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ABSTRACT

Long-term musical structures provide information concerning
rhythm, melody and the composition. Although highly musi-
caly relevant, these structures are difficult to determine using
standard signal processing. In this paper, a new technique
based on the time-domain empiricadl mode decomposition is
explained which enables us to analyse both short-term infor-
mation and long-term structures in musical signals. It provides
insight into perceived rhythms and their relationship to the
signal. The technique is explained, and results are reported and
discussed.

Keywords: Empirical Mode Decomposition (EMD), Music
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1. INTRODUCTION

The Fourier transform has two severe restrictions. stationarity
and linearity. As an dlternative, the wavelet, which is a multi-
ple-scale transform, can be used to analyse the non-stationary
signals, but still assumes the linearity condition. The recently
developed Hilbert-Huang Transform (HHT) can be used as a
religble means to anadyse non-linear non-stationary signals.
The key component of HHT is the Empirical Mode Decompo-
sition (EMD), which decomposes the signa to a summation of
zero-mean AM-FM* components, called Intrinsic Mode Func-
tions (IMF) [1].

This paper concerns an extension of the EMD applications to
the realm of musical signal processing. Lerdahl and Jackendoff
[2] define four main musical structures:

e Grouping structure to explain the segmentation of
music as motives, phrases, themes, etc...

e  Metrica structure, the structure of the strong and the
wesak beats.

e  Time-span reduction, which is the rhythmic structure
according to which the fundamental frequencies are
heard.

e  Prolongational reduction which expresses the sense
of tension and relaxation in music and shows the
harmonic and melodic continuity and progression.

! The Modes may contain Amplitude or Frequency Modulated
components.

Using the EMD, such hierarchic structures will be seen, where
each empirica mode is a reduced version of the preceding
modes. EMD can be used both for short-term measurements
like fundamental frequency, chord and onset, and long-term
structures like melody, rhythm and tempo contours. One ad-
vantage of directly obtaining the long-term structures, rather
than calculating them through temporal analysis (e.g. deter-
mining tempo through the onsets) is to avoid having errors in
temporal measurements transfer to errors in estimation of the
long-term structures.

Other audio signal processing applications of the empirical
modes may be segregation of polyphonic texture, filtering [4],
noise reduction [5] and compression of the audio signal by
omission of the perceptually unimportant modes.

This paper is organized as follows. Section 2 introduces the
EMD. Simulated experiments on various audio signas are
described in Section 3. We demonstrate that these experiments
revea the long-term structures as described by Lerdahl and
Jackendoff [2]. Section 4 concludes the article with a discus-
sion of future research.

2. EMPIRICAL MODE DECOMPOSITION

Empirical Mode Decomposition is an adaptive tool to analyse
non-linear or non-stationary signals which segregates the
constituent parts of the signal based on the local behaviour of
the signal. No pre-processing is required since it is able to
analyse non-zero mean signals, and is suitable to anayse the
riding waves which may have no zero-crossing between two
consecutive extrema. It can be used as afilter bank [4], and for
signal period analysis[6].

Unlike the Fourier and wavelet transforms, EMD has no fixed
basis. It is similar to PCA and ICA in that the basis for the
decomposition is signal-dependent. EMD involves calculating
the IMFs for the signal, where the IMFs must satisfy the fol-
lowing two conditions:

1) The number of extrema and the number of zero-crossings
must either be equal or differ at most by one. That is, there is
only one extremum between two zero-crossings.

2) At any point, the mean value of each IMF must be zero.

The Intrinsic Mode Functions are calculated by performing the
following sifting process [1]:

1- Through locd analysis of the signal, al the minima and
maxima are located. An interpolation function connects al
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the maxima; the same is done for the minima. This gives
upper and lower envelopes for the signal.

2- The local mean (the mean of the upper and lower enve-
lopes) is calculated: m(t)

3- The local mean is subtracted from the original signal to
obtain the local details:

hy(t) = X () -m,(t) @
4- hy(t) then becomes the new signal and the sifting proc-

ess, steps 1 through 3, are repeated until the mean of the
local detail, due to a stopping criterion, becomes negligi-
ble; a threshold must be assigned for this Variance be-
tween two consecutive results:

Var = i ‘(hl(k—l) (t) —hy (01 7

= 1 (t)

Where h, (t) is the result of the kth iteration on equation (1).

The value of this threshold can be set between 0.05 and 0.3

[1,3].

The maximum permissible number of iterations is another

stopping criterion. Its value can be chosen between 4 and 10 to

yield meaningful modes [3]. A high value for the maximum

number of iterations causes extra calculations and may lead to

over-decomposition of signal.

Once a stopping criterion is met, the first residue rl is ob-

tained. It isthe first IMF.

5- The residue in step 4 is subtracted from the signal, and
then steps 1-5 are performed to calculate the next IMF.

6- The algorithm iterates on step 5, until it becomes a mo-
notonous function that cannot produce any new IMF.

It has been shown that, for estimation of the signal envelopes,

using cubic spline interpolation yields better results than linear

or polynomial interpolations [3]. The resulting curve is suffi-

cient for estimation of the loca mean, while avoiding the

‘over-decomposition’ phenomenon.

The origina signal may be re-constructed using the following

summation:

ZH:IMF(i)+r_n ©)

Where IMF (i) is the ith Intrinsic Mode Function; n is the

number of the Modes; and r_n is the last residue (residue of the
nth mode).

In practice the interpolation in step 1 will not be perfect. This
is due to insufficient data, and the uncertainty in the end-
values of the envelopes. Furthermore, it is important to have
enough samples for the peak detection step. Otherwise we will
face the resulting error in the cal culated modes.

There are 3 main issues with this procedure: how to define the
stopping criteria, how to detect peaks, and how to deal with
end effects in construction of the envelope.

The end effect has been discussed in severa previous papers
on the EMD[1,3-5]. It pertains to the difficulty in estimation of
the bottom and top envelopes of asignal near the beginning or
end of the signal. The envelopes are typically created using
cubic spline interpolation, but at the endpoints there is not
enough data to perform a cubic spline.

Huang[1] suggested adding false peaks such as to yield typical
waveforms at each end. If the peaks occur att(R),t(R,)...,
then this may be accomplished by setting a peak at

tR)= tR)- [tR)- tR]

And similarly, setting a peak after the last peak. It may be
necessary to add several pesks near each endpoint. Other
methods include setting a peak at the first data point with
amplitude equal to that of the first data point, this guarantees
that the envelope converges onto or near the data We have
tried both methods and several more, but none guarantee suc-
cess.

The accuracy of the pesk detection algorithm also significantly
affects results. Peaks can be missed, false peaks can be added,
and peak amplitudes can be miscalculated. These result in a
poor envelope. A single false peak or grossy miscalculated
peak amplitude can result in an error in the envelope which
perpetuates, and may even grow, through subsequent shiftings
and calculation of modes.

Detection of peaks is improved by having a high sample rate.
A sample rate of fs is sufficient to resolve frequencies up to
fs/2, but that implies that frequency content near fs/2 will have
only 2 points per period. This makes accurate detection of
peaks very difficult. One possible solution is low-pass filter-
ing, since this can smooth out the most difficult peaks.

The stopping criteria for sifting is not so important, in that
different choice of stopping criteriawill yield different results,
but not necessarily incorrect results. The main criteria defined
by Huang are that the component has no riding waves and that
the mean envelope is zero [1]. No riding waves simply means
that there are no maxima below zero and no minima above
zero. This aso implies that the number of zero crossings dif-
fers from the total number of maxima and minima by at most
one. However, the reverse is not necessarily true. The second
criterion for stopping the sifting, that the mean envelope is
zero, is far more difficult. Errors in peak detection and end
effects may result in significant deviation of the mean enve-
lope, and hence lead to more sifting.

The implementation of the EMD that has been performed here
is based on freely available MATLAB code by Rilling, et. al.
[3] Spline interpolation has been used with false peaks added
near the endpoints. Stopping criteria was typicaly set to .1 in
Equation (2), and no pre-processing was applied.

3. EXPERIMENTS& RESULTS

Using a computer with a sound card, and an ordinary micro-
phone, samples of 16-bit precision at a sampling rate of 44.1
kHz where taken. The samples were performed by the first
author on a Santur instrument. The Santur is a trapezoidal
string instrument, played by a pair of delicate hammer sticks
[7]. Thisinstrument originated in Iran and was later brought to
other countries like India, China, Thailand, Greece, Germany,
UK, Ireland and USA. In English it is often referred to as a
dulcimer.

As an example, a single sample of A4 note with a fundamental
frequency of 440 Hz is recorded. Figure 1 shows the variation
of harmonic content through time (2D spectrum).
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Figure 1 spectrum of the note A4.

The amplitude of a harmonic component may change due to
the resonance characteristics of the strings, the instrument
body and also the ambient. Figure 2 represents a window of
the A4 sample in frequency domain. The note begins at sample
no. 1060 and it rises up to sample no. 1256. To bypass the
transient part of the signal, the analysis window starts at sam-
ple no. 4500. Using a 1024 point window, the pitch and the
major harmonics can be seen in figure 1 and figure 2.
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Figure 2 Frequency domain representation of the note A4.

The same portion of the signal has been analysed by the EMD.
It is decomposed to 6 modes and a residue (figure 3). The first
IMF, contains the 6th, 16th, and 20th harmonics of the tone
A4; IMF2 contains the 4th harmonic; IMF3 the 2nd harmonic;
IMF4 the fundamenta frequency; IMF5 half the fundamental
frequency; and IMF6 one-fourth of that; it shows an increasing
trend in the fina residue. Existence of the half-pitch in the
signal can be interpreted as the sympathetic vibration of A3
strings. The quarter-pitch may be created by the superposition
of the other vibrations. The amplitudes show the contribution
of each modein the main signal.

Empirical Mode Decomposition
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Figure 3 Decomposition of the samplein figure 1: The signal,

its 6 IMFs and the residue

In another test, two-note chords comprised of A4-C5 and C5-
E5 were played severa times as a retarding rhythmic pattern
(figure 4 and 5-a). The fundamental frequencies for C5 and E5,
are 523.25 Hz and 659.25 Hz respectively [7].
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Figure 4 A4-C5 and C5-E5 chords

The first few IMFs contain the harmonic information, while
the rest show the long-term behaviour of the signal. Analyzing
just the beginning of the IMFs, it can be observed that IMF1
contains the 5th harmonic for A4 and the 4th harmonic for C5;
IMF2, 5th harmonic of C5; IMF3, 2nd harmonic of A4; IMF4,
the fundamental frequency of C5; IMF5, haf the fundamental
frequency of C5; IMF6, half the fundamental frequency of A4.
It is interesting that the period of IMF11 which is changing
through time shows the onset times, while the periods of
MIF13 & IMF14 decrease as the tempo decreases, so they may
be used for tempo tracking. IMF13 has a period which is 6
times the distance of the first 2 notes, so it is attempting to
arrange the notes in groups of 6 as the time span segmentation
suggested by Lerdahl and Jackendoff [2]. The same can be said
for IMF14 but with relatively larger period (10 notes). The
residue shows a decreasing trend as the tempo decreases.
Figures 5-a through 5-d show the signal, IMF4 (C5's funda-
mental frequency), IMF13 and IMF14 respectively.

So using the EMD a rhythmic and harmonic analysis of the
signal can be performed. The obtained modes are hierarchi-
caly ordered. The EMD operates as a filter bank with noise
and higher frequency components in the first few IMFs, and
the lower frequency components in the lower modes. The
residue shows the final trend of the signal.
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4. CONCLUSIONS

This work is concerned with use of the Empirical Mode De-
composition for extracting meaningful musical structures from
audio. The EMD is a powerful means for the anaysis of
nonlinear non-stationary signals. It decomposes the signal to a
summation of zero-mean AM-FM components, called Intrinsic
Mode Functions. EMD has no analytica representation and it
is based on the local behaviour of the signal. It can be used for
the analysis of long-term structures such as rhythm and mel-
ody which are difficult to determine using standard frequency
domain or wavelet techniques. It can also be used for the
analysis of fundamental frequency and the temporal measure-
ments.

Using the EMD, each empirical mode is a reduced version of
the preceding modes (figures 3 and 5). So, it provides a hierar-
chical representation of a musical piece which can be used for
noise reduction, or segregation of different frequency bandsin
an audio signal. Future work may be determining the scale,
key or genre of a musical piece. Such work will enable auto-
mated music labeling systems.
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Figure5 a) A decreasing tempo sequence of A4-C5 and C5-
E5 chords b) IMF4 (the fundamental frequency of C5) c)
IMF13d) IMF14
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