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ABSTRACT 
 
It has been established that a class of bandpass sigma delta 
modulators (SDMs) may exhibit state space dynamics 
which are represented by elliptical or fractal patterns 
confined within trapezoidal regions when the system 
matrices are marginally stable. In this paper, it is found 
that fractal patterns may also be exhibited in the phase 
plane when the system matrices are strictly stable. This 
occurs when the sets of initial conditions corresponding to 
convergent or limit cycle behavior do not cover the whole 
phase plane. Based on the derived analytical results, some 
interesting results are found. If the bandpass SDM exhibits 
periodic output, then the period of the symbolic sequence 
must equal the limiting period of the state space variables. 
Second, if the state vector converges to some fixed points 
on the phase portrait, these fixed points do not depend 
directly on the initial conditions. 

 

1. INTRODUCTION 
 
Bandpass SDMs have many industrial and engineering 
applications because many systems are required to 
perform analog to digital conversions on bandpass signals 
[1]. By using bandpass SDMs, simple and relatively low 
precision analog components could achieve the objectives. 
Because of this advantage, this area draws much attention 
from the researchers in the community. Consequently, 
some methods for the analysis [3], [4] and design of 
bandpass SDMs have been proposed [2]. 

Since the quantization and feedback in bandpass 
SDMs introduces nonlinearities, limit cycles [3] and chaos 
[4] may occur. Some researchers utilize the nonlinear 
behavior in order to suppress unwanted tones from the 
quantizers [6]. The most common existing method is to 
place some unstable poles in the system matrices, so that 
chaotic behaviors will be exhibited in the systems, and the 

rich frequency spectra of these chaotic output signals 
break down the dominant oscillations at the outputs. 
However, by placing some unstable poles in the system 
matrices, the stability of the systems is degraded. 

In the practical situation, there are leakages on the 
integrators [5]. This originates from the internal 
resistances of the components. Even though the leakages 
may sometimes be negligible, engineers and circuit 
designers may impose leakage on the integrators so as to 
improve the stability of the overall systems. Therefore, the 
eigenvalues of the system matrices are strictly inside the 
unit circle, and the system matrices are actually strictly 
stable. 

Although there are some analytical results on the 
bandpass SDMs [4], most analysis is based on marginally 
stable system matrices only. For the bandpass SDMs with 
strictly stable system matrices, the existing results are 
primarily concerned with limit cycles, but not with fractal 
behavior. Intuitively, systems with stable system matrices 
will cause the trajectories to converge to some fixed 
points, and fractal behaviors would not occur. In this 
paper, we show that fractal behavior may also occur, and 
provide a justification for this and an analysis of its effect. 

The organization of the paper is as follows. The 
analytical and simulation results of bandpass SDMs with 
strictly stable system matrices are given in Section II. 
Discussion and conclusion are given in Section III. 
 

2. ANALYTICAL AND SIMULATION RESULTS 
 
The bandpass SDMs in [7] with leakages can be modeled 
as follows: 

( ) ( ) ( ) ( )kkkk CuBsAxx +−=+ 1  for 0≥k , (1) 

where ( ) ( ) ( )[ ]Tkxkxk 21≡x  is the state vector function 

of the system, ( ) ( ) ( )[ ]Tkukuk 12 −−≡u  is a vector 
containing the past two consecutive points from the input 
signal ( )ku , 











−

≡
θcos2

10
2 rr

A  (2) 

is the system matrix of the system, and 









−

≡≡
θcos2

00
2 rr

CB , (3) 

where B is the matrix associated with the nonlinearity, C is 
the matrix associated with the input, and 
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in which the superscript T  denotes the transpose operator, 
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( ) { }0\,ππθ −∈  and 10 << r . As opposed to standard 
lowpass SDM systems, bandpass SDMs are designed to 
operate on high-frequency narrowband signals by shaping 

the noise from some frequency 
0f  [4], where 

π
θ
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in which 
sf  denotes the sampling frequency. At the 

desired frequency 
0f , it has noise transfer function zero 

and signal transfer function one [4]. When { }ππθ ,0,−∈ , 
the system is either a lowpass SDM or a highpass SDM, 
which is out of the scope of the paper. The leakage of the 
system depends on the values of r . If r  is closer to 0, 
then the poles are closer to the origin and the leakage is 
more serious. If r  is closer to 1, then the poles are closer 
to the unit circle and the leakage is less significant. For an 
ideal bandpass SDMs, 1=r , the system reduces to that 
described in [7], and the system matrices are marginally 
stable. The value of ( )ks  can be viewed as symbols, 

( ) [ ] [ ] [ ] [ ]{ }TTTTk 11,11,11,11 −−−−∈s  (6) 
for 0≥k , and ( )ks  is called a symbolic sequence. 

In this paper, we only consider the cases when ( )kx  
and ( )ku  are real signals, that is ( ) 2ℜ∈kx  and 

( ) ℜ∈ku . We also assume that ( )ku  is a constant input, 
that is ( ) uu =k  for 0≥k . 
 
2.1. Limit Cycle Behaviors 
 
Define 
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Since A  is a full rank matrix because 0≠r , A  can be 
decomposed via eigen decomposition. That is: 

1−= TDTA . (9) 

Let M  be the period of the steady state of the output 
sequences (if it exists), that is 

( ) ( )ikiMk +=++ 00 ss  0≥∀i , (10) 

in which +∈ ZM  and { }00 U+∈ Zk . Define 
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for 1,,2,1 −= Mi L .We have the following lemma. 
Lemma 1 

The following statements are equivalent: 
i) ( ) ( )ikiMk +=++ 00 ss  0≥∀i . 

ii) ( ) ∗

+∞→
=++ ik

ikkM xx 0lim  for 1,,1,0 −= Mi L . 

iii) ( ) ( ) { }{ ,0such that  0:00 01 ≥∀∈∃≡Ξ∈ + kZk Uxx  

 ( )( ) ( )}∗=++−= iQikkMQMi xx 0 ,1,,1,0 and L . 

Proof: 
For i) implies ii), from equation (1), we have: 

+∈∀ ?, Mp  and 0≥∀k , 
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From equation (9) and (i), we have: 

( ) ( ) ( )( )∑ ∑
−

=

−
−

=

−−− +−







+=+

1

0
0

1
1

0

1
0

1
0

M

n

p

m

mMnMpM nkkpMk BsCuTD? DxT? Dx
.(14) 

Hence, we have: 
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By substituting equation (15) into equation (1), the result 
follows directly. 

For ii) implies i), since 
( ) ∗
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then 01 ≥∃k  such that 

( )( ) ( )∗=++ iQikkMQ xx 0
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for 
1kk ≥  and 1,,1,0 −= Mi L . Hence, the result follows 

directly. 
For ii) implies iii), since 
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then 01 ≥∃k  such that 
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for 
1kk ≥  and 1,,1,0 −= Mi L . Hence, the result follows 

directly. 
For iii) implies i), since 

( )( ) ( )∗=++ iQikkMQ xx 0
 (20) 

for 0≥k  and for 1,,1,0 −= Mi L , the result follows 
directly. 

This completes the whole proof of the lemma. n 



Lemma 1 associates the steady state of periodic output 
with a specific set of initial conditions and a corresponding 
dynamical behavior of the system. According to Lemma 1, 
we can easily see that the trajectories will converge to the 
set of fixed points { }∗

−
∗∗

110 ,,, Mxxx L , and the periodicity 

of the steady states of the output sequence is equal to the 
number of fixed points on the phase plane. That implies 
that all the fixed points (more than or equal to 2) cannot be 
in the same quadrant. For example, if 2=M , then there 
are two fixed points on the phase plane and these two 
fixed points are located in different quadrants. 

The significance of Lemma 1 is that it provides useful 
information for estimating the periodicity of the steady 
state of output sequences via the phase portrait. Moreover, 
Lemma 1 provides useful information to the SDM 
designers to determine the set of initial conditions which 
leads to limit cycle behavior. 

It is worth noting that although the state vector is 
converging to a periodic orbit, it never reaches these 
periodic points. That means, the state vector is aperiodic 
even though the output sequence is eventually periodic. 
This result is different from the case when 1=r  and θ  is 
a rational multiple of π . 

Moreover, although ∗
ix , for 1,,2,1 −= Mi L , 

depends on ( )is , for 1,,2,1 −= Mi L , it does not depend 
on ( )0x  directly. That is, the fixed points leading to a 
given symbol sequence are not directly depended on the 
initial conditions. 

When 1=M , the output sequence will become 
constant and there is only one single fixed point on the 
phase portrait. The trajectory will converge to this fixed 
point, denoted as ∗x . The significance of this result is that 
it allows SDM designers to determine the set of initial 
conditions so that limit cycle behavior is avoided. 

It is worth noting that the state vectors of the 
corresponding linear system will converge to 
( ) CuAI 1−− , which is not the same as that of ∗x . 
Comparing these two values, there are DC shifts and the 
DC shifts are exactly dropped at the output sequences, that 
is: 

( ) ( )
0
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in which 
( )

0kk ss =  for 
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In addition, this phenomenon is quite different from the 
case of lowpass SDMs. In such a situation, the average 
output sequence will approximate the input values even 
though limit cycle behavior occurs. 

Although the nonlinearity is always activated, the rate 
of convergence only depends on r  when the output 
sequence becomes steady. This is because the DC terms 
do not affect the rate of convergence. However, if we look 
at the transient response of the system, that is, the time 

duration when the output sequence is not constant, the 
system dynamics could be very complex. 

Figure 1 shows the response of the state variables of a 
bandpass SDM with 

9999.0=r , ( )158532.0cos 1 −= −θ , [ ]T113.0−=u  

and ( ) [ ]T5.000 =x . (23) 
The state variables will converge to the same fixed value 
and the output sequences will become constant for 

2154≥k . 
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Figure 1. The state variable ( )kx1

. 
Figure 2 shows the state trajectory of a bandpass 

SDM with 
99.0=r , ( )158532.0cos 1 −= −θ , [ ]T113.0−=u  and 

( ) [ ]T5.000 =x . (24) 
The state trajectory will converge to two fixed points and 
the output sequences are periodic with period 2  for 

3≥k . 

 
Figure 2. The phase portrait when 2=M . 

 
2.2. Fractal Behaviors 
 
Intuitively, fractals would not be exhibited on the phase 
plane when the system matrices of the bandpass SDM are 
strictly stable. However, if 

Φ≠Ξℜ≡Ξ 1
2

2 \ , (25) 



in which Φ  denotes the empty set, then there exists some 
initial conditions which would not result in the 
convergence of the periodic output sequences. Since 

( ) 20 Ξ∈∀x , there does not exist { }00 U+∈ Zk  such that 

( ) 10 Ξ∈kx , the region 1Ξ  in the phase plane has to be 

empty. As a result, a fractal pattern would be exhibited on 
the phase plane. As the output sequences corresponding to 
limit cycle behaviors are eventually periodic, the output 
sequences for ( ) 20 Ξ∈∀x  are aperiodic. 

Figure 3 shows the state trajectory of a bandpass 
SDM with 

6101 −−=r , ( )158532.0cos 1 −= −θ , [ ]T113.0−=u  
and ( ) [ ]T5.000 =x . (26) 

 
Figure 3. The phase portrait when output sequences are 

aperiodic. 
It can be seen from the figure that fractal pattern is 
exhibited on the phase plane and the trajectories neither 
converge to the boundaries of the trapezoids nor any fixed 
points in the phase portrait. Measurements of the fractal 
dimension [8] are estimated at 1.78 for the box counting 
dimension, 1.75 for the information dimension, and 1.72 
for the correlation dimension. 

One possible implication of the results obtained in the 
paper is that it is not necessary to place unstable poles in 
the system matrices of bandpass SDMs to generate signals 
with rich frequency spectra in order to suppress unwanted 
tones from quantizers. It is shown in this paper that 
fractals can be generated via system matrices with strictly 
stable poles. Since the output sequences are aperiodic, 
which consist of rich frequency spectra, the unwanted 
tones could be suppressed using these aperiodic signals 
without the tradeoff of the stability of the systems. 
 

3. DISCUSSION AND CONCLUSION 
 
In this paper, we account for the occurrence of fractal 
patterns for bandpass SDMs with strictly stable system 
matrices. If the sets of initial conditions corresponding to 
the eventually periodic output do not cover the whole 

phase plane, then fractal patterns would be exhibited. 
Some interesting results are found. First, for a periodic 
output sequence, the limiting period of the state space 
variables must equal the period of the symbolic sequence. 
This implies that all the periodic points cannot be in the 
same quadrant. If the state vector converges to some fixed 
points on the phase portrait, these fixed points do not 
depend on the initial condition directly. 

One implication of the results obtained in this paper is 
that we can generate signals with rich frequency spectra by 
using strictly stable system matrices in order to suppress 
unwanted tones generated by the quantizers. Thus limit 
cycles may be avoided without a tradeoff in the stability of 
the bandpass SDM. 
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