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ABSTRACT

A compact form can be used to describe an arbitrary high order sigma delta modulator. This providesinsight into the
structure of limit cycles in sigma delta modulators. We consider modulators of any order with periodic output. We
make no assumptions regarding the input and are thus able to prove necessary conditions for limit cycles in the
output. We show that the input must be periodic, but may have a different period from both integrator output and
quantised output. We derive what this implies regarding limit cycles for sinusoidal inputs. Finally, we give examples

where sinusoidal input to athird order modulator resultsin alimit cycle of adifferent frequency.

1. INTRODUCTION

Sigma delta modulators (SDMss) operate using a trade-off
between oversampling and low-resolution quantization.
A signal is sampled at much higher than the Nyquist
frequency, typically with one bit quantization, so the
signd may be effectively quantized with a high
resolution. Recent work has concentrated on tone
suppression[1], multibit modulation[2], compression[3, 4]
and chaotic modulation[5]. Sigma delta nodulators are
used in A/D and D/A converters and in audio processing
systems. The Sigma-Delta bitstream format is used for
mastering and archiving of audio recordingg[6, 7].

Unfortunately, sigma delta modul ators are susceptible to
limit cycle oscillations that are not present in the input
signal. These idle tones may be audible to the listener
when SDMs are used for audio signal processing.
Considerable work has been done on the identification of

limit cyclesin first and second order SDMs with constant
input, but ageneral theory has not yet been formalized.
Most previous analysis assumed constant input. Thisis
invalid in most cases. Although the data is oversampled
at a high rate, thisis not sufficiently high as to make the
input appear constant over along sequence of samples.
For situations where the limit cycle may be audible, i.e.,
high periodicity, the assumption of constant input has
been violated. We extend existing theory and determine
necessary conditions for the existence of limit cyclesin
SDMs with nonconstant input. We assurme periodic
behaviour in the output to determine input structures
that lead to limit cycles. We derive theorems that classify
the limit cycle behavior for different types of input, and
the requirements to produce a limit cycle. These
theorems are a contribution towards a general theory of
limit cycles behaviour in SDM s of any order.
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Figure 1. Thesimplest sgma delta modulator.
2. BACKGROUND

The simplest first order SDM, as depicted in Figure 1,
consists of a 1hit quantizer embedded in a negative
feedback loop which contains a discrete-time integrator.
The input is sampled at a frequency higher than the
Nyquist frequency and is converted into a binary output.
The system may be represented by the map[8]
U,=U_+X ,-Q, @
where X represents the input signal, bounded by -1 and
+1and Qisthe quantizer
11U 30 5
@=11iu,<0 @
All of the following calculations are valid for a different
or multilevel quantizer, with suitable scaling. In this
representation, the output Q, represents the quantization
of input X,;. On average, the quantized output will be
approximately equal to the input. This system works by
qguantizing the difference between the input and the
accumulated error. When the error grows sufficiently
large, the quantizer will flip in order to reduce the error.
A typica commercial implementation of a sigma delta
modulator is far more complicated. It uses multiple loops
to assist in the shaping of the noise. Gain terms are used
to enforce stability[9], to refine noise shaping, or due to
integrator leakage[10]. Quantized output is not
determined solely by the previous input and the
accumulated error. Initial conditions can not always be
set to 0. These higher order modulators are often less
stable and analysis becomes problematic.
3. COMPACT REPRESENTATION

We begin with a simple form of high order modulator,
represented in Figure 2. We note first that some sigma
delta modulators may not fit this form[11], since gain
terms are sometimes placed after the delay term.
However, many practical implementations of SDMs fit
the form of Figure 2, and this representation includes the
generic models of first and second order sigma delta
modulators with integrator leak such asin[12].

Gain terms are represented by py,p,,...pn. They may be
imposed in order to give the SDM specific noise shaping
characteristics, or due to circuit imperfections. If al gain
terms are unity, this reduces to the generic first or
second order stable modulators that have been studied
extensively throughout the literature. B, represents the
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input to the m" accumulator due to the n" input to the
sigma delta modulator. Due to the action of an
accumulator in Figure 2, the following recursive
relationship holds for the m" accumulator,
Bm+1,n = (Bm,n - Bm,n»l) qm+1 + Qn (3)
Where for any n and m, By ;,;=U,.1, Byn=Xn and g=1/ .
By induction, (3) leads to the following compact form for
an N" order SDM.
& PN A
Xn =a (' 1)j(jJUn- j+1O Ok
ol @
+é. é. (-2’ ()an O auu
i=0 j=0 J k=1 i
Or equivalently, for any N™ order modulator at timen,
N N
Un+1 :Xno P - é. (- l)j (’\J‘)Un j+
k=1 j=1
g i Py ©®
-aa -y ()ano Py
i=0 j=0 ] k=1
A full derivation of these formulas is given in [13].
Equation (5) provides a compact representation which
represents current integrator output (and hence current
quantized output) as an explicit function of the last input
and the N previous integrator outputs.
This simplifies the math used in analysis of sigma delta
modulators, and because it allows for fast simulation
(and redlization) of such a system. Similar compact
representations can be devised for positioning the gain
terms elsewhere in the noise shaping loop, or for other
modulator designs. However, these forms do not always
yield asimple analysis of limit cycle behavior.

4. LIMIT CYCLE BEHAVIOR

Assume that the integrator output, U is periodic with
period Py, so
(" MUpip, =U,]1& (" 1 <R)ENU,., * U] (6)

The second half of (6) was included to indicate that the
period is not a divisor of U,. The first consequence of
this is that Q must be periodic, since the quantizer Q, is
strictly a function of U,,. If we sum the input signal over
one period and interchange summations, then (4) leads to

g & CINY B &
a Xn+r :a(_ 1)j (] Un+r-j+1O Ok
r=1 j=0 =1 k=1
N-1 i R 2 @
+a. a. (' 1)l ()a Qn+r-j O On+k
i=0 j=0 =1 k=1-i

Using the periodicity of Q and U, and interchanging
summations, it can be shown[13] that this reducesto

g &
aXu=aQu O

r=1 r=1
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Figure 2. Block diagram of a high order sgma delta modulator.

This shows that the quantized output over one period
depends only on the input over one period, and not
directly on the integrator outputs U or the gain terms
p. If the period of X is 1, then this becomes constant
input and the conclusions of previous authors are
valid[10-12]. Also, since U is periodic and Q, depends
solely on U, the period of Q, Po, must be adivisor of
Py, and is possibly equal to Py. From (8),

_2 _8 _
Xn+PU - Xn =a Xn+r - Xn+r =a Qn+r - Qn+r-l _0(9)

r=1 r=1
So the period of X, Pxisadivisor of Py, althoughitis
not necessarily equal to the period of Q. Using these
relationships, it can be proven that Py is the smallest
positive integer such that for all

P, & & . .
n,—a Xi., =a Q., . This is demonstrated in all

X i=1 i=1

simulations depicted in Table 1. So for a two level

PU
quantizer of the form givenin(2), é_ X = Ccwherec
i=1
isaninteger suchthat - R, £c£R) .
Equation (7) has further implications. It is possible for
P, P * P, as shown in Table 1. Py is the

X U Q’

fundamental period, in the sense that both Py and Pq
must be divisors of Py. The quantized output can
have a shorter period than that of the sampled input.
Limit cycles appear in the power spectrum as sharp
peaks. Hence this is problematic because it implies a
significant difference between the frequency of the
input and output signals. This can result in phantom
freguencies in the output of sigma delta modulation
when used in audio processing. This effect may be
avoided by using alternative modulator designs. It
may be minimised through the addition of dither,
which breaks up limit cycles.

5. SINUSOIDAL INPUTS

Consider sinusoidal input, Asin(2p f,t +f ). This

does not guarantee periodic output. Initial conditions,
quantization levels, gain terms, and sampling

3

frequency all have an effect on whether periodic
output is produced. Suppose the sampling frequency
fs and the sine wave frequency f,, have a common
denominator, f, = f,a/b. Then the input is periodic

with period a and the necessary condition for periodic
output is satisfied. In an SDM with real world input,
these assumptions may be approximately true or true
for alimited input sequence.

Now assume that the sampling frequency is some
integer multiple, greater than one, of the sine wave
frequency, f, = f (c+1). Then it can be shown that

over one period, the sum of the input over one period
of the sinewave is0, regardless of phase

c+l
& Asin(2p f,(r/ f,)+f) =0 (10)
r=1
Equation (8) implies
c+l
aQ. =0 (1)

r=1

This is a simple requirement for limit cycles to exist
with the same period as the sinusoidal input. It has no
dependence on the phase or amplitude of the
waveform, the initial conditions of the integrators and
quantizers, or the gain terms in the modulator design.
If the modulator design does not allow for (11) to
hold, then we have a situation where a frequency
existsin theinput but not in the output.

o
A Xo | Pl Py | Pq
3/5 3 |15]5
213 2 |6 |3
312 3 |6 |2
312 3 |6 |6
12 3 |6 |6
13 2 |6 |6
13 3 |9 |9
2 3 |3 [3

Table 1. Simulations from a first order SDM without
gain. Quantised valuesare either Oor 1.
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These arguments can be extended to find similar
conditions for the existence of limit cycles with other
types of input, such as the sum of several sinusoids,
or sinusoids with a different relationship between
sampling frequency and Nyquist frequency.

6. DEPENDENCE ON INITIAL CONDITIONS

In Section 4, we showed that (6) was necessary for
limit cycle behavior in the integrator output. In the
case of afirst order modulator, thisis also a sufficient
condition. This can be shown by assuming that it
holdsfor afirst order SDM, e. g., for some P,

$ $
A Xnss =aA Ques 12
s=1

s=1
As can be seen from Figure 2 or Equation (5) with
N=1, for a first order SDM with gain, the integrator
output is given by
Un+1 :U n + plxn - plQn (13)
So we can apply thisformula P timesto derive U,.p as
afunction of U,,.

p-1 P-1
Upp = PA Xoi +U, - RA Qui =U, (19)

i=0 i=0
and we can similarly show that if (12) does not hold
for some value r smaller than P, then the integrator
output can not have periodr. That is,
(r<P)P ($n)JU,. *U,] (15

So (8) is a necessary and sufficient condition for
periodicity in a first order SDM. Periodicity is
independent of initial conditions and gain terms.
Furthermore, we can determine if periodic behavior is
possible for an input by looking at the alowable
quantiser states. Unfortunately, we cannot say the
same about higher order modulators. Consider a
second order modulator where we attempt to repeat
Equations (12) to (14) for period 3 If we sum the
difference equations and make use of (8),

Un+3 =U n+( plQn. 1 p1Q.-.+z + Un+2 - Un.l) (16)
Thus, in general, (8) is not a sufficient condition for
periodic behaviour in second and higher order
modulators. It is only a necessary one. On the other
hand, if we assume period three behaviour then the
difference equationsyield,

3(Un+1 - Un) = plpzxn - p1p2xn+1 (17)
- p1(2+ pz)Qn + p1Qn+ 2t p1(1+ p2)Qn+1

So integrator output depends explicitly on input,
guantised output values, gain and previous integrator
output. Since U, isafunction of U, and Uy, (17) states
that one can not set Uy and U, arbitrarily and still
have periodic behaviour beginning at U,. In other
words, the initial conditions must be specified for a
given period with given quantised output.
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Figure 3. Power spectra for athird order SDM with
Px=5, Po=4, and P,=20. (a) represents input, (b)
quantized output and (c) integrator output. Ideally,
these spectra would be identical with the exception of
artifactsthat could be easily filtered.

In general, an N™ order SDM requires N initia
conditions, of which only 1 can be set arbitrarily for
periodic output. This dependence on initial
conditions is often neglected in the literature on limit
cycles in sigma delta modulators, yet its implications
are huge. Although, as shown, limit cycles may exist
in high order modulators, and with nonconstant input,
dependence on initial conditions guarantees that they
are rare. Furthermore, with higher order modulators
there are more initial conditions to set. Thus we have
revealed an additional benefit of high order sigma
delta modulation: the decreased likelihood of the
existence of unwanted limit cycles.

7. RESULTS

The results in Table 1 were easy to find because they
were from afirst order SDM and had no dependence
on initial conditions. In order to show the validity of
this work, limit cycles must be found for nonconstant
(possibly sinusoidal) input in high order modulators,
and produce output periods different from the input
period. A linear equation solver was used to find
initial conditions that give limit cycles. Due to
instability and sensitivity to small errors, periodic
behavior is not guaranteed. Still, the conclusions
have been verified in numerous simulations.
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Figure 4. A delay coordinate embedding plot of the
period 20 integrator output. 2* samples have been
plotted and it isclear that period 20 behavior persists
throughout the entire data set.

Sinusoidal input, 0.97sin(2pn/5+0.71p), was applied to
athird order SDM such that the input had period 5.
Gain terms were set to p;=0.91, p,=0.66 and p5=0.77,
U,=0.8, and U; and U, were determined using alinear
equation solver to find initial conditions that gave
periodic behavior with Po=4, Py=20. In practical
situations these conditions could occur through
appropriate input before periodic input commences.

This system produced the extreme situation of
P, * B, * R,. As depicted in Figure 3, it resulted in

X
different power spectra for input, integrator output,
and quantiser output. Assuming the input signal was
in the audible range, the differing frequencies that
appear are of ahigh enough power that they would be
audible and could not be simply filtered.
Although Py=20, it does not result in a peak at 0.05
kHz. The limit cycle need not correspond with
sinusoidal behavior. Peaks occur at 0.2 and 0.25 kHz.
Figure 3(b) reveals that quantization erases evidence
of the input frequency. This effect is also revealed in
Figure 4, where successive values of U, are plotted
against each other. The 20 values are grouped into 4
groups of 5, where the 5 values in a group correspond
to 5 input values, and the 4 groups correspond to
possible quantization values Q, and Qy.1.
The structure and combinations of limit cycles that
may exist are rich and diverse. Consider setting
p,=0.27, p,=0.65 and p;=0.20 with initial conditions
Uy=0.19, U;=-0.109952 and U,= 0.191989. A period 3
limit cycle input is applied, X,=0.17, X.+,=0.31 and
Xiw2=-0.48 (such a limit cycle could also have been
produced by sinusoidal input).
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Figure 5. Power spectrafor athird order sgmadelta
modulator where the input has period 3, and both
guantized output and integrator output have period
18. (a) represents the power spectrum for the
sinusoidal input, (b) for the quantized output and (c)
for theintegrator output before quantization. Despite
the fact that quantized output and integrator output
have the same period, they exhibit very different
power spectra.
This results in both integrator output and quantized
output having period 18. However, as indicated in
Figure 5, they exhibit very different power spectra,
neither of which bears much relation to the original
input spectrum An explanation is given by viewing
the time delay plot of integrator output, Figure 6.
Rather than the points being grouped into four
regions as in Figure 4, the points follow a path around
an ellipse, with symmetry broken only when the
quantiser flips.
The quantized values consist of a sequence of 9 ones
followed by 9 minus ones. Quantization destroys
nearly all information regarding the output, and leaves
only information concerning its period. This explains
why Figure 5(b) shows no evidence of simple
sinusoidal behavior. One may interpret this as
indicating that information regarding the input signal
islost first through integration, and further destroyed
by quantization. This is another indication that
problematic limit cycles must be avoided.
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Figure 6. A delay coordinate embedding plot of the
period 18 integrator output. Values follow a path
around half an ellipse, until the quantizer flips, and
themirror image of the path isfollowed.

8. CONCLUSION

We showed that a compact form can be used to
represent high order sigma delta modulators. This
representation allows us to prove that periodic
integrator output implies periodic input, and that the
average output over one period depends on the
average input. Because the two periods may differ, a
limit cyclein theinput signal may result in alimit cycle
of different length occurring in the output.

For a first order modulator, equivalence of average
input and average quantized output over a number of
iterations is a necessary and sufficient condition that
will guarantee periodic behavior. For second and
higher order modulators, this is only a necessary
condition. Initial conditions must also be found.
Nevertheless, as verified by simulations in high order
sigma delta modularors, these limit cycles do exist and
can result in the input frequency being removed in the
output, or replaced by different frequencies.

The theoretical results can be used to analyze the
conditions for periodic output in the case of
sinusoidal input. For instance, it was shown that a
pure sine wave input with a Nyquist frequency that is
a multiple of the sampling frequency can produce
periodic output only if the sum of the quantizer
output is zero over one period.

A framework has been laid down for further analysis.
Ongoing work is being made to show both necessary
and sufficient conditions for limit cycle behavior in a
variety of sigma deltamodulator designs. Cascaded or
multistage modulator designs may be analyzed using
similar techniques. An inverse approach, assuming
limit cycles in the input, may be used with some
designs to prove the existence of limit cycles in the

Limit Cycesin Sgma Ddta Modulators

output. This is more difficult because of the effects of
initial conditionson quantizer and integrator outputs.
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