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Description of Limit Cycles in
Sigma–Delta Modulators

Derk Reefman, Josh Reiss, Erwin Janssen, and Mark Sandler

Abstract—A mathematical framework, based on state-space
modeling, for the description of limit cycles (LCs) of 1-bit
sigma–delta modulators (SDMs) is presented. It is proved that
periodicity in bit output pattern of the SDM implies a periodic
orbit in state-space variables. While the state-space description is
generally applicable for periodic inputs, the focus is on dc inputs,
since this represents the most relevant practical condition. An
outcome of the analysis is that, in general, for an th-order SDM,
at least 1 initial conditions need to be fixed in order to have
LC behavior. Expressions for the minimum disturbance of the
input or initial conditions that is needed to break up a LC are also
presented. Special focus is given to the case where the disturbance
takes the form of “dithering the quantizer”, and it is shown that
this form of dither is a suboptimal approach to remove LCs. The
stability of LCs is determined, and it is demonstrated that a res-
onator section, as often employed to increase the dynamic range of
an SDM, has an adverse effect on LC behavior in that it stabilizes
LCs. Furthermore, the experimental observation that high order
SDMs are less susceptible to LCs is underpinned. Finally, some
examples are provided which illustrate the theoretical results.

Index Terms—Analog–digital (A/D) conversion, digital–analog
(D/A) conversion, limit cycles (LCs), nonlinear circuits, nonlinear
systems, sigma–delta modulation.

I. INTRODUCTION

S IGMA–DELTA modulation is an increasingly popular
technique for coding data streams [1]. The technique

has provided powerful means for converting analog to dig-
ital signals and vice versa with low circuit complexity and
large robustness against circuit imperfections. As a result
of this, 1-bit sigma–delta based analog-to-digital (A/D) and
digital-to-analog (D/A) converters are widely used in audio
applications, such as cellular phone technology and high-end
stereo systems. In particular, it has seen a further boost in
interest due to the introduction of super audio compact disk
(SA-CD). SA-CD is based on a digital format coined DSD,
which is a 1-bit coded representation of the audio stream with
a sample rate of 2.8 MHz. In the SA-CD standard, no reference
is made to the technique which is employed to create such
a 1-bit stream, yet sigma–delta modulation is clearly one of
the techniques that is capable of creating a high-quality 1-bit
stream. Sigma–delta modulation, originally conceived by de
Jager [2], is a well-established technique. However, theoretical
understanding of the concept is very limited [1]. The most
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Fig. 1. Illustration of the definitions used in the paper to distinguish a LC (left)
from an idle tone (right). An LC consists of a finite number of discrete peaks
in the frequency spectrum; an idle tone is a peak in the frequency spectrum, but
superposed on a noise background.

important progress in the description of SDMs is reported in
the work of Risbo [3] and Hein and Zakhor [4], while a very
useful linearization technique is described in [5] and further
elaborated on by Magrath [6]. Yet in all these developments,
there is no unified description of SDMs. Instead, several models
are provided, each of which describes some aspects of an SDM
to a certain accuracy. Though it is not the intention of this paper
to give a comprehensive theory of sigma–delta modulation in
general, it does give an exact mathematical framework. Within
this framework, some aspects of sigma–delta modulation can
be quantitatively understood. In this paper, the focus is on
the characterization of limit cycles (LCs). The analysis will
be restricted to the class of “feedforward SDMs” (also called
“interpolative SDMs”) [1], which represents a class of often
used SDM topologies. The analysis can be easily adapted to
deal with other topologies as well [7].

We use the definition of an LC which is customary in the
world of sigma–delta design engineers. An LC is a sequence
of output bits, which repeats itself indefinitely. As such, we
want to contrast this definition with that of an “idle tone,” which
is a discrete peak in the frequency spectrum of the output of an
SDM, but superposed on a background of noise (see Fig. 1).
Hence, in that case, there is no unique series of bits which
repeats itself.

Fundamental work on LCs in SDMs has usually been con-
strained to low order SDMs [8]–[10], and hence is of little
practical value to engineers who use high order noise shaping
techniques. The basis for the approach used in this paper
has been provided in previous work, most notably in [4] and
[11]. An approach which bears some resemblance to the one
presented in the current paper is discussed in [12]. In [12],
however, the relative frequency content of possible LCs in
some specific SDMs is discussed. We derive results for a
general SDM and focus on the character of the LCs, and
their stability in particular. An important assumption in this
earlier work is that a periodic bit output pattern implies a
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Fig. 2. States in fifth-order SDM.

periodic orbit in state-space variables. This assumption is not
obvious, but turns out to be true as will be proven in this paper.
Based on a state-space description, we will present an exact
description of LCs in SDMs. While drawing on some known
results from linear algebra, some remarkable results for LCs
in SDMs are obtained, such as the persistance of LCs while
dithering the SDM. Although in its pure definition, a LC is
a periodic pattern of infinite duration, in practical situations
finite duration periodic sequences can be equally annoying.
The finite duration patterns touch upon the important subject
of stability of a LC. How much time it takes until a small
perturbation moves a LC out of its periodic pattern.

The paper is organized as follows. In Section II, the math-
ematical framework, based on a state-space description of the
SDM, is presented. All the following chapters are based on this
formulation. In Section III, this formulation is applied to prac-
tical SDM designs. Some basic quantitative criteria, necessary
for determining the stability of an LC, are developed. In Sec-
tion IV, a stability analysis of LCs is presented. The analysis
provides insight into how long it takes before a perturbed SDM
steps out of a LC. In Section V, the concepts of the foregoing
sections will be used to obtain numerical results. Finally, in Sec-
tion VI, conclusions will be presented.

II. MATHEMATICAL BACKGROUND

A. State-Space Description

Though state-space descriptions of discrete-time processes
are well established [13], in this section certain aspects are re-
viewed in order to present the paper in a self-contained way. The
state-space description of the SDM in Fig. 2 will be examined as
an illustration of a feedforward topology. This figure displays a
feedforward SDM of order with two resonator sections
and the optional inclusion of dither just prior to quantization.
This represents a typical modulator design, which is often used
in practical designs [14]. The state-space description of other
classes of modulators closely resembles the description that fol-
lows below [15]. One can easily read that, for the SDM depicted
there

(1)

where is the output bit at clock cycle , is the quan-
tizer input signal, and are the integrator outputs, called state
variables. The are the feedforward coefficients, and the the
resonator coefficients determining the positions of the poles in
the loopfilter. The propagation of the states can be written in
matrix notation as

(2)

where is called the transition matrix of the SDM of
order ; describes how the input and
feedback are distributed. The power of the state-space descrip-
tion is that it allows us to create a very compact description of
the propagation of the SDM from time to time , as
repeated application of (2) to leads to

(3)

From the above equation, it is clear that all useful information
is embedded in the second term of the right-hand-side (RHS) of
(3); the first term carries no input signal information.

B. General Formulation of LC Conditions

In the introduction, the following definition of a LC was pro-
vided.

An LC is a sequence of output bits, which repeats itself
indefinitely.

In dynamical systems theory, an LC of period exists if, for
initial conditions , is the smallest positive integer such
that

(4)

for all greater than or equal to zero. The state-space variables
then describe a periodic orbit in state space. However, from a
practical point of view, an LC represents periodic behavior in
the output . Henceforth, we will refer to LC when periodic
behavior in the output is meant, and “periodic orbit in state
space” when periodicity in the state variables is meant. In Ap-
pendix A, it is proven that, under reasonable assumptions, pe-
riodicity in implies that a periodic orbit in state space exists.
However, such equivalence is by no means always true. Thus,
under the assumptions stated in Appendix A, there is a strict set
of necessary (but not sufficient!) equalities that need to hold for
the initial states if periodic output is to be sustained

(5)
where has been introduced to avoid cumbersome
notation. Formally

(6)

From (5), one can obtain a unique value for the initial state
if, and only if, the inverse of the matrix exists. This will
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be elaborated in Section III; for now, it is assumed that a solution
or solution space to (6) exists.

So far, the appearance of the LC has not been specified, ex-
cept that it is of period . If a LC is now defined as a specific
sequence ( ), then for each

(7)

which is a test that has to be passed if a LC of the specified se-
quence ( ) exists. The inaccuracy made
in (7) is that the possibility that has been left out.
As this equality occurs with probability zero over the conti-
nously variable value of , this should not pose much of
a problem. Thus, there is a set of equalities, (5), and a set of in-
equalities, (7), that need to be fullfilled in order to have a valid
LC. Substitution of (3) in (7) gives

(8)

which is equivalent to

(9)
by defining .

Hence, one needs to simultaneously solve (5) and (9) in order
to have a valid LC; in the next section more specific solutions
will be derived for various SDM topologies.

III. LIMIT CYCLE CONDITIONS FOR SPECIFIC

SDM ARCHITECTURES

In order to quantify the importance of any disturbance of a
LC, one first needs to solve (6). However, in the previous sec-
tion, the remark has been made that the matrix may
not be invertible. This observation carries significant practical
relevance. The poles of the loop filter of an SDM are given by
the eigenvalues of the transition matrix . Each pole can
be written as , where is the pole frequency [4].
Hence, for a classical SDM which has all its loopfilter poles at
dc, all eigenvalues of will be one, as a result of which the
inverse of (5) does not exist – hence, there is no unique so-
lution to . On the other hand, if one has an SDM of even
order with resonator sections, all loopfilter poles will
occur for frequencies other than dc. As a result, there exists one
and one only initial state that results in a specific LC. Most
often, SDMs have at least a single zero at dc to avoid dc drift. In
the following, we will distinguish between two main categories
of SDMs. Those with and without poles at dc. The SDMs with
poles at dc will be further subdivided in two categories. Those
with poles at dc for the last two integrator sections; and those
with poles away from dc for the last two integrator sections.

A special case of LC break up is due to dithering the SDM.
Typically, dithering is achieved by adding a random number to
the input of the quantizer, which therefore adds a random el-
ement to the quantization process. Because it is a special, but

important case, and as its effectiveness is strongly related to the
LC conditions, its discussion is included in Section III.C.

A. SDMs With DC Poles

In the case that the SDM has at least one of its poles at dc, the
matrix is singular, and hence not invertible. To solve
(5) for that case, one may use the singular-value decomposition
(SVD) [16] of

(10)

where is a diagonal matrix whose elements
are the singular values of . The matrices
and are the left and right singular vectors, re-
spectively. Because both and are unitary, we also have

. When the SDM is not reducible, ex-
actly one of the singular values will be zero as a result of the
fact that the loop filter displays a pole at dc. When the singular
values are ordered in descending fashion, this singular value will
be . This has the interesting consequence, that the last
column of is a nonrelevant direction, since it is always mul-
tiplied by . This last column of will be denoted
(the so-called null space of : ). Now,
if a single solution is known (say, ) to (5), any solution
can be expressed as

(11)

In other words, the complete set of solutions to (5) is a line.
Thus, for an order SDM, at least (initial) conditions
need to be fulfilled in order to have a LC.

In addition, the SVD is helpful in obtaining an initial solution
to (5). Similar to (10),(11)

(12)

where is the null space of . Therefore, (12) is
equivalent to

(13)

Multiplying both sides of (5) with one obtains

(14)

stating a necessary condition for the exis-
tance of a solution to (5). For the type of SDMs that are investi-
gated in this section, with a pole at dc (and thus infinite gain for
dc) this condition is equivalent to the intuitively obvious con-
dition that the average input should equal the average output of
the SDM

(15)

When the SDM input is a constant dc value, and the
sequence also completely determines the input to the
SDM.
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Second, if a solution to (5) exists, one can define as a
minimum norm solution to (5) [16]

(16)

The solution is characterized by the fact that the norm
is the least of all norms of other solutions to .

Though one part of the necessary conditions for a LC has been
solved (5), the set of inequalities represented in (9) still needs to
be solved. For each inequality in (9), one can write an equality
which represents the conditions under which the constraint is on
the edge of being violated

(17)
This represents an -dimensional hyperplane which bisects
the dimensional space. The point where this surface intersects
the line defined by (11) represents the boundary where a LC of
length is on the verge of violating the constraint. This
point is given by solving for in the equation

(18)

Equation (18) defines a distance from the initial point
at which the constraint is on the edge of being violated. De-
pending on the sign of , either (sign posi-
tive) or is required in order to fulfill the constraint.
The set of constraints, (18), can be divided into two categories,

and , of feasible , depending on the sign of

if then (19)

if then (20)

Defining

(21)

(22)

provides an interval for a feasible

(23)

Obviously, when , there is no feasible solution, and
the LC cannot exist.

We will now investigate the nature of the disturbance that
can be applied to the SDM, before the LC breaks up. We will
separate the two situations for SDMs with dc poles: 1) SDMs
with (more than) one dc pole, where the last integrator section
creates a pole at dc (in Fig. 2 this corresponds with );
and 2) SDMs with (more than) one dc pole where the last two
integrator sections create a resonator with poles away from dc
(in Fig. 2 this corresponds with ).

1) Last Integrators With DC Poles: The question that needs
to be answered, is what the null space in (11) looks like. For the
current case, the last two integrator sections create two dc poles,
which translates to the fact that the last column of the transition

matrix is given by . The th element
of the last column of is given by

(24)

Because of the special structure of , we know that
, where is the Kronecker delta. Hence, we have

(25)

which again is a matrix with the last column . By
induction, inherits this special structure, too.

Therefore, the last column of equals ,
and, hence, the null space of contains at least

. Because for these order SDMs the rank of
equals , the null space is .
Referring to Fig. 2 to see the implication of this, it means

that the state of the last integrator can be altered over a range
, without breaking up the LC. However, the effect of

changing the last integrator state is nothing other than adding
an offset just before the quantizer. For example, when the last
integrator state is changed by an amount , this is equivalent to
adding a value to the input of the quantizer with .
Hence, this approach provides the means to define a minimum
disturbance, just before the quantizer, which is necessary to
break up a LC in an SDM with a dc pole for the last integrator.

2) Last Integrators With Poles Away From DC: In case the
last two integrator sections form a resonator, the last column of

will be of the form , and, clearly,
the null space does not have the simple shape anymore as in the
previous section. In fact, if the feedback coefficient in the last
two integrator sections equals , it can be shown that to very
good approximation the null-space is given by

(26)

Hence, in order not to disturb a LC when changing the last inte-
grator section, the third integrator state should also be changed.

Although it is not as easy to determine the exact minimum
disturbance that needs to be applied just before the quantizer
(i.e., change the last integrator state) before the output bit
changes sign, it is still possible to define a disturbance which
is equal or larger than this minimum amount. One can do this
under the assumption that , in which case one can apply
the theory from the previous section. As typical values for are
of the order of (see Appendix C), validity of the approx-
imation is asserted. This approximation slightly overestimates
the minimum disturbance required to break up a LC, and thus
represents a pessimistic estimate.

B. No DC Poles

A special situation arises when the SDM has no dc poles. In
that case, the null space of is zero. There is only
one solution to (5). If this solution also complies with all
inequalities (9), it results in a LC. Because the null space is zero,
any change of the integrator states would result in a break-up
of the LC. A relevant question that remains, however, is how
long it would take before the bit-pattern is changed from the
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LC pattern; in other words, what freedom does one have when
the only requirement is to fulfill (9). This will be the subject
of Section IV. Note, that the system of inequalities itself would
lead to the same solution as (5) would after an infinite amount
of time (see Appendix A).

C. Dither

The basic principle of “dithering” (adding random offsets to
the quantizer) is sketched in Fig. 2. The addition of dither repre-
sents a special case of LC disturbance, since it does not directly
influence the integrator values. The only way in which dither
can break up a LC is by changing the sign of the input to the
quantizer, causing it to create a bit-flip in the LC output. The
minimum amplitude of the dither that is necessary to cer-
tainly break up a LC, is easily determined as

(27)

where the dependence of the minimum dither level on the ini-
tial states is explicitly indicated. In a typical situation, where
dither according to a certain (e.g., rectangular) pdf spanning a
width is applied, all dither values with amplitude less than

are without any effect. Because of its dependence on
the initial states of the SDM, (27) is not the most convenient
expression to determine an appropriate dither level. Preferably,
one would have the expression that provides the maximum of

over the initial states. In Section III-A1), it was derived
that for SDMs with the last integrators having their poles at dc,
the value of the last integrator could vary over a range
without breaking up the LC. The interpretation is that

if then
(28)

Because the quantizer input bears a linear relation to , it
means that the minimum amplitude dither , needed to break
up a LC, is maximized over all when ,
and thus

(29)

For most SDMs, the value can be easily determined using
results obtained previously, without resorting to (27). For the
SDMs which have a resonator section as last integrators, but also
have dc poles, as discussed in Section III-A2), the null-space is
not exactly equivalent to a mere change of the last integrator
value. However, for typical SDMs, the value of the feedback
coefficient of the last resonator is much less than 1, and there-
fore the null space is almost equivalent to a change of the last
integrator state. As a result, one can treat such SDMs in exactly
the same way for determining a lower bound to the minimum
amount of dither.

For SDMs without dc poles, however, the null-space has di-
mension zero and the methods outlined above cannot be used
anymore. In this case, the only option is to determine the min-
imum amount of dither through (27).

IV. STABILITY ANALYSIS OF LIMIT CYCLES

To determine whether a LC is stable, the same assumption
made in Section III.C will be made that any disturbance that

causes a bit-flip with respect to the ideal LC pattern, causes
break-up of the LC. An approach based on perturbation theory
will be followed in order to determine when such a bit-flip will
occur.

For a given LC of length , the states at clock cycle are
given by

(30)

To have some idea about stability of LCs, the original state vari-
able will be perturbed by an amount

(31)

The growth of a disturbance in the state variables after
periods (and, hence ) of the LC is given
by

(32)
To analyze (32), a Jordan decomposition [16] of is created,
which is defined as1

(33)

where is a Jordan matrix of the form

if
if
otherwise

(34)

with the th eigenvalue of the transition matrix . The main
advantage of this decomposition is that it provides a compact
representation of repeated application of as

(35)

where . From this expression, it is evident that for
SDMs with eigenvalue magnitudes , multiple applica-
tion of will result in exponential growth of the disturbance.
When , on the other hand, exponential decay will occur.
The effect of a disturbance will be studied in the next sections,
both for SDMs with all poles at dc (all eigenvalues ),
and for SDMs with resonator sections and eigenvalues .

A. Only DC Poles

In the special case where all the poles of the loop filter are at
dc, all eigenvalues , as a result of which only polynomial
growth can occur. In particular, when the eigenvalues are all
unity, the result for can be written as

if
if

otherwise.
(36)

For an SDM with only dc poles, the transition matrix is ex-
actly in the shape of this Jordan block, with eigenvalues equal
to 1, and no further decomposition is necessary (SDMs which
exhibit poles in the loopfilter, are not in Jordan form). In order to
determine when a LC will be broken up, the disturbance

1Alternatively, the Schur decomposition could be used, which, for the types
of SDMs under consideration, is less practical.
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at the quantizer input that results in a bit-flip must be deter-
mined, akin to the discussion in Section III-C. From (2)

(37)

Using (36), and making the approxiation that , the
polynomial divergence of a modulator of order can be ap-
proximated by

...

(38)

where and likewise for . Hence, if the first
integrator is disturbed, the number of LC periods it takes
before a LC is broken up can be approximated by

(39)

where is the critical value of where the LC is broken
up. From Section III-A, we have that

(40)

where the precise value of depends on the initial state .

B. Resonator Sections

In case of resonator sections, it proves to be slightly more
difficult to obtain a general algebraic expression for the rate of
growth of . An expression for the effect of a disturbance can
be obtained from the difference equations describing a resonator
section, though. From (73) in Appendix B, it is shown that, for
small , the growth of a disturbance in a single resonator section
can be described by

(41)
where is the input at clock cycle to the resonator, and

is the output of the resonator (or, effectively, the output
of the last integrator of the resonator) at clock cycle ;
is the feedback coefficient in the resonator section (see also
Fig. 2). The time instant is (a bit arbitrarily) taken as
a moment where the bit output pattern coincided with the bit
output pattern corresponding to the LC. It can be observed that
the original input to the resonator, , appears at the output,
multiplied by , in addition to a sine or cosine, which is of
the same order of magnitude as . The output of a series
of resonators, each characterized by a feedback coefficient ,
will thus consist of a superposition of sinusoidal signals, with
frequency , each of them exponentially diverging

as . The input to the first resonator will appear at the
output of the last resonator, multiplied by a factor
if resonator sections are cascaded. From , the output

of the series of resonators will continue to increase steeply,
until the maximum of the sine wave with the lowest frequency
is reached. This maximum occurs when

(42)

For practical of about , this means that is of the order
of 100 when this maximum is achieved. The exponential factor
has typically grown a negligable 20% by then, which shows
that when has not been reached, LC break up can only
be achieved through the exponential growth. Only for ,
the rate of growth of the exponential divergence equals that of
the polynomial growth.

If an SDM consists of a cascade of simple integrators and
resonators, the output will be a multiplication of the polynomial
divergence as described in Section IV-A, and the oscillatory be-
havior as described above.

C. Implications

From (38) and (42), two important observations can be made.
Firstly, because in both cases will be dominated by the
highest order terms, it will be the weighting coefficient of the
last integrator that determines the rate at which grows.
Hence, more aggressive noise shapers, which have relatively
large weight at the high order integrators, will exhibit much less
stability with respect to LCs as mild noise shapers will. Sec-
ondly, the growth rate of is in both cases increasing with

, which means that long LCs are much less stable, and hence,
much less likely to occur, than short LCs.

Finally, it is worth mentioning that disturbing the SDM just
before the quantizer (dithering the quantizer), is apparently less
effective than disturbing the SDM at any other position. Placing
the disturbance anywhere else guarantees that the LC will al-
ways be broken up, no matter how small the disturbance is.

V. NUMERICAL RESULTS

The results of the work detailed in the preceding part, have
been used to obtain some results on several different noise
transfer functions [(NTFs), all Butterworth design], which have
been implemented in feedforward SDMs. The SDMs, all with
an oversampling ratio of 64, have been chosen to illustrate
the difference in behavior for various SDMs with aggressive
noise shaping and mild noise shaping. In the case of most
aggressive noise shaping, the NTF has a high corner frequency
of kHz. Although this SDM displays excellent noise
suppression in the baseband, its stability is severely compro-
mised due to which it is of hardly any practical use. The SDM
with mild noise shaping has its NTF with corner frequency at
80 kHz. The naming convention is such, that the first part of
the name of the SDM reflects its NTF corner frequency, and
the last part is either ”a” (meaning with resonator sections,
i.e., and ) or ”b” (meaning without resonator
sections, i.e., ). A more detailed description of all
the SDMs used in this paper, along with full descriptions of
the SDMs with NTF corner frequencies at 120 and 80 kHz are
given in Appendix C.
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Fig. 3. Occurrence of LCs of SDM 80a and 80b.

In the following sections, we will discuss results on static
and dynamic behavior of SDMs. Feedforward topologies are
presented to judge how the implementation topology influences
the LC behavior.

A. Static Behavior

In Fig. 3, the occurrence of LCs for SDMs with and without
resonators is presented as a function of LC length. This occur-
rence has been obtained by generating all independent bit pat-
terns for a given length, and checking whether this pattern could
represent a specific LC with the theory presented in Section III.

Fig. 3 represents all independent LCs that could exist with
lengths ranging from 3 to 30 bits. All possible dc values are
represented by these LCs, and though some of these LCs theo-
retically exist, they cannot occur in practice. For example, it is
possible to define an LC corresponding to an input of 0.9, where
none of the SDMs studied would be capable of representing this
dc level without running into instability. It is apparent immedi-
ately from Fig. 3, that the presence or absence of resonator co-
efficients for the SDM with NTF corner frequency at 80 kHz is
immaterial to the number of LCs that can occur. The same is ap-
proximately true when comparing other SDMs with and without
resonator section. However, a significant difference is displayed
when comparing the aggressive SDM 120a and the nonaggres-
sive SDM 80a in Fig. 4. Rather counterintuitive, the SDM 120a
displays more LCs than SDM 80a; one would expect the reverse
to be true, as experimental evidence usually proves stable SDMs
more susceptible to LCs than aggressive SDMs. The SDMs all
show an initial steep growth of the number of LCs, followed by
a transition to a region of less steep growth. Based on pure per-
mutations, one would expect the number of LCs to grow propor-
tionally to . While, indeed, exponential growth of the number
of LCs is observed, from a numerical fit the initial growth for
SDM 120a is proportional to , and for SDM 80a .
Above the cross-over point, the growth is proportional to ,
and this is approximately true up to the largest LC investigated
for all SDMs independent of their aggressiveness. Also, the fre-
quency of the cross-over point appears to be coincident with the
LC period that corresponds to the corner frequency of the But-
terworth high-pass filter that was used in the design. To further

Fig. 4. Occurrence of LCs of SDMs 80a, 100a, 120a, and 160a.

Fig. 5. Number of LCs for a fixed LC period of 24, as a function of the NTF
corner frequency used in the SDM design.

illustrate this behavior, the dependence of the number of LCs at
given LC length ( ) on the corner frequency of the Butter-
worth NTF design is given in Fig. 5. This clearly illustrates the
increase of the number of LCs with increased aggressiveness of
the SDM, and also shows that for highly aggressive SDMs the
number of possible LCs is virtually constant.

Qualitatively, these observations can be explained on the
basis of the phase characteristic of the loop filter. To sustain a
LC perfectly, the phase shift for all frequency components of
the LC needs to be (the feedback loop accounts for another
factor , summing up to the required corresponding to a
delay of one period). For high frequencies, down to the corner
frequency of the loopfilter, its phase shift deviates relatively
little from . Below that frequency, it starts to deviate strongly
from , corresponding to the fact that the likelihood of a long
LC with significant low frequency content being sustained is
low. This causes the rate of growth of the number of LCs to
reduce above the loopfilter corner frequency, cf. Fig. 4. Also,
the more aggressive the loopfilter, the less deviation from for
high frequencies. Hence, an aggressive loopfilter will sustain
more LCs with relatively large high-frequency content than a
nonaggressive filter, cf. Fig. 5.
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Fig. 6. Relative occurrence of LCs of SDM 120a and 80a with respect to all
permutations of bits.

Fig. 7. Minimum level of dither needed to break up a LC corresponding to a
dc input 0 .

While the absolute number of LCs increases rapidly, relative
to the number of possible permutations of s and s it is
reducing rapidly as is demonstrated in Fig. 6. The total number

of permutations for an LC of length is approximately
given by [3]

(43)

The division by corrects for the fact that of all permuta-
tions, exactly represent a cyclicly shifted version of the same
basic LC. To obtain the exact number of irreducible LCs, cor-
rection should be made too for the number of LCs that are a
concatenation of smaller LCs. However, for reasonable , this
number is much smaller compared to and thus ignored. In
Fig. 7, the minimum dither level that is needed to certainly break
up the most stable LC is depicted. In plusses (“ ”) and stars
(“ ”), the most stable LC for SDM 120a and 80a, respectively,
for dc input is depicted. While slightly more stable LCs can
sometimes be found for non-dc inputs, this does not represent
a practical situation. The first interesting observation is that the
LCs for the aggressive SDM 120a are more stable against dither

Fig. 8. Occurrence of LCs as a function of the number of 1’s in the LC, for
various SDMs. Zero dc level corresponds to 15 1’s, 20 1’s corresponds to a dc
level of one third, etc..

than those of the less aggressive SMD 80a. Again, this is quite
counter-intuitive as we expect aggressive SDMs to be less sus-
ceptible to LCs. Also, we can see that there is a very stable LC
occurring around LC length 22 for SDM 120a, and for LC length
32 for SDM 80a. Upon investigation of these LCs, it appeared
that they consist of a series of 11 1s followed by 11 s for SDM
120a, and likewise 16 1s and 16 s for SDM 80a. This corre-
sponds to a square wave of frequency 120 kHz and 80 kHz, re-
spectively, which are exactly the corner frequencies of the NTF
design of the SDMs. Although not shown, identical behavior
occurs for other SDMs. In practice, however, these LCs require
huge initial integrator states that could never occur. Long before
such an integrator state could be reached in real operation, the
SDM would have reached a state with unbounded state variables
where the output bit pattern would not reflect the input signal
anymore (see also [1] for a discussion on this phenomenon). As
a result, if the SDM has been forced into this LC, the SDM runs
unstable upon the slightest disturbance of the integrators.

This is to be contrasted with the LC behavior for other LC
lengths. The shortest LC, the sequence , appears to be by
far the most stable (disregarding the previously discussed LCs)
for both SDMs. For longer LCs, the amount of dither needed for
break-up decreases to a minimum value close to the peak, after
which the LC becomes more stable. All these LCs consist of the
sequence , which repre-
sents the minimally possible deviation for the simple
sequence. While these most stable LCs slightly increase in sta-
bility for longer LCs, on average the amount of dither necessary
for break-up decreases. This is indicated in crosses and squares
for SDM 120a and 120b, respectively, in Fig. 7. The average
amount of dither is defined as the average of the minimum dither
levels that are needed to break up the individual LCs. Again,
we see that SDM 120a presents LCs that are in general more
stable than those of SDM 80a. At LC lengths of 42, the average
amount of dither is reduced to about 0.03 and 0.017 for SDM
120a and 80a, respectively, which is consistent with the intu-
ition that longer LCs represent more boundary conditions to be
fulfilled and are thus more easy to break up. Another interesting
characteristic to study is the relative preference of the SDM for
LCs of a certain dc level. These results are displayed in Fig. 8.
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Fig. 9. Disturbance of identical LCs for SDM 120b and 80b (with all
eigenvalues equal to 1) due to a small disturbance (�120 dB) on the first
integrator state. Depicted is the quantizer input until the LC breaks up.

Confirming the results in Fig. 4, in general SDM 120 exhibits
many more possible LCs for any dc level than SDM 80. Also,
we see that (as anticipated) the number of LCs is identical for
a certain dc level and the negative dc level. However, whereas
SDM 120 has strong preference for LCs with small absolute dc
level, SDM 80 apparently has little preference! Moreover, where
SDM 80 displays little dependence on the presence of resonator
sections, SDM 120 shows, especially for the smallest dc levels
some dependence, displaying most LCs when no resonators are
present. The reason for this behavior is unclear.

B. Dynamic Behavior

In Fig. 9, the effect of a small disturbance of the integrator
states on a LC is illustrated. It depicts the growth of , which
is the deviation of the quantizer input from its ideal input, as de-
fined in (37). The LC studied was the most stable of length 8,
i.e., followed by a sequence of 2 pairs.
A disturbance of dB ( ) was applied to the first inte-
grator at time instant in order to break up the LC. The
effect of such a disturbance on the output signal during normal
SDM operation is very small; in fact, it is much less than the
effect that sufficiently dithering the quantizer would have had.
Studying the case where all transition matrix eigenvalues equal
1, we can clearly see that for SDM 120b, which is the more ag-
gressive one, the deviation from the ideal quantizer input in-
creases steeply. This, in turn, results in early break-up of the LC.
For the nonagressive SDM 80b, this increase is much less steep.
As both SDMs have all loop filter poles at the unit circle, the rate
of growth of is polynomial. Even though the maximum devi-
ation , for which LC break-up occurs for this SDM, is much
less than for SDM 120b, it takes a 30% longer time for it to break
up compared to the same LC in SDM 80b. Note, that the fact that
the maximum deviation for which break-up occurs is larger for
the least aggressive SDM, is in correspondance with the results
on dither as presented in Fig. 7. Thus, aggressive noise shapers
need more dither in order to break up a LC when this dither is
added to the quantizer, and need less dither when the dither is
added to the input of the SDM to break up a LC. Upon substitu-
tion of the relevant parameters in (39), break-up of the LC is pre-

Fig. 10. Disturbance of LCs of length 10,20 and 30 for SDM 80a due to a
small disturbance (�120 dB) on the integrator states. Depicted is the quantizer
input until the LC breaks up. The dotted line represents the exponential growth
that is expected due to the (largest) eigenvalues of the transition matrix.

dicted at the 38th period for SDM 80b, and at the 29th period for
SDM 120b, in good agreement with the observed behavior. The
same trend is observed in Fig. 10 for the SDMs 120a and 80a,
which both display eigenvalues ; the largest eigenvalue, cor-
responding to the pole at 20 kHz, is , which
has a norm equal to 1.000 90. The dotted line in Fig. 10 rep-
resents the exponential growth that is expected on basis of this
eigenvalue. As a result, displays both oscillatory and expo-
nential growth as can be inferred from Fig. 9. However, a dras-
tically larger number of LC periods passes, before it is broken
up, in line with the expectations mentioned in Section IV. The
first maximum in occurs, both for SDM 80a and 120a, at the
15th period, exactly equal to the prediction of (42). The pre-
dicted amplitude at these maxima equals 0.000 25 and 0.0017
for SDM 80a and 120a, respectively, which is about a factor of
1.5 too low with respect to the simulation result. This difference
is easily explained because of the fact that the input to the cas-
cade of resonators is a constant (due to the action of the first inte-
grator). This means that the last term in (41) is nonzero, which
effect is ignored in determining the maximum value. Because
the first maximum is still far from , the total duration of
the LC is determined by the exponential growth. The predicted
duration of the LC is 807 periods for SDM 80a, and 714 periods
for SDM 120a, which is both about 5% shorter than observed in
simulation.

VI. CONCLUSION

This work is an attempt to construct a general theory de-
scribing LCs in 1-bit SDMs, and to provide the designer with
tools other than numerous simulations to obtain an insight into
typical LC behavior of SDMs. It has been proven that, under al-
most all circumstances, LC behavior is observed in the output
if and only if a LC occurs in state space. It has been shown that
LC behavior can occur in a wide variety of situations.

In Section III.A, a recipe was given whereby, for constant
input, all LCs of a given period can be found for any SDM with
at least one pole at dc. Equation (16) provides a least squares



1220 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 6, JUNE 2005

solution to the LC conditions. If the constraint equations, (9)
and (15), are also satisfied, then this is an exact solution. Equa-
tion (18) may then be solved to find the exact set of initial con-
ditions, (11), which give rise to this LC. This same procedure
can be applied when the SDM has no dc poles. However, it be-
comes simpler in this situation since (5) can now be solved di-
rectly, and (9) is the only constraint. The essential difference
between these two situations is that, if constraint equations are
satisfied, SDMs with dc poles will exhibit a line of initial condi-
tions which give rise to a LC, whereas SDMs without dc poles
will exhibit a unique solution. One immediate consequence of
the initial condition dependence is that, for an SDM of order
with dc poles, states need to have a well-defined value, and
all states need to have a well-defined value for SDMs without
dc poles. This makes LCs for higher order SDMs (which typi-
cally also exhibit more aggressive noise shaping) less likely to
occur, especially when they do not exhibit poles at dc.

It is postulated that the most stable LC is that which is a se-
quence of pairs, followed by a single
quartet. It has also been shown, that the classical approach of
dithering the quantizer may not be the optimal way of removing
LCs. Adding a small disturbance to an integrator state is far
more efficient and will always result in break up of the LC. The
noise penalty is rather limited, as the input disturbance can be
made as small as or dB. Furthermore, it has been
shown that very small changes in an SDMs structure can have
significant effects on the rate of growth of any disturbance to a
LC. SDMs with only dc poles will exhibit polynomial growth,
whereas the inclusion of resonator sections or other modifica-
tions to the structure may yield exponential growth. However, if
these modifications result in the transition matrix having com-
plex conjugate pair eigenvalues, then the exponential growth is
exhibited as the disturbance spiraling away from initial con-
ditions. Thus, this exponential growth may take significantly
longer to break up the LC than the polynomial growth which
occurs without resonators. Therefore, in general, SDMs without
resonators are less susceptible to LCs.

An important characterization given the goals of SDM de-
sign, is distinguishing LC behavior for SDMs with different
noise shaping characteristics. Intriguingly, SDMs with aggres-
sive noise shaping can sustain many more different LCs than
SDMs (of equivalent order) with mild noise shaping, and are
also more robust against dithering the quantizer. Also, it has
been shown that LCs of a long period, even though the number
of LCs grows exponentially, are much more sensitive to a small
disturbance than a short LC. Likewise, it can be proven that
SDMs with aggressive noise shaping are more sensitive to small
disturbances than mildly noise shaping SDMs—even though the
latter exhibit a much smaller number of sustainable LCs. This
is corroborated by the general experimental observation that ag-
gressive noise shapers are less susceptible to LCs than mild
noise shapers. As a result, dithering the quantizer as a means to
remove LCs should be discouraged. Adding (even tiny) amounts
of, perhaps shaped, noise to the input of the SDM is far more ef-
fective in achieving the same goal.

It should be noted that all the results and observations pre-
sented here apply only to feedforward SDMs with constant
input. However, the technique may be generalized to other

structures, and feedback SDMs have also been investigated by
the authors [7]. The use of constant input is a highly relevant
situation, since these LCs are known to be problematic and
easily observed. However, SDMs are intended to be used pri-
marily with input signals of a limited bandwidth. The dynamic
behavior of SDMs under periodic or noisy input is still an
unknown area, and is currently a research topic pursued by the
authors.

APPENDIX A
PROOF THAT EQUALITIES ARE A SUFFICIENT

CONDITION FOR A LIMIT CYCLE

In this appendix, we will prove that the set of inequalities (9)
leads to the same solution as the set of equalities (5) would, i.e.,
whether the LC condition observed at the output of the SDM

(44)

leads to the existence of a periodic orbit in state space as known
in stability analysis

(45)

For example, if the output sequence happens to be a periodic
sequence of period , one could ask the question whether there
exists a possibility that an initial state does not return to this
value after propagation over cycles, but to a different state
vector . If this state vector generates the same output sequence
again, etc., we have a LC without fulfilment of (5). To that end,
we look at the propagation of the state variables (3), after a large
number of cycles. We will further assume that is
invertible; when it is not we will define a new transition matrix

as

(46)

where is the original transition matrix, and is the unit ma-
trix. Now is invertible by definition; at the end of the
analysis we will than have to take the limit to obtain the
final result.

From (3), we subsequently determine the states at the
th clock cycle as

(47)

The summation can be written as two nested summations

(48)

Because is a LC and is constant, we have, by def-
inition, , and thus we can write

(49)
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The terms not dependent on can be moved outside the
summation

(50)

and the summation over can be written more simply as

(51)
Because the sum over represents a constant, we define

(52)

in line with earlier definitions in Section II.B. With this defini-
tion, we can write (49) concisely as

(53)

Realizing that the finite sum represents a geometric series, and
because we have defined such, that is by definition
invertible, (53) can be expressed as follows:

(54)

For convenience, we will further define

(55)

due to which we can further compress (53) as

(56)

In order for a LC to be stable, must be
bounded. We will discriminate two cases.

A. Case 1: Corresponds to Eigenvalues With Norm
Larger Than 1

If contains directions which correspond to eigen-
values with a norm larger than 1 of , is
bounded only when

(57)

leading to

(58)

which is the conjecture on which the results in Section II.B are
based.

Upon applying the definition of (46) to (56), we see that we
can safely take by setting , as a result of which (57)

Fig. 11. Single resonator section, as used in an SDM.

is independent of the invertibility of . The definition of
in (55) also turns out to be a familiar result, as with

it is identical to (6) in Section II.B.

B. Case 2: Corresponds to Eigenvalues With Norm
Smaller Than 1

If, on the other hand, contains only directions which
correspond to eigenvalues of , these directions will be
reduced to zero if . We thus obtain as a result

(59)

which is identical to (57) when . However, we do
not have the result that . Thus, in this case, we have
a possibility that an initial state does not return to this value
after propagation over cycles, but to a different state vector

, and that this state vector generates the same output sequence
again. After a long number of LC periods, however, con-
verges to a unique value, such that
which is a situation identical to Case 1.

APPENDIX B
SOLUTION TO THE DIFFERENCE EQUATIONS OF

A RESONATOR SECTION

In order to be able to determine the effects of a resonator sec-
tion in an SDM, we will solve the difference equation describing
such a system. Whereas a linear algebraic approach, such as
used in the main text of the paper, will give the same results,
it proves to be a rather rather cumbersome excercise, for which
reason we refrain from presenting this approach. The resonator
system that we study, is depicted in Fig. 11. The input to the
system is , and the system output that we will study, is labeled

in Fig. 11. The output labeled can be obtained in an almost
identical way as described below.

The difference equations describing the resonator output
are given by

(60)

different realizations of a resonator section (for example, with
nondelayed integrators etc.) will have a slightly different but
comparable difference equation. We will seek the solution to
(60) as

(61)

where is the particular solution.
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We will now first want to find the homogeneous solution
, that is, the solution to the substitution of

in (60)

(62)

which is identical to

(63)

Solving for , we obtain two independent solutions and
to

(64)

This homogeneous solution can also be obtained rather easily
from the algebraic approach, as the eigenvalues from the transi-
tion matrix describing the resonator are given by

.
To obtain the particular solution , we will substitute

in (60). This results in

(65)

For slowly varying , this can be approximated by

(66)

where is the second derivative of . A solution for
can now be found when both and are expanded in a
Fourier series

(67)

When these Fourier expansions are substituted in (66), we ob-
tain the Fourier coefficients and

(68)

For example, if is a constant, or a slowly varying function,
a good approximation for is given by

(69)

The general solutions to (60) now read

(70)

It is the boundary conditions that will determine the constants
and .
The first obvious requirement is that be real, that is,

. Further we have that either

(71)

when a step function is applied to the input, or

(72)

when a gradually increasing function is applied to the input. It
is easily verified that boundary condition (71) results in

(73)
while the second set of boundary conditions (72) results in

(74)

The first solution (73) is more realistic in the sense that it is very
unlikely that , and is the solution that leads to (41) in
the main text upon the assumption that varies only slowly,
leading to the substitution .

APPENDIX C
DESCRIPTION OF SIGMA DELTA MODULATORS

The feedforward SDMs used in Section V are all fifth order,
and are referred to by a code which gives their corner frequency
and a letter “a” if they include resonators, and “b” if not. They
are all of the type displayed in Fig. 2

kHz
kHz
kHz
kHz

kHz
kHz

The design of the SDMs is such that the NTFs of the
SDMs are all of the Butterworth high-pass type if . For
SDM120a, the NTF has a dB point at 120 kHz; for SDM80a,
this point is at 80 kHz. Thus, SDM80a represents a much less
aggressive noise shaper than SDM120a. The coefficients for
these two SDMs are tabulated in the table shown at the bottom
of the page.
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