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ABSTRACT 

This work explores the effects of limit cycles on the frequency content in the DSD bitstream. We show how any 
periodic bitstream can be expressed as a sum of square waves of various phases with width equal to the sampling 
period. A Fourier expansion may be used to exactly determine the phases and amplitudes of all spectral content. We 
thus determine all harmonics that appear in the output, and thus are able to distinguish limit cycles from idle tones. 
These results are put into the context of recent advances in the theory of limit cycles and idle tones in sigma delta 
modulators. 

 

1. INTRODUCTION 

A variety of different definitions have been proposed for 
limit cycles and idle tones (see for example [1-3]). It is 
important to make a distinction between these two 
phenomena. Limit cycles refer to a behaviour that is 
easily seen in the time domain, whereas idle tones 
represent a frequency domain phenomenon. Limit 
cycles actually have a formal mathematical definition, 
whereas the meaning of idle tones can be derived from 
the dictionary definitions of ‘idle’ and ‘tone.’  

According to dynamical systems theory, limit cycles 
refer to isolated periodic orbits in a dynamical system. 
In a sigma delta modulator, the existence of limit cycles 
refers to a repeating sequence of integrator states and 
quantization output that can occur for a given input. [4] 
puts a description of limit cycles in sigma delta 

modulators within the proper mathematical context. In 
practice however, only the quantizer output is 
monitored. So a repeating output sequence is commonly 
referred to as a limit cycle.  

Idle tones, on the other hand, represent a strong 
periodicity that is observed in the frequency domain. 
Specifically, it is the occurrence of peaks in the power 
spectrum, imposed on a noisy background, that can 
occur with constant input, i.e., while the system is 
‘idling.’ Idle tones need not be due to the existence of a 
limit cycle. For instance, idle tones may appear and 
disappear- behaviour that is not explained by simple 
periodic motion.  

This distinction between idle tones and limit cycles 
raises the question of how idle tones might be related to 
limit cycles. For instance, one may ask if a limit cycle 
(time -domain periodicity) may produce an idle tone 
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(discrete peak in a power spectrum) or idle tone-like 
behaviour. 

For this reason we examine the harmonic content of 
limit cycles that can occur in the DSD bitstream. We 
investigate if its possible for a limit cycle to produce a 
single (or very few) peaks in the spectrum. Furthermore, 
we calculate how many different output spectra may 
occur for a given period limit cycle. We are thus able to 
show that observed idle tones are not the direct product 
of limit cycle behaviour. Finally, we find a very high 
period limit cycle that exists in a 5th order sigma delta 
modulator, of the type that may be used to encode DSD 
data. We investigate its frequency content and show that 
it may produce audible artifacts.  

2. COUNTING LIMIT CYCLES 

In order to count limit cycles, we note that a limit cycle 
of period P may appear in one of P cyclically shifted 

forms, e.g., the limit cycle 001  may appear as 
001 , 010  or 100 . Furthermore, a limit cycle observed 
over a  P bit sequence may actually be a repetition of a 
shorter period limit cycle, e.g. the apparent limit  cycle 
001001  is actually two repetitions of the limit cycle 

001 . This distinction is important since it prevents us 
from counting limit cycles multiple times, and it 
guarantees that each limit cycle I associated with the 
correct frequency. Thus, we use the following notation: 

BSLP(N) represents the number of bit sequences of 
length P containing N 1s, whereas  BSPP(N) represents 
the number of bit sequences with period P containing N 
1s. Similarly, LCLP(N) represents the number of limit 
cycles observed over a length  P containing N 1s, 
whereas  LCPP(N) represents  the number of limit cycles 
with period P containing N 1s. We drop the (N) to 
represent all bit sequences or limit cycles for a given P. 

Since the quantiser only has two levels,  

2P
PBSL =  (1) 

To compute the total number of bit sequences of a given 
period, we have to take into account that certain 
sequences are actually of lower period. Over a length P, 
a possible bit sequence is P/R repetitions of a sequence 
of length R, where R divides P. So, the bit combinations 
over a given length can be written as a sum of bit 
combinations of certain periods[4], 

P R
R P

BSL BSP
↑

= ∑  (2) 

Therefore,  

,

2P
P R

R P R P

BSP BSP
↑ ≠

= − ∑  (3) 

and this formula can be computed iteratively. 

A limit cycle of period P accounts for P sequences,  

/P PLCP BSP P=  (4) 

Furthermore, all limit cycles that can exist over a given 
length P includes all limit cycles with a period which is 
a divisor of P. 

P R
R P

LCL LCP
↑

= ∑  (5) 

The number of allowable limit cycles is further reduced 
if the input is known. For a sigma delta modulator with 
atleast one pole at DC, the average output over 1 period 
must equal the input. Thus we can determine allowable 
sequences and limit cycles for a given input. BSLP(N), 
the number of bit sequences of length P containing N 
1s,  is the number of ways of choosing N out of P 
objects, 

( )P

P
BSL N

N
 

=  
 

 (6) 

This is confirmed since,  

0 0

( ) 2
P P

P
P P

N N

P
BSL N BSL

N= =

 
= = = 

 
∑ ∑  (7) 

Now consider a bit sequence with period R, where R 
divides P. In order for this bit sequence to be included 
in BSLP(N), Eq. (6), it must have NR/P 1s, such that 
over P bits, it has N 1s. Therefore, we can write 

( ) ( / )P R
R P NR

P
BSL N BSP NR P

N ↑ ↑

 
= = 

 
∑  (8) 

and hence 
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,

( ) ( / )P R
R P N R R P

P
BSP N BSP NR P

N ↑ ↑ ≠

 
= − 

 
∑  (9) 

Finally, the number of limit cycles with N 1s can be 
easily determined from Eq. (9), 

( ) ( ) /P PLCP N BSP N P=  (10) 

and  

( ) ( / )P R
R P NR

LCL N LCP NR P
↑ ↑

= ∑  (11) 

Clearly, the number of sequences over a length P 
bitstream is dominated by those sequences which are of 
period P. Thus we have   

2 /P
P PLCP P LCL∼ ∼  (12) 

and, for 0 N P= = , 

( ) / ( )P P

P
LCP N P LCL N

N
 
 
 

∼ ∼  (13) 

P LCLP 2P/P LCPP LCLP(P/2)
/2

/
P

P
P 

 
 

LCPP(P/2)

2 3 2 1 1 1 1 
4 6 4 3 2 1.5 1 
6 14 10.7 9 4 3.3 3 
8 36 32 30 10 8.7 8 
10 108 102.4 99 26 25.2 25 
12 352 341.3 335 80 77 75 
14 1182 1170 1161 246 245.1 245 
16 4116 4096 4080 810 804.4 800 
18 14602 14563.6 14532 2704 2701.1 2700 
20 52488 52428.8 52377 9252 9237.8 9225 

Table 1. The total number of limit cycles occurring 
over a length P (LCLP), of period P (LCPP), and limit 
cycles over length P or  of period P  containing P/2 1s, 
along with estimates  from Eq.s (12) and (13). 

From Eq.s (12) and (13), we see that even though the 
number of limit cycles which exist for a given DC input 
is an ever decreasing proportion of the total number of 
allowable outputs, it still increases at an exponential 
rate. Thus, an examination of all limit cycles which 
might exist for a given input becomes very 
computationally intensive for low frequency limit cycles 
within the audible range, i.e., period exceeding 128 bits. 

These results are confirmed in Table 1, where we 
calculate the number of limit cycles existing under 
various circumstances. It confirms the validity of Eq.s 
(12) and (13) as approximations for the numb er of limit 
cycles. Furthermore, it demonstrates the exponential 
growth in limit cycles as a function of period. 

3. HARMONIC CONTENT OF A LIMIT CYCLE 

The preceding section provides a mechanism for 
counting all allowable limit cycles of a given period for 
a constant input. In the context of distinguishing idle 
tones from limit cycles, this is useful because we can 
now determine the proportion of limit cycles which 
produce idle tone behaviour, if any.  

However, this requires that we determine the frequency 
content of a limit cycle. Most importantly, it is 
necessary to determine when the frequency content 
might yield a single or select few peaks in the power 
spectrum. For this, we will begin by performing a 
standard Fourier series expansion of a pulse train. Then 
we will show how that may be used to determine the 
Fourier series for any periodic bitstream, and use this to 
determine when harmonic cancellation might result in 
an idle-tone. 

3.1. Periodic Pulse Harmonics 

Consider an arbitrary square wave like the one shown 
below 

φ

τ

T

1

0

 
Here, T is the period or pulse rate (ω=2π/T), τ is the 
?pulse width and φ  is the phase. Τ, τ  and φ  are all 
multiples of the sampling rate, and hence may be 
normalised to integer values.  The DC approximation is 
given by the duty cycle, d=τ /T. A square wave is  thus 
given by  X(t)= square( ( ))f t φ− ,  where  

1
square( )

0
n n d

n
n n d

 − <   = 
− ≥   

 (14) 

 
A Fourier series expansion results in  . 
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( ) jn t
n

n

x t c e ω
∞

=−∞

= ∑  (15) 

 
where 

( / 2 )sinc( ) , 0, 1, 2...jn
nc d n d e nω τ φπ − += = ± ±  (16) 

 
And the n=0 term represents the DC component,  

0
0

1
( )

T

c x t dt d
T

= =∫  (17) 

 
If we set φ=0 and d=1/2 (τ=T/ 2), this  reduces to the 
familiar expression for a Fourier series expansion of a 
square wave, 

1 2sin( ) 2sin(3 ) 2sin(5 )
( ) ...

2 3 5
t t t

x t
ω ω ω

π π π
= + + +  (18) 

 
It says, among other things, that a square wave with a 
1/2 duty cycle does not have even harmonics and that 
the strength of the remaining odd harmonics is inversely 
proportional to harmonic number. 

The n=1 component has the same frequency as the 
periodic signal, and is the fundamental frequency.  
Further harmonics arrive at a frequency spacing of ω. A 
closer examination of Eq. (16) reveals that the sinc(nπd) 
term is responsible for suppressing harmonics. To 
suppress the nth harmonic, d must be a multiple of 1/n. 
Thus, for a square wave with d=1/2, all even harmonics 
are suppressed. 

If we want to suppress the nth harmonic, the pulse width 
can be m/n times the period, where m<n. Conversely, 
the amplitude first becomes zero at frequency 

2 /nω π τ= . 

When T is increased there is no change in the position 
of the first point at which the amplitude spectrum hits 0. 
The general form of the spectrum remains the same, as 
given by sinc x. The number of harmonics up to the first 
zero amplitude harmonic is increased.  

3.2. Two Pulse Harmonic Cancellation 

We are concerned with how a periodic bitstream devoid 
of certain frequencies may be devised . From the above 
section, it is clear that only even harmonics are removed 
from a periodic bitstream with a single pulse. Thus we 

introduce additional pulses in order to achieve harmonic 
cancellation.  

We suppose the period T, is divided into M equal 
portions and that there are two pulses of width T/M, 
with discrete phases that are multiples of 1/M. The 
phase of a pulse, φ, depends on its quantized position. 
The Fourier series for a  pulse in the mth position is  thus 

(1 2 )/
, sinc( / ) /jn m M

n mc n M e Mππ − +=  (19) 
Magnitude at a given harmonic depends only on the 
harmonic number n, and not on the pulse position, m. 
Phase depends on both harmonic and pulse position.  

Now consider how two pulses, m1 and m2, interact with 
one another.  

tφ1 φ2
T

m1 m2 m1 m2
τ

 

Figure 1 An arbitrary two pulse periodic bitstream. 

To obtain the Fourier series of the two -pulse pulse train 
we only need to add together the Fourier series obtained 
from the pulses when they're taken individ ually, 

1 2, , 1, 2, 3,...n n m n mc c c n= + = ± ± ±  

And the DC component is  

0 2 /c Tτ=  

So the nth Fourier term of the composite wave is the sum 
of the nth terms of the m1 and m2 pulses.  

1 22 / 2 /

/

sinc( / )[ ]jn m M jn m M

n jn M

n M e e
c

Me

π π

π

π − −+
=  (20) 

The term outside of the brackets in Eq. (20) depends 
only on the harmonic number and not posit ion or phase 
of the pulse. As seen earlier, this can be made zero only 
by varying the pulse width. However the pulse width 
has been fixed to T/M. Consequently we need to study 
the term in the brackets if we wish to investigate 
harmonic cancellation.  

In general, we can induce phase cancellation when the 
term in the brackets in Eq. (20) is  zero. We assume an 
ordering to the two pulses, so that m1< m2. So, 
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2 1
3 5 (2 1)

( ) , , ...
2 2 2 2
M M M n M

n m m
−− =  (21) 

The first thing to notice is that the left hand side of (21) 
is an integer. So there will never be phase cancellation 
unless M is even. Odd periods will not produce phase 
cancellation (and hence remove harmonics) from any 
two pulses.  

τ

0    1    2    3    4    5    6    7    8    9    10   11    0    1    2 t

0    1    2    3    4    5    6    7    8    9    10   11    0    1    2 t

0    1    2    3    4    5    6    7    8    9    10   11    0    1    2 t

T

(a)

(b)

(c)

 

Figure 2 Harmonic cancellation with two pulses in a 
twelve pulse periodic bitstream. (a) Pulses at 
positions 1 and 7, (b) pulses at positions 1 and 4, (c) 
pulses at 1 and 3. 

Harmonic cancellation with two pulses, for M=12, is 
depicted in Figure 2. Pulses  at positions 1 and 7 cancels 
the fundamental. This is identical to creating a new 
square wave with twice the frequency of the first. Pulses 
at positions 1 and 4 suppresses the 2nd harmonic. The 
fundamental and third harmonics are 2  times larger 
than they are for just a single pulse. Pulses at positions 1 
and 3 suppresses the 3rd harmonic.  

This can be generalised: the nth harmonic can only be 
cancelled if M is a multiple of 2n. In general, the nth 
harmonic is cancelled if the phase difference, 2 1φ φ− ,  is 
a multiple of T/2n. Furthermore, any phase difference 
that cancels the nth harmonic, also cancels the (3n)th, 
(5n)th… harmonics. This is because  

3 5
...

2 2(3 ) 2(5 )
M M M
n n n

= =  (22) 

 
The same does not hold in reverse, of course.  

One other important point to notice is that there is no 
way to cancel any two of the 2nd ,3rd , 4th an d  5th 
harmonics using just two pulses. An easy way to see 

this is by looking at all the possible phase differences 
between the two pulses that will allow phase 
cancellation for these harmonics. 

3
2 : ,

4 4
3 5

3 : , ,
6 6 6

3 5 7
4 : , , ,

8 8 8 8
3 5 7 9

5 : , , , ,
10 10 10 10 10

M M
n m

M M M
n m

M M M M
n m

M M M M M
n m

= ∆ =

= ∆ =

= ∆ =

= ∆ =

 (23) 

 
The only terms that are the same are 3M/6 for n=3 and 
5M/10 for n=5. But these occur when the phase 
difference is M/2, i.e., for a system with one pulse at 
twice the frequency. Obviously, doubling the frequency 
removes all odd harmonics. 

3.3. Generalised periodic bitstream 

Now suppose, that instead of two pulses, we have a set 
of pulses, m1, m2, … mk where k<M and the pulses have 
been ordered m1<m2<…mk. This represents a periodic 
bitstream. For instance, the repeating limit cycle, 
00110110 can be represented by M=8, k=4, and m1=2, 
m2=3, m3=5, m4=6. 

We can now give the Fourier series expansion of the 
bitstream. 

2 //

1

sinc( / ) /k

k
jn m Mjn M

n
i

c n M e e Mπππ −−

=

= ∑  (24) 

and the DC component is given by 

0 /c k M=  (25) 
 
Harmonic cancellation occurs whenever the summation 
is zero. The rules for harmonic cancellation become far 
more complicated as the number of 1s in a period is 
increased. However, the overwhelming majority of 
harmonics remain. For instance, of the 75 limit cycles of 
period 12 with 6 1s, only 29 of them experience any 
harmonic cancellation. Of those 29 limit cycles, only 7 
are missing more than 1 of the 5 harmonics below half 
the sampling frequency  (64*44.1/2=1411.2kHz). 

If we consider the DSD format, then the sampling 
frequency is  64*44.1kHz. Thus a period M bitstream 
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has frequency 64*44.1/M kHz, and the harmonics occur 
at integer multiples of that. Therefore, a limit cycle must 
have a period of at least 128 to be audible (ignoring the 
post-filtering effects). 

We can also identify some general trends for periodic 
bitstreams. If we increase the period, but don’t add more 
pulses, then the spectral structure remains the same. 
Consider the periodic bitstream 11010000, which 
repeats with period 8. As depicted in Figure 3, all the 
harmonics of 64*44.1/8=352.8 kHz are present. 

 

Figure 3 Power spectrum for period 8 bitstream 
11010000. Frequency on the x-axis is in kHz for a 
DSD signal ( 64×44.1 1 samples per millisecond). 

If we increase the period to 32, so that the sequence 
11010000000000000000000000000000 repeats, then all 
the harmonics of 64*44.1/32=88.2 kHz are present 
(Figure 4). 

 

Figure 4 Power spectrum for period 32 bitstream 
1101000…000. 

Eventually, this approaches a continuous spectrum 
whose envelope is determined by the sinc term, as in 
Figure 5. In general, we can suppress any given 
harmonic by varying the width of the pulse. Notice that 
unlike with a single pulse, or even two pulses, in this 
situation, none of the harmonics are ever cancelled. 

 

Figure 5. The power spectrum of a continuously 
sampled periodic square wave with τ/T approaching 
infinity. 

4. CONCLUSION 

In this work we identified and classified the frequency 
content of limit cycles that might occur in the DSD 
bitstream. Equations (1) to (13) can be used to count all 
limit cycles that might occur for any constant input, and 
the formulas for their approximation. 

We then considered the coefficients of the Fo urier 
expansion of a periodic pulse train, and thus derived an 
expression for the Fourier expansion of any DSD limit 
cycle where the phases and amplitudes of each 
frequency can be determined exactly, Eq.(24). 

The first harmonic occurs at the frequency of the limit 
cycle, and all subsequent harmonics are at integer 
multiples of that. Therefore a periodic signal must have 
period greater than 128 for a peak to appear in the 
audible range (< 22.05 kHz). 

Phase cancellation was considered for the one and two 
pulse situations, and then generalized to any number of 
pulses (bits set to one) in the limit cycle. It was shown 
that harmonic cancellation is unlikely, and rarely would 
it result in many harmonics being removed. In fact, it is 
easy to devise periodic bitstreams where all the 
harmonics have a positive amplitude (Figure 5). 

Thus, it is wrong to think of a limit cycle as representing 
a single peak in the spectrum for a sigma delta 
modulator, since in general, the harmonics will be 
present. So, the arguments presented here reinforce the 
concept that idle tones should be treated differently 
from limit cycles. Recent work on limit cycles in the 
DSD bitstream does not resolve the issues concerning 
idle tones, and vice versa. 
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