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ABSTRACT

In this paper, high order interpolative sigma delta modulators (SDMs) in audio applications are considered. For
these SDMs, limit cycle and divergent behaviors may be observed, especially when the inputs are overloaded. A
novel fuzzy impulsive control strategy is proposed. The control law is to minimize the difference between the
uncontrolled trajectory and the control trajectory, suppress the occurrence of limit cycles, and maintain the local
stability of the SDMs. Examples of high order lowpass interpolative SDMs are given to illustrate the effectiveness
of the proposed control strategy.

that makes the devices practical with low
implementation cost [1]. It is particularly useful and
widely applied because it possesses noise shaping
characteristics that suppress the conversion error and
increase the resolution of the output signals. Sigma delta
modulators (SDMs) are found in many applications
such as communication systems [2], consumer and

1. INTRODUCTION

Sigma delta modulation technique has been proposed
and applied in analog to digital conversion for many
years [1]. It is particularly popular in the past few
decades because of the advance in electronic technology
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professional audio processing [3],
measurement devices [4].

and precision

High order SDMs are preferred since they yield a higher
signal-to-noise ratio (SNR) and better noise-shaping
characteristics than lower order SDMs. However, high
order SDMs suffer from instability problems. The
existing control strategies such as [5] and [6] stabilize
the loop filter by changing the effective poles of the
loop filter. Since the loop filter is usually designed to
have a good SNR, the SNR of the controlled SDMs will
be affected or even worsen. They may also significantly
distort the noise-shaping characteristics. Moreover, the
parameters in the controller depend on the loop filter
parameters, so a particular class of controllers may not
be able to stabilize all interpolative SDMs. Furthermore,
the controlled SDMs may still be unstable when the
input step size is increased, or for different choices of
initial conditions for the integrator states. In order to
control the SDM without changing the effective poles of
the loop filter, clipping method is employed. However,
clipping method usually results in limit cycle. In this
paper, a fuzzy impulsive control strategy is proposed.

The outline of this paper is as follows. In Section II, we
introduce the notations which appear throughout this
paper. In Section 111, a fuzzy impulsive control law is
developed. In Section 1V, some simulation results of the
fuzzy impulsive control strategy are presented. Finally,
a conclusion is summarized in Section V.

2. NOTATIONS

The block diagram of an interpolative SDM is shown in
Figure 1. The input to the SDM and the output of the
loop filter are denoted as, respectively, u(k) and y(k).

The transfer function of the loop filter is denoted as
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The SDM can be described by the following state space
equation:

x(k +1)= Ax(k)+B(u(k)—-s(k)), )

for k >0, where
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in which Q is a one-bit quantizer defined as follows,

=1y s ®)

-1 otherwise

Since the oversampling ratio of the SDM is usually very
high, the input can be approximated as a step signal.
Hence, we can further assume that u(k)=u for k>0.

This is exactly true for operating the SDM with DC
input, and approximately true during normal operation
of the SDM.

In many practical situations, the magnitude of the state
variables of the SDM should not be larger than certain
values. For the direct form realization, since all the state
variables are the delay versions of the output of the loop
filter, we denote the bounds on the state variables as v_ .

That is, |x(k)J<v, for i=12..,N and k>0.

Otherwise, the SDM is guaranteed to yield an unwanted
behavior. Denote B as the set of allowable state

vectors. That is, B, = {x:\xi\ <V, fori=12,-, N}-
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3. FUZZY IMPULSIVE CONTROL

Figure 2 shows the block diagram of how the proposed
fuzzy impulsive controller connected to the SDM. We
show in the following how we define the fuzzy
membership functions.

First of all, for audio applications [3], if the norm of the
difference between the original state vectors x(k,) and

the controlled state vectors x°(k,+1) is too large,

audible clicks may appear. In order to minimize this
effect, a fuzzy membership function is formulated to
minimize the difference between the projection of the
original state vectors and the controlled state vectors.
Secondly, since limit cycle behavior should be avoided,
another fuzzy membership function is formulated to
suppress the occurrence of limit cycles. Finally, a fuzzy
membership function is formulated to guarantee the
local stability of SDMs.

Then a fuzzy impulsive control law can be formulated
based on these membership functions. As a result, the
controlled trajectory is guaranteed to be bounded for all
initial conditions in the state space, no matter what the
input step size is and the filter parameters are.

4, SIMULATION RESULTS

Consider a fifth order SDM with loop filter transfer
function

20z —7427° +103.049727° - 64.00152* +14.95847°° .(9)
1-5z7"+10.002527* -10.0075z +5.00752* ~1.00252°

This SDM can be implemented via the Jordan form [3]
and can be realized as the following state space equation

X(k +1) = AX(k)+B(u(k)- y(k)) (10)
for k>0, where

y(k)=Q(Cx(K)) (11)

10 0 0 0
_ 1 1 -0.0018 0 0 ’ (12)

A=|0 1 1 0 0

00 1 1 -0.000685
00 0 1 1

B=[L 0, 0, 0, Of, (13)

and

C=[20, 6, 1 0.09375 0.00589]. (14)
Assume that the initial condition is zero, that is
x(0)=[0, 0, 0, 0, O], we can check that the
trajectory is bounded if the input step size u is
approximately between -0.71 and 0.75, and may
diverge if u is outside this range. By using a simple
transformation, this SDM can be realized by the direct
form and the corresponding initial condition is
x(0)=[0, -5, 285, 3225 35.9793] when
u=0.75. The relationship between the maximum
absolute value of the state variables x and the input step
size u is plotted in Figure 3. From the simulation result,
we can see that even though the trajectory is bounded
for a certain range of u, the maximum absolute value of
x is between 20.0523 and 59.4633, which may be too
large for some practical applications. If our proposed
fuzzy impulsive control is applied at v_ =20, then the

maximum bounds on the state variables is guaranteed to
be less or equal to 20, as shown in Figure 3, no matter
what the input step size is.

It is worth noting that this SDM is not globally stable,
that means, 3x%(0)e®™ such that the trajectory is
unbounded, for example, when @ =0.75, Figure 4a and
Figure 4b show the responses of x (k) for two initial
conditions with a very small difference. It can be seen
that even though the SDM exhibits acceptable behavior
when %(0)=[0, 0, 0, 0, 0], the SDM can exhibit
divergent behavior when %(0)=[0.004, 0, 0, 0, Of.
If our proposed fuzzy impulsive control strategy is

applied, the maximum absolute value of the state
variables is always bounded by v_ for k>0 and

vx(0)e ®", as shown in Figure 4c and 4d when
V,, = 40.

To verify the independence of the filter parameters on
the proposed fuzzy impulsive control strategy, consider
another fifth order SDM with the following transfer
function [3]

0.7919z™* - 2.86302 % +3.90947° — 2.38732* +0.54982°° (15 )
1-5z*+10.0023z % —10.0069z ° +5.0069z * —1.0023z °
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The trajectory of this SDM with §=0.59 and
x(0)=[0, 0, 0, 0, Of isshown in Figure 5a. It can
be seen that the trajectory oscillates and diverges to
infinity. On the other hand, when our proposed fuzzy
impulsive control is applied, the maximum absolute
value of the state variables is always bounded by v_ for

k>0, vae® for i=01..,N and vph en for
j=1---,N. Figure 5b shows the corresponding state
response when v_ is setat 15.

5. CONCLUSIONS

In this paper, we have proposed a fuzzy impulsive
control strategy for the stabilization of high order
interpolative SDMs for audio applications. The main
advantage of this control strategy is that the effective
poles of the loop filter are not affected, and so the SNR
performance of the SDMs is maintained or improved
after the control. The controlled trajectory is guaranteed
to be bounded no matter what the input step size is and
what the filter parameters and the initial conditions are.
The bounded region can also be altered easily.
Examples of high order interpolative SDMs were given
to demonstrate the effective performance of our
proposed control strategy.
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Figure 1. The block diagram of an interpolative SDM.
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Figure 2. The block diagram of the interpolative
SDM under the fuzzy impulsive control.
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Figure 3: The relationship between the maximum
absolute value of the state variables and the input step

size when %(0)=[0, 0, 0, 0, Of.
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Figure 4a: The response of x (k) with initial condition
x(0)=[0, 0, 0, 0, O] and input step size T =0.75
without our proposed fuzzy impulsive control strategy.
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Figure 4b: The response of x (k) with initial condition

%(0)=[0.004, 0, 0, 0, O] and input step size
U =0.75 without our proposed fuzzy impulsive control
strategy.
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“Pigure 4c: The response of x,(k) with initial condition
%(0)=[0, 0, 0, 0, O] and input step size T =0.75
with our proposed fuzzy impulsive control strategy.
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x(0)=[o.001 0, 0, 0, O] and input step size

7 =0.75 with our proposed fuzzy impulsive control
strategy.
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Figure 5a: The response of x (k) with initial condition

x(0)=[0, 0, 0, 0, O] and input step size T =0.59

without our proposed fuzzy impulsive control strategy.
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Figure 5b: The response of x (k) with initial condition
%(0)=[0o, 0, 0, 0, O] and input step size o =0.59
with our proposed fuzzy impulsive control strategy.
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