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ABSTRACT

This work explores the effects of limit cycles on the frequency content in the DSD bitstream. We show how any
periodic bitstream can be expressed as a sum of square waves of various phases with width equal to the sampling
period. A Fourier expansion may be used to exactly determine the phases and amplitudes of al spectral content. We
thus determine all harmonics that appear in the output, and thus are able to distinguish limit cycles from idle tones.
These results are put into the context of recent advances in the theory of limit cycles and idle tones in sigma delta

modul ators.

1 INTRODUCTION

A variety of different definitions have been proposed for
limit cycles and idle tones (see for example [1-3]). It is
important to make a distinction between these two
phenomena. Limit cycles refer to a behaviour that is
easily seen in the time domain, whereas idle tones
represent a frequency domain phenomenon. Limit
cycles actualy have a forma mathematical definition,
whereas the meaning of idle tones can be derived from
the dictionary definitionsof ‘idle’ and ‘tone.’

According to dynamica systems theory, limit cycles
refer to isolated periodic orbits in a dynamical system.
In a sigma delta modul ator, the existence of limit cycles
refers to a repeating sequence of integrator states and
quantization output that can occur for a given input. [4]
puts a description of limit cycles in sigma delta

modulators within the proper mathematical context. In
practice however, only the quantizer output is
monitored. So a repeating output sequence is commonly
referred to asalimit cycle.

Idle tones, on the other hand, represent a strong
periodicity that is observed n the frequency domain.
Specifically, it is the occurrence of peaks in the power
spectrum imposed on a noisy background, that can
occur with constant input, i.e, while the system is
‘idling.” Idle tones need not be due to the existence of a
limit cycle. For instance, idle tones may appear and
disappear- behaviour that is not explained by simple
periodic motion.

This distinction between idle tones and limit cycles
raises the question of how idle tones might be related to
limit cycles. For instance, one may ask if a limit cycle
(time-domain periodicity) may produce an idle tone
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(discrete peak in a power spectrum) or idle tone-like
behaviour.

For this reason we examine the harmonic content of
limit cycles that can occur in the DSD bitstream. We
investigate if its possible for a limit cycle to produce a
single (or very few) peaksin the spectrum. Furthermore,
we calculate how many different output spectra may
occur for a given period limit cycle. We are thus able to
show that observed idle tones are not the direct product
of limit cycle behaviour. Finally, we find a very high
period limit cycle that exists in a 5" order sigma delta
modulator, of the type that may be used to encode DSD
data. We investigate its frequency content and show that
it may produce audible artifacts.

2. COUNTING LIMIT CYCLES

In order to count limit cycles, we note that a limit cycle
of period P may appear in one of P cyclically shifted

forms, e.g., the limit cycle 001 may appear as

001,010 or 100 . Furthermore, a limit cycle observed
over a P bit sequence may actually be a repetition of a
shorter period limit cycle, e.g. the apparent limit cycle
001001 is actually two repetitions of the limit cycle

001. This distinction is important since it prevents us
from counting limit cycles multiple times, and it
guarantees that each limit cycle | associated with the
correct frequency. Thus, we use the following notation:

BSp(N) represents the number of bit sequences of
length P containing N 1s, whereas BSPr(N) represents
the number of bit sequences with period P containing N
1s. Similarly, LCLp(N) represents the number of limit
cycles observed over a length P containing N 1s
whereas LCPp(N) represents the number of limit cycles
with period P containing N 1s. We drop the (\) to
represent all bit sequences or limit cyclesfor agivenP.

Since the quantiser only hastwo levels,
B, =2° )

To compute the total number of bit sequences of a given
period, we have to take into account that certain
sequences are actually of lower period. Over alength P,
a possible bit sequence is P/R repetitions of a sequence
of length R, where Rdivides P. So, the bit combinations
over a given length can be written as a sum of bit
combinationsof certain periodg4],

B, = B, @)
R-P
Therefore,
B, =2"- 3 BSR, ®)
R-P,R P

and this formula can be computed iteratively.

A limit cycle of period P accountsfor P sequences,
LCP, =B, /P 4)

Furthermore, all limit cycles that can exist over a given
length P includes all limit cycles with a period which is
adivisor of P.

LCL, = § LCP, ()
R-P

The number of allowable limit cyclesis further reduced
if the input is known. For a sigma delta modulator with
atleast one pole at DC, the average output over 1 period
must equal the input. Thus we can determine allowable
sequences and limit cycles for a given input. BSLp(N),
the number of bit sequences of length P containing N
1s, is the number of ways of choosing N out of P
objects,

aPo
B (N) = = 6
p( ) gNg ()

Thisis confirmed since,

o
BL.(N)= & ng°2:2*’ =B, @)
N=0e'N g

= Qo

0

Now consider a bit sequence with period R, where R
divides P. In order for this bit sequence to be included
in BSLp(N), Eq. (6), it must have NR/P 1s, such that
over P hits, it hasN 1s. Therefore, we can write

aP o6

gN+:BSJ_F,(N): a BSP(NR/P) ®)
eNg R- P- NR

and hence
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&P o °
BSPP(N)=8NE- a
R- P-

NRR!P

BSP, (NR/P) )

Finally, the number of limit cycles with N 1s can be
easily determined from Eg. (9),

LCP,(N)=BSP,(N)/P (10)
and
LCL,(N)= & LCP,(NR/P) (11

R- P-NR

Clearly, the number of sequences over a length P
bitstream is dominated by those sequences which are of
period P. Thus we have

LCR, ~2° /P~ LCL, (12
and, for 0O« N« P,
Ler Ny~ %P - LeLn (13)
&N
®eP o
P[LCLp | /P | LCPp |LCLK(P/2 = P|LCPs(P/2
P2y
2| 3 2 1 1 1 1
41 6 4 3 2 15 1
6| 14 | 107 9 4 33 3
8] 36 | 32 30 10 8.7 8
10] 108 | 1024 | 99 26 25.2 25
12| 352 | 341.3 | 335 80 77 75
14 1182 | 1170 | 1161 | 246 245.1 245
16| 4116 | 4096 | 4080 | 810 804.4 800
18] 14602[14563.6] 14532 2704 | 2701.1 | 2700
20|52488|52428.8| 52377 9252 | 9237.8 | 9225

Table 1. Thetotal number of limit cyclesoccurring
over alength P (LCLp), of period P (LCPp), and limit

cyclesover length P or of period P containing P/2 1s,
along with estimates from Eqg.s(12) and (13).

From Eq.s (12) and (13), we see that even though the
number of limit cycles which exist for a given DC input
is an ever decreasing proportion of the total number of
allowable outputs, it still increases at an exponential

rate. Thus, an examination of all limit cycles which

might exist for a given input becomes very
computationally intensive for low frequency limit cycles
within the audible range, i.e., period exceeding 128 hits.

These results are confirmed in Table 1, where we
caculate the number of limit cycles existing under
various circumstances. It confirms the validity of Eq.s
(12) and (13) as approximations for the number of limit
cycles. Furthermore, it demonstrates the exponential
growthinlimit cycles as afunction of period.

3. HARMONIC CONTENT OF A LIMIT CYCLE

The preceding section provides a mechanism for
counting all allowable limit cycles of a given period for
a constant input. In the context of distinguishing idle
tones from limit cycles, this is useful because we can
now determine the proportion of limit cycles which
produce idle tone behaviour, if any.

However, this requires that we determine the frequency
content of a limit cycle Most importantly, it is
necessary to determine when the frequency content
might yield a single or select few peaks in the power
spectrum. For this, we will begin by performing a
standard Fourier series expansion of a pulse train. Then
we will show how that may be used to determine the
Fourier series for any periodic bitstream, and use this to
determine when harmonic cancellation might result in
anidletone.

3.1. Periodic Pulse Harmonics

Consider an arbitrary square wave like the one shown
below

—t —

0
ll—f _
T
Here, T is the period or pulserate (w=2p/'T), t isthe
Bulse width and f is the phase T,t and f are al
multiples of the sampling rate, and hence may be
normalised to integer values. The DC approximation is
given by the duty cycle, d=t /T. A square wave is thus

given by X(t)= square(f(t-f)), where

il n-ang<d
square(n) = | end

14
10 n- gngs d (19

A Fourier series expansion resultsin .
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¥ .
xt)= @ c,e™ (19
n=-¥

where

c,=dsinc(npd)e ™ n=0x1£2.. (16)
And the n=0termrepresents the DC component,

1 T
c, ==)(t)ydt=d 1
0T T gy( ) 17

If we set f=0 and d=1/2 ¢=T/2), this reduces to the
familiar expression for a Fourier series expansion of a
sguare wave,

1+ 2sin(wt) N 2sin(3wt) N 2sin(5wt)
2 p 3p 5

X(t) = (18)

It says, among other things, that a square wave with a
1/2 duty cycle does not have even harmonics and that
the strength of the remaining odd harmonics is inversely
proportional to harmonic number.

The n=1 component has the same frequency as the
periodic signal, and is the fundamental frequency.
Further harmonics arrive at a frequency spacing of w. A
closer examination of Eq. (16) reveals that the sinc(npd)
term is responsible for suppressing harmonics. To
suppress the n" harmonic, d must be a multiple of 1/n.
Thus, for a square wave with d=1/2, all even harmonics
are suppressed.

If we want to suppress the n" harmonic, the pulse width
can be m/n times the period, where m<n. Conversely,
the amplitude first becomes zero at freguency

nwv=2pl/t .

When T is increased there is no change in the position
of the first point at which the amplitude spectrum hits 0.
The general form of the spectrum remains the same, as
given by sinc x. The number of harmonics up to the first
zero amplitude harmonic isincreased.

3.2. Two Pulse Harmonic Cancellation

We are concerned with how a periodic bitstream devoid
of certain frequencies may be devised. From the above
section, it is clear that only even harmonics are removed
from a periodic bitstream with a single pulse. Thus we

introduce additional pulses in order to achieve harmonic
cancellation.

We suppose the period T, is divided into M equd
portions and that there are two pulses of width T/M,
with discrete phases that are multiples of /M. The
phase of a pulse, f, depends on its quantized position.
The Fourier seriesfor a pulse in theni" positioniis thus

Com =SINC(NP/ M) P &2 1\ (19)
Magnitude at a given harmonic depends only on the

harmonic number n, and not on the pulse position, m.
Phase depends on both harmonic and pul se position.

Now consider how two pulses, my and m, interact with
one another.

Wy mp my m,
T 1T
== t

-

Figurel An arbitrary two pulse periodic bitstream.

To obtain the Fourier series of the two-pulse pulse train
we only need to add together the Fourier series obtained
from the pulses when they're taken individually,
Co=Com + Gy, n=4+1+2 +3,..

And the DC component is
C,=2/T

So the n™ Fourier term of the composite wave isthe sum
of then™ terms of the my and my pulses.

_ SmC(np / M )[e jn2pm;/ M +e jn2pm,/ M ]
G, = Mejnp/ M

The term outside of the brackets in Eq. (20) depends
only on the harmonic number and not position or phase
of the pulse. As seen earlier, this can be made zero only
by varying the pulse width. However the pulse width
has been fixed to T/M. Consequently we need to study
the term in the brackets if we wish to investigate
harmonic cancellation.

(20)

In general, we can induce phase cancellation when the
term in the brackets in Eq. (20 is zero. We assume an
ordering to the two pulses, so that mp<nmp. So,
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3M 5M  (2n- )M

22 2 @D

_M 3™
n(mz' nl) —7,

The first thing to notice is that the left hand side of (21)
is an integer. So there will never be phase cancellation
unless M is even. Odd periods will not produce phase
cancellation (and hence remove harmonics) from any
two pulses.

1t

N “ M L

0123456789101 01 2t

Hpipl L

0123456789 101101 2t

I L.
0123456789 1011 01 2t
T

Figure 2 Harmonic cancellation with two pulsesin a
twelve pulse periodic bitstream. (a) Pulses at
positions 1 and 7, (b) pulses at positions 1 and 4, (c)
pulsesat 1 and 3.

Harmonic cancellation with two pulses, for M=12, is
depicted in Figure 2 Pulses at positions 1 and 7 cancels

the fundamental. This is identical to creating a new
square wave with twice the frequency of the first. Pulses
at positions 1 and 4 suppresses the 2" harmonic. The
fundamental and third harmonics are «/5 times larger

than they arefor just asingle pulse. Pulses at positions 1
and 3 suppresses the 3 harmonic.

This can be generalised: the n™ harmonic can only be
cancelled if M is a multiple of . In general, the n"
harmonic is cancelled if the phase difference, f,- f,, is
a multiple of T/2n. Furthermore, any phase difference
that cancels the n™ harmonic, also cancels the (3n)™,

(5n)"".... harmonics. Thisis because

M _3M _ 5M
2n 2(3n) 2(5n) "

(22)

The same does not hold in reverse, of course.

One other important point to notice is that there is no
way to cancel any two of the 29 39 4" and &
harmonics using just two pulses. An easy way to see

this is by looking at al the possible phase differences

between the two pulses that will alow phase
cancellation for these harmonics.
n:2:Dm—M,ﬁ

4 4
n:3:Dm:M’3_M,ﬂ

I\E/3I 3I(\3/I Si/l ™ @3
n=4:DmM= —,—,—,—

8 8 8 8
nospmeM M M 7™M oM

The only terms that are the same are 3M/6 for n=3 and
5M/10 for n=5. But these occur when the phase
difference is M/2, i.e., for a system with one pulse at
twice the frequency. Obviously, doubling the frequency
removes all odd harmonics.

3.3. Generalised periodic bitstream

Now suppose, that instead of two pulses, we have a set
of pulses, my, my, ... M, wherek< M and the pulses have
been ordered m;<mp<...m. This represents a periodic
bitstream. For instance, the repeating limit cycle,
00110110 can be represented by M=8, k=4, and m;=2,
m=3, mg=5, My=6.

We can now give the Fourier series expansion of the
bitstream.

k
— -inp/M & L in2pm/M
¢, =sinc(np/M)e ace Y IM
i=1

(24)

and the DC component is given by

c, =k/M (25)
Harmonic cancellation occurs whenever the summation
is zero. The rules for harmonic cancellation become far
more complicated as the number of 1s in a period is
increased. However, the overwhelming majority of
harmonics remain. For instance, of the 75 limit cycles of
period 12 with 6 1s, only 29 of them experience any
harmonic cancellation. Of those 29 limit cycles, only 7
are missing more than 1 of the 5 harmonics below half
the sampling frequency (64*44.1/2=1411.2kHz).

If we consider the DSD format, then the sampling
frequency is 64*44.1kHz. Thus a period M bitstream
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has frequency 64*44.1/M kHz, and the harmonics occur
at integer multiples of that. Therefore, alimit cycle must
have a period of at least 128 to be audible (ignoring the
post-filtering ef fects).

We can aso identify some general trends for periodic
bitstreams. If we increase the period, but don’t add more
pulses, then the spectral structure remains the same.
Consider the periodic bitstream 11010000, which
repeats with period 8. As depicted in Figure 3, all the
harmonics of 64*44.1/8=352.8 kHz are present.

0.4-
0.3-
0.2-
0.1-
D.D_\ T T 1
0 500 1000 1408
kHz

Figure 3 Power spectrum for period 8 bitstream
11010000. Frequency on the x-axis isin kHz for a

DSD signal (64x44.1 1 samples per millisecond.

If we increase the period to 32, so that the sequence
11010000000000000000000000000000 repeats, then all
the harmonics of 64*44.1/32=88.2 kHz are present
(Figure4).

0.129-
0.100-
0.075-
0.050-
0.025-

0.000- L
0

1408
kHz

500 1000

Figure 4 Power spectrum for period 32 bitstream
1101000...000.

Eventually, this approaches a continuous spectrum
whose envelope is determined by the sinc term asin
Figure 5. In general, we can suppress any given
harmonic by varying the width of the pulse. Notice that
unlike with a single pulse, or even two pulses, in this
situation, none of the harmonics are ever cancelled.

0.010-
0.008-
0.006-
0.004-
0.002-
0.000-!
0

1406
kHz

1000

500

Figure 5. The power spectrum of a continuousy
sampled periodic square wave with t/T approaching

infinity.

4, CONCLUSION

In this work we identified and classified the frequency
content of limit cycles that might occur in the DSD
bitstream. Equations (1) to (13) can be used to count all
limit cycles that might occur for any constant input, and
the formulas for their approximation.

We then considered the coefficients of the Fourier
expansion of a periodic pulse train, and thus derived an
expression for the Fourier expansion of any DSD limit
cycle where the phases and amplitudes of each
frequency can be determined exactly, Eq.(24).

The first harmonic occurs at the frequency of the limit
cycle, and all subsequent harmonics are at integer
multiples of that. Therefore a periodic signal must have
period greater than 128 for a peak to appear in the
audible range (< 22.05 kHz).

Phase cancellation was considered for the one and two
pulse situations, and then generalized to any number of
pulses (bits set to one) in the limit cycle. It was shown
that harmonic cancellation is unlikely, and rarely would
it result in many harmonics being removed. In fact, it is
easy to devise periodic bitstreams where al the
harmonics have a positive amplitude (Figure 5).

Thus, it iswrong to think of alimit cycle as representing
a single peak in the spectrum for a sigma delta
modulator, since in general, the harmonics will be
present. So, the arguments presented here reinforce the
concept that idle tones should be treated differently
from limit cycles. Recent work on limit cycles in the
DSD bitstream does not resolve the issues concerning
idletones, and vice versa.
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