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ABSTRACT

The authors have recently developed a framework for analysis of limit cycle behavior in feedforward sigma
delta modulators (SDMs). However, the dynamics of feedback SDMs appear to be completely different. Here,
we extend that framework to include limit cycles in feedback SDMs. We prove that for DC inputs, periodic
output implies state space periodicity. An outcome of this is that for an N** order SDM, at least N — 1 initial
conditions must be fixed in order to have limit cycle behaviour. We present expressions for the minimum
disturbance of the input or initial conditions that is needed to break up a limit cycle. These expressions are
notably different from the analogous expressions for feedforward SDMs. We show that dithering the quantiser
is a sub-optimal approach to removing limit cycles, and limit cycle stability is determined. Examples are
provided that illustrate the theoretical results, and these results are also compared with those found for
feedforward SDM designs. It is shown that, with respect to limit cycle behaviour, it makes little difference
whether feedforward or feedback designs are used.

1. INTRODUCTION tion is clearly one of the techniques that is capable
One-bit Sigma Delta based analog-to-digital and of creating a high-quality 1-bit stream.

digital-to-analog converters are widely used in audio
applications, such as cellular phone technology and
high-end stereo systems. In particular, it has seen
a further boost in interest due to the introduction
of Super Audio CD (SACD). SACD is based on a
1-bit coded representation of the audio stream with
a sample rate of 2.8 MHz, and Sigma Delta modula-

Sigma Delta modulation is a well-established tech-
nique yet theoretical understanding of the concept is
very limited [1]. The most important progress in the
description of sigma delta modulators is reported in
the theses of Risbo [8] and Hein [4], while a useful
linearization technique is described in [10] and fur-
ther elaborated in the thesis of Magrath [7]. Yet in
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all these developments, there is no unified descrip-
tion of SDMs.

Recent work by the authors [12, 13] has made sig-
nificant progress towards developing a framework to
describe the nature of limit cycles (LCs) in feedfor-
ward SDMs. Within this framework, several aspects
of the feedforward SDM can be quantitatively un-
derstood. However, in various situations a feedback
SDM is preferred over a feedforward one. Typically,
this is due to the intrinsic anti-aliasing effect of the
signal transfer function of a feedback SDM compared
to a feedforward SDM [1].

In this paper, we will extend that framework to in-
corporate feedback SDMs. We will use as a defini-
tion of a limit cycle a sequence of P output bits,
which repeats itself indefinitely. The basis for this
approach has been provided in previous work, most
notably in [4] and [9]. Along the lines presented in
[13], we derive results for a general feedback SDM
and focus on the character of the LCs, and their
stability in particular. An important assumption in
earlier work is that a periodic bit pattern implies pe-
riodicity in the state variables. This assumption was
proven for feedforward designs, and will be proven
for feedback designs in this paper. Based on a state
space description, we present an exact description
of limit cycles in feedback SDMs. While drawing
on some known results from linear algebra, some re-
markable results for limit cycles in SDMs are ob-
tained, such as the persistance of limit cycles while
dithering the SDM. Although in its pure definition,
a limit cycle is a periodic pattern of infinite dura-
tion, in practical situations finite duration periodic
sequences can be equally annoying. The finite dura-
tion patterns touch upon the important subject of
stability of a limit cycle: how much time it takes
until a small perturbation moves a limit cycle out of
its periodic pattern.

The paper is organized as follows. In Sec. 2, the
mathematical framework, based on a state space de-
scription of the SDM, is presented. All the following
chapters are based on this formulation. In Sec. 3,
this formulation is applied to practical SDM designs.
Some basic quantitative criteria, necessary for deter-
mining the stability of a limit cycle, are developed.
In Sec. 4, a stability analysis of limit cycles is pre-
sented. In Sec. 5, the concepts of the foregoing sec-
tions will be used to obtain numerical results, and

Fig. 1: States in a 4th order SDM.

these results will be contrasted with those found for
feedforward SDM designs. Finally, in Sec. 6, conclu-
sions will be presented.

2. MATHEMATICAL BACKGROUND
2.1. State Space description

Though state-space descriptions of discrete time pro-
cesses are well-established [2], in this section we will
review some of their aspects in order to present the
paper in a self-contained way. In Fig. 1, the general
topology for a distributed feedback SDM is depicted,
in this case a fourth order SDM. This represents a
typical feedback modulator design, which is often
used in practical designs [11]. We can easily see that,
for the modulator presented here,

55\7) = (0,..0,1)s(™
y™ = sgn(s) (1)

where ™ is the output bit at clock cycle n, and
(n)
S

; ~ arethe integrator outputs, called state variables.

The last integrator output, sﬁ\?), is also the quantizer

input signal.

The propagation of the states s can be written in
matrix notation as:

st = As(™ — y(Me 4 oM g (2)

where c is a vector of feedback coefficients, A is an
N x N transition matrix for an SDM of order IV, and
c=(c1,...,en)T and d = (1,0, ...0)7 describe how
the input and feedback, respectively, are distributed.

It is interesting to compare this with the equivalent
feedforward design, where the state space equations
are given by,

Y™ = sgu(c”s™)
st — Ag(™ (u(n) — y("))d (3)
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For both designs, the placement of the transition
matrix A in the state space equations is identical.
However, for feedforward designs, the coefficient vec-
tor has no direct effect on the state space variables
s, and only acts as a weighting term on the quan-
tisation. Whereas for the feedback design, the co-
efficient vector c acts as a constant that is added
or subtracted from the state space variables every
iteration. As we shall see, this implies that the dy-
namics of feedback and feedforward designs are very
similar.

The power of the state space description is that it
allows us to create a very compact description of
the propagation of the SDM from time ¢ = 0 to time
t = n, as repeated application of Eq. (2) to s(*) leads
to s(™):

n—1
s = A"s(0) ¢ Z AT O —yWe)  (4)
i=0

From the above equation, we can clearly see that the
initial integrator states are simply a kind of an offset
to the signal, even though they directly influence
the output bit pattern. The spectrum of the signal
is determined completely by the second term in the
right-hand side of Eq. (4); the first term carries no
signal information. Hence, this confirms the known
fact that the signal content of a SDM modulator is
not determined by its initial integrator states.

2.2. General formulation of limit cycle conditions
In the introduction, we have introduced the follow-
ing definition of a limit cycle:

A limit cycle is a sequence of P output bits, which
sequence repeats itself indefinitely.

The compact representation Eq. (4) gives the means
to directly view the consequences of a limit cycle. In
dynamical systems theory, a limit cycle of period P
exists if, for initial conditions s(©),

g(P+n) — g(n) (5)

for all n greater than or equal to zero. However,
from a practical point of view, we are interested in
periodic behavior in the output y. It is proven in
App. 1 that, under reasonable assumptions, period-
icity in y guarantees that a limit cycle exists. Thus
we can use the limit cycle definitions, and as a con-
sequence, we have a strict set of necessary (but not

sufficient!) equalities that need to hold for the initial
states if periodic output is to be sustained:

P-1
1-AF)s@ = Z AP0 g — D)
=0

=Lr({s™”})  (6)

where Lp({y"} has been introduced to avoid cum-
bersome notation. So we formally have

sO = (1- AP)Lp({y™)) (7)

From Eq. (6), we can obtain a unique value for the
initial state s(9 if, and only if, the inverse of the
matrix (I — AP) exists. This will be elaborated in
Sec. 3; for now, we assume that a solution or solution
space to Eq. (7) exists.

So far, the appearance of the limit cycle has not
been specified, except that it is of period P. It is an
important observation, that a specific value for the
initial state only determines the length of a limit cy-
cle; it does not say anything yet about the sequence
of 1s and -1s. However, if a limit cycle is now de-
fined as a specific sequence {yD}(i=1,...,P —1),
we have that for each y(®:

y(i)sg\i,) >0 (8)

which is a test that has to be passed if a limitcycle
of the specified sequence {yM}(i = 1,...,P — 1)
exists. The inaccuracy made in Eq. (8) is that the
possibility that v(¥y(?) = 0 has been left out. As
this equality occurs with probability zero over the
continously variable value of v(9y(?) | this should not
pose much of a problem. We thus have a set of
equalities, Eq. (6), and a set of inequalities, Eq. (8),
that need to be fullfilled in order to have a valid limit
cycle. If we substitute Eq. (4) in Eq. (8), we obtain:

k=0,..P—1:
y®(0,..0,1)[A"s + L,({y})] > 0 (9)

using the notation of Eq. (6).

Hence, we need to simultaneously solve Eq. (6) and
Eq. (9) in order to have a valid limitcycle; in the
next section more specific solutions will be derived
for various SDM topologies.
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3. LIMIT CYCLE CONDITIONS FOR SPECIFIC
SDM ARCHITECTURES

In order to quantify the importance of any distur-
bance of a limit cycle, we first need to solve Eq.( 7).
However, in the previous section, the remark has
been made that the matrix (I — AF) may not be
invertible. This observation carries significant prac-
tical relevance. The poles of the loop filter of an
SDM are given by the eigenvalues of the transition
matrix A: each pole p; can be written as p; = p;e/“i,
where w; is the pole frequency [4]. Hence, for a clas-
sical SDM which has all its loopfilter poles at DC,
all eigenvalues of A will be one, as a result of which
the inverse of Eq. (6) does not exist - hence, there
is no unique solution to s(®. Other SDM designs,
such as those with resonator sections, may result in
an invertible transition matrix. As a result, there
would exist one - and one only - initial state s(®)
that results in a specific limit cycle. Most often,
SDMs have at least a single zero at DC to avoid DC
drift. In the following, we will make a separation in
two main categories of SDMs: those with and with-
out poles at DC. The SDMs with poles at DC will
be further subdivided in two categories: those with
poles at DC for the last two integrator sections; and
those with poles away from DC for the last two in-
tegrator sections.

A special case of limit cycle break up is due to dither-
ing the SDM. Typically, dithering is achieved by
adding a random number to the input of the quan-
tizer, which therefore adds a random element to the
quantization process. Because it is a special, but
important case, and as its effectiveness is strongly
related to the limit cycle conditions, its discussion is
included in Sec. 3.3.

3.1. SDMs with DC poles

In the case that the SDM has at least one of its
poles at DC, the matrix I — A” is singular, and
hence not invertible. To solve Eq. (6) for that case,

we create the singular value decomposition (SVD)[3]
of (I— AF):

I-AP)=UuzVv” (10)

where ¥ € R¥*N is a diagonal matrix whose ele-
ments o; are the singular values of I — A”. The ma-
trices U € RY*N and V € R¥*N are the left and
right singular vectors, respectively. Because both U
and V are unitary, we also have UUT = VV7T = 1.

When the SDM is not reducible, exactly one of the
singular values o; will be zero as a result of the fact
that the loop filter displays a pole at DC. When
the singular values are ordered in descending fash-
ion, this singular value will be o = 0. This has
the interesting consequence, that the last column
of V is a non-relevant direction, since it is always
multiplied by oy = 0. This last column of V will
be denoted v (the so-called null space of I — AF:
(I - AP)vy = 0). Now, if we know a single solu-
tion (say, smn) to Eq. (6), any solution s(%) can be
expressed as:

A (11)

In other words, the complete set of solutions to
Eq. (6) is a line. We thus need to fulfill at least
N —1 (initial) conditions for an N*!" order SDM, in
order to have a limit cycle.

In addition, the SVD is helpful in obtaining an ini-
tial solution to Eq. (6). First we have, similar to
Egs. (10,11), that:

I-APT =v=Uu";, d-AP)Tu=0 (12)
where g is the null space of (I — AT)T. Therefore,
Eq. (12) is equivalent to

uw(I-A") =0 (13)
Multiplying both sides of Eq. (6) with ul" we obtain
ug (I- A" =ugLp({yP}) =0 (14)

stating a necessary condition ul Lp({y(¥}) = 0 for
the existance of a solution to Eq. (6). For the type
of SDMs that are investigated in this section, with a
pole at DC (and thus infinite gain for DC) this con-
dition is equivalent to the intuitively obvious condi-
tion that the average input should equal the average
output of the SDM:

TR
5 Z u® = 5 Z y® (15)
i=0 =0

When the SDM input is a constant DC value, u(¥) =
u and the sequence {y(i)} also completely determines
the input u to the SDM.

Secondly, if a solution to Eq. (6) exists, we can define
the minimum norm solution smy[3] to Eq. (6) as:
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11 1
> = diag(—, —, ...

o1’ oy’

, ,0 16
0 9
The solution sy, is characterized by the fact that
the norm sy | is the least of all norms |s(0)| of other
solutions to s(©).

While we now have solved one part of the necessary
conditions for a limit cycle, Eq. (6), we still have to
solve for the set of inequalities represented in Eq. (9).
For each inequality &k in Eq. (9), we can write an
equality which represents the conditions under which
the constraint is on the edge of being violated:

(0,..0,1)[A*s© + L ({y@}] =0 (17)

This represents an N — 1 dimensional hyperplane
which bisects the N dimensional space. The point
where this surface intersects the line defined by
Eq. (11) represents the boundary where a limit cy-
cle of length P is on the verge of violating the k™"
constraint. This point is given by solving for A{*'t in
the equation

(0,..0, D)[AF($n + AP v0) + L ({y@ 1] = 0 (18)

This defines a distance A$'® from the initial point
Smn at which the k' constraint is on the edge
of being violated.  Depending on the sign of
(0,..0,1)A*vy, we need to have either A > A{"i* (sign
positive) or A < A¢t in order to fulfill the k™ con-
straint. We can now divide the set of constraints
Eq. (18) into two categories:

Vk=0,..P—1:
if (0, .0, 1)Akvo > 0, then )\>)\]; — )\zrz:t (19)
if (0,..0,1)A*vo < 0, then A<AE = AT (20)

We can then define
As = maxy(\%) (21)
A< = ming(A\¥) (22)

which provides us with an interval [As,A<] for a
feasible A:
Afeas € [)‘>7 )\<] (23)

Obviously, when As > A, there is no feasible solu-
tion, and the limit cycle {y(¥} cannot exist.

3.2. No DC poles

A special situation arises when the SDM has no DC
poles. In that case, the null space of (I — AF) is
zero: there is only one solution s(®) to Eq. (6). If this
solution also complies with all inequalities Eq. (9),
it results in a limit cycle. Because the null space
is zero, any change of the integrator states would
result in a break-up of the limit cycle. A relevant
question that remains, however, is how long it would
take before the bit-pattern is changed from the limit
cycle pattern; in other words, what freedom do we
have when the only requirement is to fulfill Eq. (9).
This will be the subject of Sec. 4. Note, that the
system of inequalities itself would lead to the same
solution as Eq. (6) would after an infinite amount of
time (see appendix 1).

3.3. Dither

Dithering, or adding random offsets to the quan-
tizer, represents a special case of limit cycle distur-
bance, since it does not directly influence the inte-
grator values. The only way in which dither can
break up a limit cycle is by changing the sign of the
input to the quantizer, causing it to create a bit-
flip in the limit cycle output. As a result of that, a
limit cycle will be broken up. The minimum ampli-
tude vy, of the dither that is necessary to certainly
break up a limit cycle, is easily determined as:

Vminzmjn‘s%) ;7 1=0,...,P—1 (24)

thus the minimum dither level is dependent on the
initial states. In a typical situation, where dither
according to a certain (e.g., rectangular) pdf span-
ning a width W is applied, all dither values with
amplitude less than vy, are without any effect. Be-
cause of the dependence on initial states in Eq. (24),
it is preferable to have an expression that provides
the maximum of vy;, over the initial states. The
minimum amplitude dither vni,, needed to break
up a limit cycle, is maximised over all s(®) when
A= %, and thus:

Ac — As

- (25)

Vmin = V0
For most SDMs, the value vy, can be easily de-
termined using results obtained previously, without
resorting to Eq. (24). For SDMs without DC poles,
however, the null-space has dimension zero and the
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methods outlined above cannot be used anymore. In
this case, the only option is to determine the mini-
mum amount of dither through Eq. (24).

4. STABILITY ANALYSIS OF LIMIT CYCLES
To determine whether a limit cycle is stable we will
follow an approach to stability analysis based on per-
turbation theory. For a given limit cycle of length
P, we can write for the states at clock cycle P:

stP) = AP (26)

To have some idea about stability of limit cycles, we
will now disturb the original state variable s(9 by
an amount €():

§00 =50 4 £ (27)

We have to investigate how such a disturbance prop-
agates in time: whether it will get larger, or smaller
in time. The growth of a disturbance € in the state
variables after M periods (and, hence n = M P clock
cycles) of the limit cycle is given by:

§MP) — AMP(5(0) 1 e()) = 5(0) 4 MP)(9g)

To analyze Eq. (28), we will create the Jordan de-
composition [3] of A, which is defined as!

A=vIv! (29)
where J is a Jordan matrix of the form

i i i=7;
Jij =< 0,1 if j=i-1; (30)
0 otherwise;

with p; the ith eigenvalue of the transition matrix
A. The main advantage of this decomposition is that
it allows us to obtain a compact result of multiple
application of A as

AF =vJIFv-! (31)

where JE = p¥.

From this expression, we can immediately see that
SDMs with eigenvalue magnitudes |u;| > 1, multiple
application of A will result in exponential growth

T Alternatively, the Schur decomposition could be used,
which, for the types of SDMs under consideration, is less prac-
tical.

of the disturbance. When |g;| < 1, on the other
hand, exponential decay will occur. The effect of
a disturbance will be studied in the next sections,
both for all eigenvalues |u;| = 1, and for eigenvalues

|pi| # 1.

4.1. Only DC poles

In the special case where all the poles of the loop
filter are at DC, all eigenvalues |u| = 1, as a result
of which only polynomial growth can occur. In par-
ticular, when the eigenvalues are all unity, the result
for J” can be written as:

1 it =g
0 it i<y
Tk = ; )
( k— (i — ) ) otherwise;

For a SDM with only DC poles, the transition ma-
trix is exactly in the shape of this Jordan block, with
eigenvalues equal to 1, and no further decomposition
is necessary (SDMs which exhibit poles in the loop-
filter, are not in Jordan form). In order to determine
when a LC will be broken up, we have to determine
the disturbance dv™P) at the quantizer input that
results in a bit-flip, akin to the discussion in Sec. 3.3.
From Eq. (2), we have that

svMP) = (0,...0,1)AMP)¢ (33)

Using Eq. (32), making the approximation that
MP > 1, and keeping only the highest terms,
we can approximate the polynomial divergence of
a modulator of order NV

(MP) prN-1 N-1
1) ~Neg——mraMT
v €1 N 1) +
PN—2 N2 .
— M : 4
EQ(N_z)! +:+en (34)
where € = (ey,...,en)7.

Hence, if the first integrator is disturbed, the number
of limit cycle periods M, it takes before a limit cycle
is broken up can be approximated by

1 (N = 1)!6verie] q /onr
n L (W = DOt 1 -1y
M, 3 (e (35)
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where dvgri; 18 the critical value of v where the limit
cycle is broken up. From Sec. 3.1, we have that

5vcrit S [)\> - >‘<a )‘< - >‘>] (36)

where the precise value of dv¢ depends on the ini-
tial state s(?) and the coefficient vector ¢ (Eq. (18)).
This differs notably from the situation with feedfor-
ward sigma delta modulators, where the equivalent
of Eq. (35) has an explicit dependence on the coef-
ficients c¢. For feedback SDMs, the dependence on
coefficients is due solely to the Ly ({y¥}) term in
Eq. (18). Furthermore, unlike for feedforward de-
signs, the nature of the dependence on the coeffi-
cients is not easily determined, since a change in
the coefficients will affect the initial conditions which
may result in a limit cycle, Eq. (6) as well as each
constraint equation, Eq. (9). The effect of this dif-
ference is noticeable in the stability of limit cycles,
which will be discussed in Sec. 5.2.

5. NUMERICAL RESULTS

The results of the work detailed in the preceding
part, have been used to obtain some results on sev-
eral different noise transfer functions (NTFs, all but-
terworth design), which have been implemented in
feedback SDMs. The SDMs, are all fifth order with
an oversampling ratio of 64, and have been chosen
to illustrate the difference in behaviour for various
SDMs with aggressive noise shaping and mild noise
shaping. The naming convention is such, that the
name of the SDM reflects its NTF corner frequency.
For SDM120, the NTF has a -3 dB point at 120 kHz;
for SDMB80, this point is at 80 kHz. Thus, SDMS80
represents a much less aggressive noise shaper than
SDM120. They are all of the type displayed in Fig. 1.

In the following sections, we will discuss results on
static and dynamic behaviour of SDMs. Feedback
topologies are presented to judge how the implemen-
tation topology influences the limit cycle behaviour.

5.1. Static behaviour

In [12, 13], the authors presented a variety of results
which depicted the occurrence of limit cycles for a
variety of feedforward sigma delta modulators. The
results for the equivalent feedback designs are not
presented here because they are virtually identical.

1200 :
10000 //
e
/
8000}
7/
= 6000 /
H* //
Y,
Y,
Y,
4000} Y.
///
,)*/
20001 -
Ogo 90 700 110 120 130 140 150 160

NTF corner frequency (kHz)

Fig. 2: Number of limit cycles for a fized LC period
of 24, as a function of the NTF corner frequency
used in the SDM design.

This is because the equations for limit cycle exis-
tence, Eq. (6) and Eq. (9), differ from their feedfor-
ward equivalents only in the placement of the coeffi-
cient vector ¢ and its replacement with (1,0, ...0)7.
The transition matrix, however, is unaffected. As
we shall see, this affects how a limit cycle may be
broken up (either the dither level required, or the
time until a disturbance leads to a bit flip), but has
little effect on limit cycle existence or stability.

The dependence of the number of LCs at given LC
length (P = 24) on the corner frequency of the but-
terworth NTF design is given in Fig. 2. This clearly
illustrates the increase of the number of limit cycles
with increased aggressiveness of the SDM, and also
shows that for highly aggressive SDMs the number
of possible LCs is virtually constant. The figure is
almost identical to one published in [12]. This in-
dicates that the number of limit cycles of a given
period, although strongly dependent on noise shap-
ing characteristics, is virtually independent of the
choice of feedforward or feedback design.

In Fig. 3, the minimum dither level that is needed
to certainly break up the most stable limit cycle is
depicted. The limit cycles for the aggressive SDM
120 are more stable against dither than those of the
less aggressive SDM 80. This is counter-intuitive
since we expect aggressive SDMs to be less suscep-
tible to limit cycles. Also, we can see that there is a
very stable limit cycle occurring around LC length
22 for SDM 120, and for L.C length 32 for SDM 80.
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Upon investigation of these limit cycles, it appeared
that they consist of a series of 11 1s followed by 11
-1s for SDM 120, and likewise 16 1s and 16 -1s for
SDM 80. This corresponds to a square wave of fre-
quency 120 kHz and 80 kHz, respectively, which are
exactly the corner frequencies of the NTF design of
the SDMs. Although not shown, identical behaviour
occurs for other SDMs. In practice, however, these
LCs require huge initial integrator states that could
never occur: long before such an integrator state
could be reached in real operation, the SDM would
have gone unstable. As a result, if the SDM has been
forced into this limit cycle, the SDM runs unstable
upon the slightest disturbance of the integrators.

Again, these results are quite similar to those found
for feedforward designs and presented in [12]. The
very stable limit cycles occur at the same limit cy-
cle lengths, and the general trends observed are the
same. The minimum dither levels differ between the
two design methods principally due to the fact that
the coefficient vector has a different effect on the
quantiser input value for each design.

0.8 T T T T T
Minimum dither, SDM120 ——

0.7+ Minimum dither, SDM80-------
] 0.6+ A
H /\
o /|
E 0.5 (
° /
So4t |
£ |
£ \ /
S 03F | |

020 |

N /“ N S—
0.1 — By
0 . . . | | I |
0 5 10 15 20 25 30 35 40
LC length

Fig. 3: Minimum level of dither needed to break up
the most stable limit cycle corresponding to a DC
mput 0 .

This is to be contrasted with the LC behaviour
for other LC lengths. The shortest LC, the se-
quence {1,—1}, appears to be most stable (dis-
regarding the previously discussed LCs) for both
SDMs. For longer LCs, the amount of dither needed
for break-up decreases to a minimum value close
to the peak, after which the LC becomes more
stable. All these limit cycles consist of the se-

350,

3001

250t

2001

vl

150

100+

50

0 5 10 15 20 25 30 35 40
# of Iterations

Fig. 4: Disturbance of identical limit cycles (most
stable period 8 limit cycle) for SDM 120 and 80, with
all eigenvalues equal to 1, due to a small disturbance
(-120 dB) on the first integrator state. Depicted is
the quantizer input until the limit cycle breaks up.
The vertical lines give the number of iterations at
which the limit cycle is broken.

quence {—1,1,-1,1,...,—1,1,—1,—1,1,1}, which
represents the minimally possible deviation for the
simple {—1,1} sequence. While these most stable
limit cycles slightly increase in stability for longer
LCs, on average the amount of dither necessary for
break-up decreases. Again, we see that SDM 120
presents LCs that are in general more stable than
those of SDM &0.

5.2. Dynamic behaviour

In Fig. 4, the effect of a small disturbance of the
integrator states on a limit cycle is illustrated. In
Fig. 4 we plot the quantity |dv|, which is the devia-
tion of the quantizer input from its ideal input, such
as defined in Eq. 33. The limit cycle studied was the
most stable of length 8, i.e., —1,—1,+1, +1 followed
by a sequence of 2 —1,41 pairs. A disturbance of
-120 dB (107%) was applied to the first integrator at
time instant n = 0 in order to break up the limit cy-
cle. The effect of such a disturbance on the output
signal is very small; in fact, it is much less than the
effect that sufficiently dithering the quantizer would
have had. However, the behavior is noticeably differ-
ent from that which occurs for the feedforward de-
sign. We can clearly see that for both the mild and
aggressive noise shapers, the growth rate of a distur-
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bance is the same. However, for SDM120, which is
the more aggressive one, the limit cycle is broken up
after only 29 periods, whereas the same limit cycle
for SDMSO0 is broken up after 38 limit cycles.

This is to be contrasted with feedforward designs,
where the growth of the disturbance at the quantiser
input may vary with different noise shapers[12, 13].
The reason for this difference is that the feedback
coefficients in a feedback design only represent a
constant shift of the integrator states, and thus can
affect when a bit flip occurs, but not the growth
of a disturbance. Whereas, for feedforward designs,
the coeflicients represent a multiplier that is applied
directly to the quantiser input, and thus affect its
growth rate. Interestingly, the number of limit cy-
cle periods before break-up occurs hardly differs be-
tween feedback and feedforward designs[12, 13]. Ap-
parently, even though the dynamics of a feedback
SDM appear to be different from that of a feedfor-
ward design, the results are virtually identical.

Results are not presented here for designs with res-
onator sections or other modifications of the transi-
tion matrix. This is because the derivation and sim-
ulation of dynamic behavior of these systems exactly
parallels the results in [13] for feedforward SDMs.
There, it was shown that very small changes in an
SDMs structure can have significant effects on the
rate of growth of any disturbance to a limit cycle.
SDMs with only DC poles will exhibit polynomial
growth, whereas the inclusion of resonator sections
or other modifications to the feedback/feedforward
structure will exhibit exponential growth. However,
if these modifications result in the transition ma-
trix having complex conjugate pair eigenvalues, then
the exponential growth is exhibited as the distur-
bance spiraling away from initial conditions. Thus,
this exponential growth may actually take signifi-
cantly longer to break up the limit cycle than the
polynomial growth which occurs without resonators.
Therefore, in general, SDMs without resonators are
less susceptible to limit cycles. Details of these re-
sults are provided in [13] .

6. CONCLUSIONS

This work is an attempt to construct a general the-
ory describing limit cycles in 1-bit feedback sigma
delta modulators, and to provide the designer with
tools other than numerous simulations to obtain an

insight into typical limit cycle behaviour of SDMs.
The work parallels results already established for
feedforward SDMs, and many equivalent conclusions
are established. It has been proven that, under al-
most all circumstances, limit cycle behaviour is ob-
served in the output if and only if a limit cycle occurs
in state space. It has been shown that limit cycle be-
haviour can occur in a wide variety of situations.

In Section 3.1, a recipe was given whereby, for con-
stant input, all limit cycles of a given period can be
found for any feedback SDM with at least one pole at
DC. Eq. (16) provides a least squares solution to the
limit cycle conditions. If the constraint equations,
Eq. (9) and Eq. (15), are satisfied, then this is an
exact solution. Eq. (18) may then be solved to find
the exact set of initial conditions, Eq. (11), which
give rise to this limit cycle. When the SDM has
no DC poles, this procedure becomes simpler since
Eq. (6) can be solved directly and Eq. (9) is the only
constraint. The essential difference between these
situations is that, if constraint equations are satis-
fied, SDMs with DC poles will exhibit a line of initial
conditions which give rise to a limit cycle, whereas
SDMs without DC poles will exhibit a unique solu-
tion. Ome consequence of the initial condition de-
pendence is that, for an SDM of order N with DC
poles, N — 1 states need to have a well-defined value,
and all N states need to have a well-defined value
for SDMs without DC poles. This makes limit cy-
cles for higher order SDMs (which typically exhibit
more aggressive noise shaping) less likely to occur,
especially when they do not exhibit poles at DC.

It has also been shown that dithering the quantizer is
not the optimal way of removing limit cycles: adding
a small disturbance to an integrator state is far more
efficient and will always result in break up of the
limit cycle. The noise penalty is rather limited, as
the input disturbance can be made as small as 1076
or -120 dB.

An important characterisation given the goals of
SDM design, is distinguishing limit cycle behaviour
for SDMs with different noise shaping characteris-
tics. SDMs with aggressive noise shaping can sus-
tain many more different limit cycles than SDMs
(of equivalent order) with mild noise shaping, and
are more robust against dithering the quantizer.
Though the number of limit cycles grows exponen-
tially, limit cycles of a long period are more sen-
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sitive to a small disturbance than short limit cy-
cles. Likewise, SDMs with aggressive noise shap-
ing are more sensitive to disturbances than mildly
noise shaped SDMs - even though the latter exhibit
a much smaller number of sustainable limit cycles.
This is corroborated by the experimental observa-
tion that aggressive noise shapers are less susceptible
to limit cycles than mild noise shapers.

Though the derivation of these results differs from
the derivation for feedforward SDMs, the conclu-
sions are the same. However, the exact number
of limit cycles, and their locations in state space,
may differ slightly between the two designs. Fur-
thermore, the growth rate of a disturbance is depen-
dent on the feedforward coefficients for feedforward
SDMs, whereas the growth rate of a disturbance to
a limit cycle in a feedback SDM has no dependence
on the feedback coefficients. The dependence on co-
efficients is exhibited in the minimum dither level,
or size of a disturbance, required for a limit cycle to
be broken up. In general, the choice of feedback or
feedforward sigma delta modulators was not found
to provide any significant advantage or disadvantage
in terms of limit cycle behavior.

1. PROOF THAT THE EQUALITIES ARE A
SUFFICIENT CONDITION FOR A LIMIT CYCLE

In this appendix, we will prove that the set of in-
equalities Eq. (9) leads to the same solution as the
set of equalities Eq. (6) would, i.e., whether the limit
cycle condition observed at the output of the SDM:

y P =y (37)

leads to the limit cycle condition as known in stabil-
ity analysis:
s(ntP) — g (38)

For example, if the output sequence happens to be
a periodic sequence of period P, one could ask the
question whether there exists a possibility that an
initial state sg does not return to this value after
propagation over P cycles, but to a different state
vector s’. If this state vector generates the same
output sequence again, etc., we have a limit cycle
without fulfilment of Eq. (6). To that end, we look
at the propagation of the state variables Eq. (4),

after a large number NP of cycles. We will further
assume that (I— A”) is invertible; when it is not we
will define a new transition matrix A as

A=A+ (39)

where A’ is the original transition matrix, and I is
the unit matrix. Now (I — AP) is invertible by defi-
nition; at the end of the analysis we will than have
to take the limit € — 0 to obtain the final result.

From Eq. (4), we subsequently determine the states
s(NP) at the N Pth clock cycle as:

NP-1
s(NP) _ ANPG(0) | Z ANP=i=1(,(0q _ y()¢)
i=0
(40)
The summation can be written as two nested sum-
mations:

s(NP) _ ANP(0) +
N—-1P-1
Z u( d— yz) )ANP (jP+1)—1 (41)
j=0 i=0

where we used the fact that {¥} is a limit cycle and
{u®} is constant, i.e., utF)d — y+Pc = 4()d —
yile.
The terms not dependent on i can be moved outside
the summation:
s(NP) _ ANPG0) |
N—

—

P-1
AP (wDd - yDe) AP~ (42)
=0 =0

<.

Because the sum over i represents a constant, we
define

P-1 ~
Z (z)d _ y(i)c)AP—i—l] (43)

=0

Lp({y™}) =

in line with earlier definitions in Sec. 2.2. With this
definition, we can write Eq. (41) concisely as:

N-1
SO = ANPSO 1+ 3 APLe({y))  (44)
§=0

Realizing that the finite sum represents a geometric
series, and because we have defined A such, that
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(I — AP) is by definition invertible, Eq. (44) can be
expressed as follows:

s(NP) _ ANPG0) |

(I—AYP) I - AP)'Lp({y™}) (45)

For convenience, we will further define

r=(I-A")""Lp({y"}) (46)

due to which we can further compress Eq. (44) as

sVP) = ANP(s(0) _p) 4 p (47)
In order for a limit cycle to be stable,
limy oo |sVP)| must be bounded. We will

discriminate two cases.

Case 1: (s(°) —r) corresponds to eigenvalues
with norm larger than 1
If (s —r) contains directions which correspond

to eigenvalues with a norm larger than 1 of A,
limy _o0|s™VP)] is bounded only when:

s =r (48)

leading to
sVP) — 5(0) (49)

which is the conjecture on which the results in
Sec. 2.2 are based.

Upon applying the definition of Eq. (39) to Eq. (47),
we see that we can safely take lim._o by setting
e = 0, as a result of which Eq. (48) is independent
of the invertibility of (I — A). The definition of r
in Eq. (46) also turns out to be a familiar result, as
with r = s() it is identical to Eq. (7) in Sec. 2.2.

Case 2: (s(°) —r) corresponds to eigenvalues
with norm smaller than 1

If, on the other hand, (s(®) — r) contains only di-
rections which correspond to eigenvalues < 1 of A,
these directions will be reduced to zero if limpy_, .
We thus obtain as a result

sVP) — ¢ (50)

which is identical to Eq. (48) when s(NF) = s(0),
However, we do not have the result that s(NP) =

s(®). Thus, in this case, we have a possibility that
an initial state s(°) does not return to this value after
propagation over P cycles, but to a different state
vector s’, and that this state vector generates the
same output sequence again. After a long number
of limit cycle periods, however, s(VF) converges to a
unique value, such that s(VP) —s((N+1DP) — ( which
is a situation identical to Case 1.
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