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ABSTRACT 

In this paper, high order interpolative sigma delta modulators (SDMs) in audio applications are considered. For 
these SDMs, limit cycle and divergent behaviors may be observed, especially when the inputs are overloaded. A 
novel fuzzy impulsive control strategy is proposed. The control law is to minimize the difference between the 
uncontrolled trajectory and the control trajectory, suppress the occurrence of limit cycles, and maintain the local 
stability of the SDMs. Examples of high order lowpass interpolative SDMs are given to illustrate the effectiveness 
of the proposed control strategy. 

 

1. INTRODUCTION 

Sigma delta modulation technique has been proposed 
and applied in analog to digital conversion for many 
years [1]. It is particularly popular in the past few 
decades because of the advance in electronic technology 

that makes the devices practical with low 
implementation cost [1]. It is particularly useful and 
widely applied because it possesses noise shaping 
characteristics that suppress the conversion error and 
increase the resolution of the output signals. Sigma delta 
modulators (SDMs) are found in many applications 
such as communication systems [2], consumer and 
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professional audio processing [3], and precision 
measurement devices [4]. 

High order SDMs are preferred since they yield a higher 
signal-to-noise ratio (SNR) and better noise-shaping 
characteristics than lower order SDMs. However, high 
order SDMs suffer from instability problems. The 
existing control strategies such as [5] and [6] stabilize 
the loop filter by changing the effective poles of the 
loop filter. Since the loop filter is usually designed to 
have a good SNR, the SNR of the controlled SDMs will 
be affected or even worsen. They may also significantly 
distort the noise-shaping characteristics. Moreover, the 
parameters in the controller depend on the loop filter 
parameters, so a particular class of controllers may not 
be able to stabilize all interpolative SDMs. Furthermore, 
the controlled SDMs may still be unstable when the 
input step size is increased, or for different choices of 
initial conditions for the integrator states. In order to 
control the SDM without changing the effective poles of 
the loop filter, clipping method is employed. However, 
clipping method usually results in limit cycle. In this 
paper, a fuzzy impulsive control strategy is proposed. 

The outline of this paper is as follows. In Section II, we 
introduce the notations which appear throughout this 
paper. In Section III, a fuzzy impulsive control law is 
developed. In Section IV, some simulation results of the 
fuzzy impulsive control strategy are presented. Finally, 
a conclusion is summarized in Section V. 

2. NOTATIONS 

The block diagram of an interpolative SDM is shown in 
Figure 1. The input to the SDM and the output of the 
loop filter are denoted as, respectively, ( )ku  and ( )ky . 
The transfer function of the loop filter is denoted as 
( )zF . 
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The SDM can be described by the following state space 
equation: 

( ) ( ) ( ) ( )( )kkkk suBAxx −+=+1 , (2 ) 
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in which Q  is a one-bit quantizer defined as follows, 
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Since the oversampling ratio of the SDM is usually very 
high, the input can be approximated as a step signal. 
Hence, we can further assume that ( ) uu =k  for 0≥k . 
This is exactly true for operating the SDM with DC 
input, and approximately true during normal operation 
of the SDM. 

In many practical situations, the magnitude of the state 
variables of the SDM should not be larger than certain 
values. For the direct form realization, since all the state 
variables are the delay versions of the output of the loop 
filter, we denote the bounds on the state variables as ccV . 
That is, ( ) ccVkxi <  for Ni ,,2,1 L=  and 0≥k . 
Otherwise, the SDM is guaranteed to yield an unwanted 
behavior. Denote 

oB  as the set of allowable state 
vectors. That is, { }NiVxB io ,,2,1for: cc L=<= x . 
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3. FUZZY IMPULSIVE CONTROL 

Figure 2 shows the block diagram of how the proposed 
fuzzy impulsive controller connected to the SDM. We 
show in the following how we define the fuzzy 
membership functions. 

First of all, for audio applications [3], if the norm of the 
difference between the original state vectors ( )0kx  and 
the controlled state vectors ( )10 +kcx  is too large, 
audible clicks may appear. In order to minimize this 
effect, a fuzzy membership function is formulated to 
minimize the difference between the projection of the 
original state vectors and the controlled state vectors. 
Secondly, since limit cycle behavior should be avoided, 
another fuzzy membership function is formulated to 
suppress the occurrence of limit cycles. Finally, a fuzzy 
membership function is formulated to guarantee the 
local stability of SDMs. 

Then a fuzzy impulsive control law can be formulated 
based on these membership functions. As a result, the 
controlled trajectory is guaranteed to be bounded for all 
initial conditions in the state space, no matter what the 
input step size is and the filter parameters are. 

4. SIMULATION RESULTS 

Consider a fifth order SDM with loop filter transfer 
function 

54321
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This SDM can be implemented via the Jordan form [3] 
and can be realized as the following state space equation 

( ) ( ) ( ) ( )( )kykukk −+=+ BxAx ~~~1~  (10 ) 

for 0≥k , where 

( ) ( )( )kQky xC~~
= , (11 ) 
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[ ]T0,0,0,0,1~
≡B , (13 ) 

and 

[ ]00589.0,09375.0,1,6,20~
≡C . (14 ) 

Assume that the initial condition is zero, that is 
( ) [ ]T0,0,0,0,00~ =x , we can check that the 

trajectory is bounded if the input step size u  is 
approximately between 71.0−  and 75.0 , and may 
diverge if u  is outside this range. By using a simple 
transformation, this SDM can be realized by the direct 
form and the corresponding initial condition is 
( ) [ ]T9793.35,25.32,5.28,5,00 −=x  when 

75.0=u . The relationship between the maximum 
absolute value of the state variables x  and the input step 
size u  is plotted in Figure 3. From the simulation result, 
we can see that even though the trajectory is bounded 
for a certain range of u , the maximum absolute value of 
x  is between 0523.20  and 4633.59 , which may be too 
large for some practical applications. If our proposed 
fuzzy impulsive control is applied at 20=ccV , then the 
maximum bounds on the state variables is guaranteed to 
be less or equal to 20, as shown in Figure 3, no matter 
what the input step size is. 

It is worth noting that this SDM is not globally stable, 
that means, ( ) Nℜ∈∃ 0~x  such that the trajectory is 
unbounded, for example, when 75.0=u , Figure 4a and 
Figure 4b show the responses of ( )kx1  for two initial 
conditions with a very small difference. It can be seen 
that even though the SDM exhibits acceptable behavior 
when ( ) [ ]T0,0,0,0,00~ =x , the SDM can exhibit 
divergent behavior when ( ) [ ]T0,0,0,0,001.00~ =x . 
If our proposed fuzzy impulsive control strategy is 
applied, the maximum absolute value of the state 
variables is always bounded by ccV  for 0>k  and 

( ) Nℜ∈∀ 0x , as shown in Figure 4c and 4d when 
40=ccV . 

To verify the independence of the filter parameters on 
the proposed fuzzy impulsive control strategy, consider 
another fifth order SDM with the following transfer 
function [3] 
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The trajectory of this SDM with 59.0=u  and 
( ) [ ]T0,0,0,0,00~ =x  is shown in Figure 5a. It can 

be seen that the trajectory oscillates and diverges to 
infinity. On the other hand, when our proposed fuzzy 
impulsive control is applied, the maximum absolute 
value of the state variables is always bounded by ccV  for 

0>k , ℜ∈∀ ia  for Ni ,,1,0 L=  and ℜ∈∀ jb  for 

Nj ,,1L= . Figure 5b shows the corresponding state 
response when ccV  is set at 15 . 

5. CONCLUSIONS 

In this paper, we have proposed a fuzzy impulsive 
control strategy for the stabilization of high order 
interpolative SDMs for audio applications. The main 
advantage of this control strategy is that the effective 
poles of the loop filter are not affected, and so the SNR 
performance of the SDMs is maintained or improved 
after the control. The controlled trajectory is guaranteed 
to be bounded no matter what the input step size is and 
what the filter parameters and the initial conditions are. 
The bounded region can also be altered easily. 
Examples of high order interpolative SDMs were given 
to demonstrate the effective performance of our 
proposed control strategy. 

6. ACKNOWLEDGEMENTS 

This work was supported by a research grant from 
Queen Mary, University of London. 

7. REFERENCES 

[1] James C. Candy, “A use of limit cycle oscillations 
to obtain robust analog-to-digital converters,” IEEE 
Transactions on Communications, vol. COM-22, 
no. 3, pp. 298-305, 1974. 

[2] George Ginis and John M. Cioffi, “Optimum 
bandwidth partitioning with analog-to-digital 
converter constraints,” IEEE Transactions on 
Communications, vol. 52, no. 6, pp. 1010-1018, 
2004. 

[3] Erwin Janssen and Derk Reefman, “Super-audio 
CD: an introduction,” IEEE Signal Processing 
Magazine, vol. 20, no. 4, pp. 83-90, 2003. 

[4] Shoji Kawahito, Ales Cerman, Keita Aramaki and 
Yoshiaki Tadokoro, “A weak magnetic field 
measurement system using micro-fluxgate sensors 
and delta-sigma interface,” IEEE Transactions on 
Instrumentation and Measurement, vol. 52, no. 1, 
pp. 103-110, 2003. 

[5] Takis Zourntos and David A. Johns, “Variable-
structure compensation of delta-sigma modulators: 
stability and performance,” IEEE Transactions on 
Circuits and Systems⎯I: Fundamental Theory and 
Applications, vol. 49, no. 1, pp. 41-53, 2002. 

[6] A. Uçar, “Bounding integrator output of sigma-
delta modulator by time delay feedback control,” 
IEE Proceedings⎯Circuits, Devices and Systems, 
vol. 150, no. 1, pp. 31-37, 2003. 

 

 

 

 

 

 

 
Figure 3: The relationship between the maximum 
absolute value of the state variables and the input step 
size when ( ) [ ]T0,0,0,0,00~ =x . 

Figure 1. The block diagram of an interpolative SDM. 
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Figure 2. The block diagram of the interpolative 
SDM under the fuzzy impulsive control. 
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Figure 4a: The response of ( )kx1  with initial condition 
( ) [ ]T0,0,0,0,00~ =x  and input step size 75.0=u  

without our proposed fuzzy impulsive control strategy. 

 
Figure 4b: The response of ( )kx1  with initial condition 
( ) [ ]T0,0,0,0,001.00~ =x  and input step size 

75.0=u  without our proposed fuzzy impulsive control 
strategy. 

 
Figure 4c: The response of ( )kx1  with initial condition 
( ) [ ]T0,0,0,0,00~ =x  and input step size 75.0=u  

with our proposed fuzzy impulsive control strategy. 

 
Figure 4d: The response of ( )kx1  with initial condition 
( ) [ ]T0,0,0,0,001.00~ =x  and input step size 

75.0=u  with our proposed fuzzy impulsive control 
strategy. 
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Figure 5a: The response of ( )kx1  with initial condition 
( ) [ ]T0,0,0,0,00~ =x  and input step size 59.0=u  

without our proposed fuzzy impulsive control strategy. 

 
Figure 5b: The response of ( )kx1  with initial condition 
( ) [ ]T0,0,0,0,00~ =x  and input step size 59.0=u  

with our proposed fuzzy impulsive control strategy. 


