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ABSTRACT

It has been established that a class of bandpass sigma delta
modulators (SDMs) may exhibit state space dynamics
which are represented by eliptical or fractal patterns
confined within trapezoidal regions when the system
meatrices are marginally stable. In this paper, it is found
that fractal patterns may also be exhibited in the phase
plane when the system matrices are strictly stable. This
occurs when the sets of initial conditions corresponding to
convergent or limit cycle behavior do not cover the whole
phase plane. Based on the derived analytical results, some
interesting results are found. If the bandpass SDM exhibits
periodic output, then the period of the symbolic sequence
must equal the limiting period of the state space variables.
Second, if the state vector converges to some fixed points
on the phase portrait, these fixed points do not depend
directly on theinitial conditions.

1. INTRODUCTION

Bandpass SDMs have many industrial and engineering
applications because many systems are required to
perform analog to digital conversions on bandpass signals
[1]. By using bandpass SDMs, simple and relatively low
precision analog components could achieve the objectives.
Because of this advantage, this area draws much attention
from the researchers in the community. Consequently,
some methods for the anaysis [3], [4] and design of
bandpass SDMs have been proposed [2].

Since the quantization and feedback in bandpass
SDMs introduces nonlinearities, limit cycles [3] and chaos
[4] may occur. Some researchers utilize the nonlinear
behavior in order to suppress unwanted tones from the
quantizers [6]. The most common existing method is to
place some unstable poles in the system matrices, so that
chaotic behaviors will be exhibited in the systems, and the

rich frequency spectra of these chaotic output signals
break down the dominant oscillations at the outputs.
However, by placing some unstable poles in the system
matrices, the stability of the systems is degraded.

In the practical situation, there are leakages on the
integrators [5]. This originates from the internal
resistances of the components. Even though the |leakages
may sometimes be negligible, engineers and circuit
designers may impose leakage on the integrators so as to
improve the stability of the overall systems. Therefore, the
eigenvalues of the system matrices are strictly inside the
unit circle, and the system matrices are actualy strictly
stable.

Although there are some analytical results on the
bandpass SDMs [4], most analysis is based on marginally
stable system matrices only. For the bandpass SDMs with
dtrictly stable system matrices, the existing results are
primarily concerned with limit cycles, but not with fractal
behavior. Intuitively, systems with stable system matrices
will cause the trgjectories to converge to some fixed
points, and fractal behaviors would not occur. In this
paper, we show that fractal behavior may also occur, and
provide ajustification for this and an analysis of its effect.

The organization of the paper is as follows. The
analytical and simulation results of bandpass SDMs with
strictly stable system matrices are given in Section Il.
Discussion and conclusion are given in Section I11.

2. ANALYTICAL AND SIMULATION RESULTS

The bandpass SDMs in [7] with leakages can be modeled
asfollows:

x(k +1)= Ax(k)- Bs(k)+Cu(k) for k20, (2)
where x(k)° [x (k) x,(k)]" is the state vector function
of the system, u(k)° [u(k- 2) u(k-2)] is a vector
containing the past two consecutive points from the input
signal u(k),
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where B is the matrix associated with the nonlinearity, C is
the matrix associated with the input, and

s(k)° [Q(x (k) Q)] for ke 0, (4
in which the superscript ™ denotes the transpose operator,
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1 otherwise

gl (-p.,p)\{0} and 0<r <1. As opposed to standard
lowpass SDM systems, bandpass SDMs are designed to
operate on high-frequency narrowband signals by shaping
the noise from some frequency f, [4], where f, = %
in which f_ denotes the sampling frequency. At IC'1he
desired frequency f,
and signal transfer function one [4]. When g1 {- p,0,p}.
the system is either a lowpass SDM or a highpass SDM,
which is out of the scope of the paper. The leakage of the
system depends on the values of r. If r is closer to O,
then the poles are closer to the origin and the leakage is
more serious. If r iscloser to 1, then the poles are closer
to the unit circle and the leakage is less significant. For an
ideal bandpass SDMs, r =1, the system reduces to that
described in [7], and the system matrices are marginally
stable. The value of s(k) can be viewed as symbols,

i .0 -1 [1 .1 -1} ©
for k 2 0, and s(k) iscalled asymbolic sequence.

In this paper, we only consider the cases when x(k)
and u(k) are real signas, that is x(k)i A? and
u(k)T A . We also assume that u(k) is a constant input,
thatis u(k)=u for ks 0.

it has noise transfer function zero

2.1. Limit Cycle Behaviors
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Since A isafull rank matrix because r * 0, A can be
decomposed via eigen decomposition. That is:
A=TDT . 9

Let M be the period of the steady state of the output
sequences (if it exists), that is
s(ko +M +i)=s(k,+i) "i2% 0, (10)
inwhich MT z* and k,T z*U{o}. Define
b ..
Xy © a ophr ”ghm a DrTM =T *(Cu - Bs(k, +n))(11)
and
i-1
X °©A'X,+d A""(Cu- Bs(k,+m)) (12

m=0

forj=12,.--,M - 1.We have the following lemma.

Lemma 1
The following statements are equivalent:
) s(k,+M +i)=s(k,+i) "i2 0.

i) qularrl x(kM +k0+i):xi* fori=01,---,M - 1.

ii)) x(0)1 X, © {x(0):$k,T z* U{0}suchthat " k3 O,
andi=01-,M-1Qx(kM +k, +i))=Q(x; }}-
Proof:
For i) impliesii), from equation (1), we have:
"p,MT?2*and" k3 0,
M -1
x(k+pM )= AMx(k)+ § A™ " (Cu - Bs(k +n))13)
n=0
From equation (9) and (i), we have:
(14)

X(ko+pM)=?D"MT'1X(ko)+a°DM”ga D"“Qr “(Cu- Bslk, +n))’

n=0 m=0

Hence, we have:
lim x(k, + pM )= x (15

pP® +¥
By substituting equation (15) into equation (1), the result
follows directly.
For ii) impliesi), since
lim x(kM +k, +i)=x; fori=01,-,
k® +¥
then gk, 3 0 such that
Qx(kM +k, +i))=Q(x;) (17)
for k3 k, and i =01,---,M - 1. Hence, the result follows
directly.
For ii) impliesiii), since
lim x(kM +k,+i)=x; fori=01,-,
k® +¥
then gk, 3 0 such that
Qx(kM +k, +i))=Q(x;) (19)

for k3 k, andi=041,---,M - 1. Hence, the result follows

M-1, (16)

M-1, (18)

directly.
For iii) impliesi), since
Qx(kM +k, +1))=Qlx;) (20)
for k30 and for i=04,-.-,M -1, the result follows
directly.
This completes the whole proof of the lemma. u



Lemma 1 associates the steady state of periodic output
with a specific set of initial conditions and a corresponding
dynamical behavior of the system. According to Lemma 1,
we can easily see that the trgjectories will converge to the
set of fixed points {x;,x;,---,x}, ,}» ad the periodicity

0
of the steady states of the output sequence is equa to the
number of fixed points on the phase plane. That implies
that al the fixed points (more than or equal to 2) cannot be
in the same quadrant. For example, if M = 2, then there
are two fixed points on the phase plane and these two
fixed points are located in different quadrants.

The significance of Lemma 1 is that it provides useful
information for estimating the periodicity of the steady
state of output sequences via the phase portrait. Moreover,
Lemma 1 provides useful information to the SDM
designers to determine the set of initial conditions which
leads to limit cycle behavior.

It is worth noting that athough the state vector is
converging to a periodic orbit, it never reaches these
periodic points. That means, the state vector is aperiodic
even though the output sequence is eventualy periodic.
This result is different from the casewhen r =1 and q is
arational multipleof p .

Moreover, adthough x', for i=12,...,M -1,
depends on s(j), for i =1,2,---,M - 1, it does not depend
on x(0) directly. That is, the fixed points leading to a
given symbol sequence are not directly depended on the
initial conditions.

When M =1, the output sequence will become
constant and there is only one single fixed point on the
phase portrait. The trajectory will converge to this fixed
point, denoted as x” . The significance of this result is that
it alows SDM designers to determine the set of initial
conditions so that limit cycle behavior is avoided.

It is worth noting that the state vectors of the
corresponding linear system  will  converge to
(I- A)*Cu, which is not the same as that of x'.

Comparing these two values, there are DC shifts and the
DC shifts are exactly dropped at the output sequences, that
is:

(I-A)'Cu-x"=(-A)'Bs, . (21)
in which

S(k) =5, for k 3 K, - (22)

In addition, this phenomenon is quite different from the
case of lowpass SDMs. In such a situation, the average
output sequence will approximate the input values even
though limit cycle behavior occurs.

Although the nonlinearity is always activated, the rate
of convergence only depends on r when the output
sequence becomes steady. This is because the DC terms
do not affect the rate of convergence. However, if we look
a the transient response of the system, that is, the time

duration when the output sequence is not constant, the
system dynamics could be very complex.

Figure 1 shows the response of the state variables of a
bandpass SDM with
r=0.9999, q=cos*(-0.158532), u=-031 1f
and x(0)=[0 0.5]". (23)
The state variables will converge to the same fixed value
and the output sequences will become constant for
k3 2154 .
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Figure 1. The state variable x, (k). 0
Figure 2 shows the state trgectory of a bandpass
SDM with
r=0.99, q=cos*(- 0.158532 ), u=-0.31 1| and
x(0)=[o o.5]. (24)
The state trgjectory will converge to two fixed points and
the output sequences are periodic with period 2 for
k3 3.

= e T (Y S S |

e i i i H
= = == 3 s
<, (k3

Figure 2. The phase portraitwhen M = 2.

2.2. Fractal Behaviors

Intuitively, fractals would not be exhibited on the phase
plane when the system matrices of the bandpass SDM are
strictly stable. However, if

X, AZ\X, 1 F, (25)



in which F denotes the empty set, then there exists some
initia  conditions which would not result in the
convergence of the periodic output sequences. Since
" x(0)1 X, , there does not exist k,7 z*U{o} such that
x(k,)T X,, the region X, in the phase plane has to be
empty. As aresult, afractal pattern would be exhibited on
the phase plane. As the output sequences corresponding to
limit cycle behaviors are eventually periodic, the output
sequences for " x(0)i X, areaperiodic.

Figure 3 shows the state trgjectory of a bandpass
SDM with
r=1-10°, q=cos'!(- 0158532 ), u=-0.3f1 1]
and x(0)=[0 0.5 - (26)

Figure 3. The phase portrait when output sequences are

aperiodic.
It can be seen from the figure that fractal pattern is
exhibited on the phase plane and the trajectories neither
converge to the boundaries of the trapezoids nor any fixed
points in the phase portrait. Measurements of the fracta
dimension [8] are estimated at 1.78 for the box counting
dimension, 1.75 for the information dimension, and 1.72
for the correlation dimension.

One possible implication of the results obtained in the
paper is that it is not necessary to place unstable polesin
the system matrices of bandpass SDMs to generate signals
with rich frequency spectrain order to suppress unwanted
tones from quantizers. It is shown in this paper that
fractals can be generated via system matrices with strictly
stable poles. Since the output sequences are aperiodic,
which consist of rich frequency spectra, the unwanted
tones could be suppressed using these aperiodic signals
without the tradeoff of the stability of the systems.

3. DISCUSSION AND CONCLUSION

In this paper, we account for the occurrence of fractal
patterns for bandpass SDMs with strictly stable system
matrices. If the sets of initia conditions corresponding to
the eventualy periodic output do not cover the whole

phase plane, then fractal patterns would be exhibited.
Some interesting results are found. First, for a periodic
output sequence, the limiting period of the state space
variables must equa the period of the symbolic sequence.
This implies that all the periodic points cannot be in the
same quadrant. If the state vector converges to some fixed
points on the phase portrait, these fixed points do not
depend on theinitial condition directly.

One implication of the results obtained in this paper is
that we can generate signals with rich frequency spectra by
using strictly stable system matrices in order to suppress
unwanted tones generated by the quantizers. Thus limit
cycles may be avoided without a tradeoff in the stability of
the bandpass SDM.
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