents a typical 
SDM design, which is often used in practical designs[17]. We 
can easily see that, for the modulator presented here, 
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Figure 6. Block diagram of a third order feedback SDM. 

where is the output bit at clock cycle n, and ( )y n ( )is n  are 
the integrator outputs, called state variables. The last 
integrator output, ( )Ns n , is also the quantizer input signal. 

7 Conclusion 

In this work, we have described some of the properties of 
limit cycle detection and removal schemes which have been 
implemented for feedforward and feedback SDMs. These 
methods successfully detect any limit cycle up to a given 
period and may remove any limit cycle. They have a very low 
probability of false detection, are easy to implement, and 
outperform current techniques such as dithering. 
Implementation details will be fully described in later work. It 
is hoped that these methods may soon be realised in 
commercial SDMs.  

The propagation of the states s can be written in matrix 
notation as: 

1
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where c is a vector of feedback coefficients, A is an NxN 
transition matrix for an SDM of order N, and c=(c1,…, cN)T 
and d describe how the input and feedback, respectively, are 
distributed.  
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