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ABSTRACT 
 
A compact form can be used to describe an arbitrary high order sigma delta modulator. This  provides insight into the 
structure of limit cycles in sigma delta modulators. We consider modulators of any order with periodic output. We 
make no assumptions regarding the input and are thus able to prove necessary conditions for limit cycles in the 
output. We show that the input must be periodic, but may have a different period from both integrator output and 
quantised output. We derive what this implies regarding limit cycles for sinusoidal inputs. Finally, we give examples 
where sinusoidal input to a third order modulator results in a limit cycle of a different frequency. 
 

1. INTRODUCTION 

Sigma delta modulators (SDMs) operate using a trade-off 
between oversampling and low-resolution quantization. 
A signal is sampled at much higher than the Nyquist 
frequency, typically with one bit quantization, so the 
signal may be effectively quantized with a high 
resolution. Recent work has concentrated on tone 
suppression[1], multibit modulation[2], compression[3, 4] 
and chaotic modulation[5]. Sigma delta modulators are 
used in A/D and D/A converters and in audio processing 
systems . The Sigma-Delta bitstream format is used for 
mastering and archiving of audio recordings[6, 7].  
Unfortunately, sigma delta modulators are susceptible to 
limit cycle oscillations that are not present in the input 
signal. These idle tones may be audible to the listener 
when SDMs are used for audio signal processing. 
Considerable work has been done on the identification of 

limit cycles in first and second order SDMs with constant 
input, but a general theory has not yet been formalized.   
Most previous analysis assumed constant input. This is 
invalid in most cases. Although the data is oversampled 
at a high rate, this is not sufficiently high as to make the 
input appear constant over a long sequence of samples. 
For situations where the limit cycle may be audible, i.e., 
high periodicity, the assumption of constant input has 
been violated. We extend existing theory and determine 
necessary conditions for the existence of limit cycles in 
SDMs with nonconstant input. We assume periodic 
behaviour in the output to determine input structures 
that lead to limit cycles. We derive theorems that classify 
the limit cycle behavior for different types of input, and 
the requirements to produce a limit cycle. These 
theorems are a contribution towards a general theory of 
limit cycles behaviour in SDMs of any order. 



Reiss and Sandler Limit Cycles in Sigma Delta Modulators 
 

 AES 114TH CONVENTION, AMSTERDAM, THE NETHERLANDS, 2003 MARCH 22-25 
2 

 
Figure 1. The simplest sigma delta modulator. 
 

2. BACKGROUND 

The simplest first order SDM, as depicted in Figure 1, 
consists of a 1-bit quantizer embedded in a negative 
feedback loop which contains a discrete-time integrator. 
The input is sampled at a frequency higher than the 
Nyquist frequency and is converted into a binary output. 
The system may be represented by the map[8]  

1 1 1n n n nU U X Q− − −= + −       (1) 

where X represents the input signal, bounded by -1 and 
+1 and  Q is the quantizer 

1 if 0
1 if 0

n
n

n

U
Q

U
≥

= − <
          (2) 

All of the following calculations are valid for a different 
or multilevel quantizer, with suitable scaling. In this 
representation, the output Qn represents the quantization 
of input Xn-1. On average, the quantized output will be 
approximately equal to the input. This system works by 
quantizing the difference between the input and the 
accumulated error. When the error grows sufficiently 
large, the quantizer will flip in order to reduce the error.   
A typical commercial implementation of a sigma delta 
modulator is far mo re complicated. It uses multiple loops 
to assist in the shaping of the noise. Gain terms are used 
to enforce stability[9], to refine noise shaping, or due to 
integrator leakage[10]. Quantized output is not 
determined solely by the previous input and the 
accumulated error. Initial conditions can not always be 
set to 0. These higher order modulators are often less 
stable and analysis becomes problematic.  

3. COMPACT REPRESENTATION 

We begin with a simple form of high order modulator, 
represented in Figure 2. We note first that some sigma 
delta modulators may not fit this form[11], since gain 
terms are sometimes placed after the delay term. 
However, many practical implementations of SDMs fit 
the form of Figure 2, and this representation includes the 
generic models of first and second order sigma delta 
modulators with integrator leak such as in [12]. 
Gain terms are represented by p1,p2,…pN. They may be 
imposed in order to give the SDM specific noise shaping 
characteristics, or due to circuit imperfections. If all gain 
terms are unity, this reduces to the generic first or 
second order stable modulators that have been studied 
extensively throughout the literature. Bm,n represents the 

input to the mth accumulator due to the nth input to the 
sigma delta modulator. Due to the action of an 
accumulator in Figure 2, the following recursive 
relationship holds for the mth accumulator, 

1, , , 1 1( )m n m n m n m nB B B q Q+ − += − +             (3) 

Where for any n and m, B0,n=Un+1, BN,n=Xn and qm=1/pm.  
By induction, (3) leads to the following compact form for 
an Nth order SDM. 
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Or equivalently, for any Nth order modulator at time n, 
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A full derivation of these formulas is given in [13]. 
Equation (5) provides a compact representation which 
represents current integrator output (and hence current 
quantized output) as an explicit function of the last input 
and the N previous integrator outputs. 
This simplifies the math used in analysis of sigma delta 
modulators, and because it allows for fast simulation 
(and realization) of such a system. Similar compact 
representations can be devised for positioning the gain 
terms elsewhere in the noise shaping loop, or for other 
modulator designs. However, these forms do not always 
yield a simple analysis of limit cycle behavior.  
 

4. LIMIT CYCLE BEHAVIOR 

Assume that the integrator output, U is periodic with 
period PU, so  

( )[ ]&( )( )[ ]
Un P n U n r nn U U r P n U U+ +∀ = ∀ < ∃ ≠    (6) 

The second half of (6) was included to indicate that the 
period is not a divisor of Up. The first consequence of 
this is that Q must be periodic, since the quantizer Qn is 
strictly a function of  Un. If we sum the input signal over 
one period and interchange summations, then (4) leads to 
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Using the periodicity of Q and U, and interchanging 
summations, it can be shown[13] that this reduces to 

1 1

U UP P

n r n r
r r

X Q+ +
= =

=∑ ∑      (8)  
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Figure 2. Block diagram of a high order sigma delta modulator. 

 
This shows that the quantized output over one period 
depends only on the input over one period, and not 
directly on the integrator outputs U or the gain terms 
p. If the period of X is 1, then this becomes constant 
input and the conclusions of previous authors are 
valid[10-12]. Also, since U is periodic and Qn depends 
solely on Un, the period of Q, PQ, must be a divisor of 
PU, and is possibly equal to PU.  From (8),  

1
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So the period of X, PX is a divisor of PU, although it is 
not necessarily equal to the period of Q.  Using these 
relationships, it can be proven that PX is the smallest 
positive integer such that for all 

n,
1 1

UX PP
U

i n i n
i iX

P
X Q

P + +
= =

=∑ ∑ . This is demonstrated in all 

simulations depicted in Table 1. So for a two level 

quantizer of the form given in (2),  
1

UP

n i
i

X c+
=

=∑ where c 

is an integer such that U UP c P− ≤ ≤ .  

Equation (7) has further implications. It is possible for 

X U QP P P≠ ≠ , as shown in Table 1. PU is the 

fundamental period, in the sense that both PX and PQ 
must be divisors of PU. The quantized output can 
have a shorter period than that of the sampled input. 
Limit cycles appear in the power spectrum as sharp 
peaks. Hence this is problematic because it implies a 
significant difference between the frequency of the 
input and output signals. This can result in phantom 
frequencies in the output of sigma delta modulation 
when used in audio processing. This effect may be 
avoided by using alternative modulator designs. It 
may be minimised through the addition of dither, 
which breaks up limit cycles. 
 

5. SINUSOIDAL INPUTS 

Consider sinusoidal input, 0sin(2 )A f tπ φ+ . This 

does not guarantee periodic output. Initial conditions, 
quantization levels, gain terms, and sampling 

frequency all have an effect on whether periodic 
output is produced. Suppose the sampling frequency 
fs, and the sine wave frequency f0, have a common 
denominator, 0 /sf f a b= . Then the input is periodic 

with period a and the necessary condition for periodic 
output is satisfied. In an SDM with real world input, 
these assumptions may be approximately true or true 
for a limited input sequence.  
Now assume that the sampling frequency is some 
integer multiple, greater than one, of the sine wave 
frequency, 0 ( 1)sf f c= + . Then it can be shown that 

over one period, the sum of the input over one period 
of the sine wave is 0, regardless of phase. 
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Equation (8) implies  
1
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=∑                               (11) 

This is a simple requirement for limit cycles to exist 
with the same period as the sinusoidal input. It has no 
dependence on the phase or amplitude of the 
waveform, the initial conditions of the integrators and 
quantizers, or the gain terms in the modulator design. 
If the modulator design does not allow for (11) to 
hold, then we have a situation where a frequency 
exists in the input but not in the output. 

 

n
n

X∑  PX PU PQ 

3/5 3 15 5 
2/3 2 6 3 
3/2 3 6 2 
3/2 3 6 6 
1/2 3 6 6 
1/3 2 6 6 
1/3 3 9 9 
2 3 3 3 

Table 1. Simulations from a first order SDM without 
gain. Quantised values are either 0 or 1.  
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These arguments can be extended to find similar 
conditions for the existence of limit cycles with other 
types of input, such as the sum of several sinusoids, 
or sinusoids with a different relationship between 
sampling frequency and Nyquist frequency.  
 

6. DEPENDENCE ON INITIAL CONDITIONS 

In Section 4, we showed that (6) was necessary for 
limit cycle behavior in the integrator output. In the 
case of a first order modulator, this is also a sufficient 
condition. This can be shown by assuming that it 
holds for a first order SDM, e. g., for some P, 

1 1

P P

n s n s
s s

X Q+ +
= =
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 (12) 

As can be seen from Figure 2 or Equation (5) with 
N=1, for a first order SDM with gain, the integrator 
output is given by  

1 1 1n n n nU U p X p Q+ = + −
                       

(13) 

So we can apply this formula P times to derive Un+P as 
a function of Un. 
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and we can similarly show that if (12) does not hold 
for some value r smaller than P, then the integrator 
output can not have period r. That is, 

( ) ( )[ ]n r nr P n U U+< ⇒ ∃ ≠
                

(15) 

So (8)  is a necessary and sufficient condition for 
periodicity in a first order SDM. Periodicity is 
independent of initial conditions and gain terms. 
Furthermore, we can determine if periodic behavior is 
possible for an input by looking at the allowable 
quantiser states. Unfortunately, we cannot say the 
same about higher order modulators. Consider a 
second order modulator where we attempt to repeat 
Equations (12) to (14) for period 3. If we sum the 
difference equations and make use of (8), 

3 1 1 1 2 2 1( )n n n n n nU U p Q p Q U U+ − + + −= + − + −           (16) 

Thus, in general, (8) is not a sufficient condition for 
periodic behaviour in second and higher order 
modulators. It is only a necessary one. On the other 
hand, if we assume period three behaviour then the 
difference equations yield,  

1 1 2 1 2 1

1 2 1 2 1 2 1

3( )
(2 ) (1 )
n n n n

n n n

U U p p X p p X
p p Q p Q p p Q

+ +

+ +

− = −
− + + + +

             (17)  

So integrator output depends explicitly on input, 
quantised output values, gain and previous integrator 
output. Since U2 is a function of U0 and U1, (17) states 
that one can not set U0 and U1 arbitrarily and still 
have periodic behaviour beginning at U2. In other 
words, the initial conditions must be specified for a 
given period with given quantised output. 

 
Figure 3. Power spectra for a third order SDM with 
PX=5, PQ=4, and PU=20. (a) represents input, (b) 
quantized output and (c) integrator output. Ideally, 
these spectra would be identical with the exception of 
artifacts that could be easily filtered. 
 
In general, an Nth order SDM requires N initial 
conditions, of which only 1 can be set arbitrarily for 
periodic output. This dependence on initial 
conditions is often neglected in the literature on limit 
cycles in sigma delta modulators, yet its implications 
are huge. Although, as shown, limit cycles may exist 
in high order modulators, and with nonconstant input, 
dependence on initial conditions guarantees that they 
are rare. Furthermore, with higher order modulators 
there are more initial conditions to set. Thus we have 
revealed an additional benefit of high order sigma 
delta modulation: the decreased likelihood of the 
existence of unwanted limit cycles. 
 

7. RESULTS 

The results in Table 1 were easy to find because they 
were from a first order SDM and had no dependence 
on initial conditions. In order to show the validity of 
this work, limit cycles must be found for nonconstant 
(possibly sinusoidal) input in high order modulators, 
and produce output periods different from the input 
period. A linear equation solver was used to find 
initial conditions that give limit cycles. Due to 
instability and sensitivity to small errors, periodic 
behavior is not guaranteed. Still, the conclusions 
have been verified in numerous simulations. 
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Figure 4. A delay coordinate embedding plot of the 
period 20 integrator output. 214

 samples have been 
plotted and it is clear that period 20 behavior persists 
throughout the entire data set. 

Sinusoidal input, 0.97sin(2πn/5+0.71π), was applied to 
a third order SDM such that the input had period 5. 
Gain terms were set to p1=0.91, p2=0.66 and p3=0.77, 
U0=0.8, and U1 and U2 were determined using a linear 
equation solver to find initial conditions that gave 
periodic behavior with PQ=4,

 
PU=20. In practical 

situations these conditions could occur through 
appropriate input before periodic input commences. 
This system produced the extreme situation of 

X U QP P P≠ ≠ . As depicted in Figure 3, it resulted in 

different power spectra for input, integrator output, 
and quantiser output. Assuming the input signal was 
in the audible range, the differing frequencies that 
appear are of a high enough power that they would be 
audible and could not be simply filtered.  
Although PU=20, it does not result in a peak at 0.05 
kHz. The limit cycle need not correspond with 
sinusoidal behavior. Peaks occur at 0.2 and 0.25 kHz. 
Figure 3(b) reveals that quantization erases evidence 
of the input frequency. This effect is also revealed in 
Figure 4, where successive values of Un are plotted 
against each other. The 20 values are grouped into 4 
groups of 5, where the 5 values in a group correspond 
to 5 input values, and the 4 groups correspond to 
possible quantization values Qn and Qn+1. 
The structure and combinations of limit cycles that 
may exist are rich and diverse. Consider setting 
p1=0.27, p2=0.65 and p3=0.20 with initial conditions 
U0=0.19, U1=-0.109952 and U2= 0.191989.  A period 3 
limit cycle input is applied, Xn=0.17, Xn+1=0.31 and 
Xn+2=-0.48 (such a limit cycle could also have been 
produced by sinusoidal input).  

 

 
Figure 5. Power spectra for a third order sigma delta 
modulator where the input has period 3, and both 
quantized output and integrator output have period 
18. (a) represents the power spectrum for the 
sinusoidal input, (b) for the quantized output and (c) 
for the integrator output before quantization. Despite 
the fact that quantized output and integrator output 
have the same period, they exhibit very different 
power spectra. 
This results in both integrator output and quantized 
output having period 18. However, as indicated in 
Figure 5, they exhibit very different power spectra, 
neither of which bears much relation to the original 
input spectrum. An explanation is given by viewing 
the time delay plot of integrator output, Figure 6. 
Rather than the points being grouped into four 
regions as in Figure 4, the points follow a path around 
an ellipse, with symmetry broken only when the 
quantiser flips. 
The quantized values consist of a sequence of 9 ones 
followed by 9 minus ones. Quantization destroys 
nearly all information regarding the output, and leaves 
only information concerning its period. This explains 
why Figure 5(b) shows no evidence of simple 
sinusoidal behavior. One may interpret this as 
indicating that information regarding the input signal 
is lost first through integration, and further destroyed 
by quantization. This is another indication that 
problematic limit cycles must be avoided. 
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Figure 6. A delay coordinate embedding plot of the 
period 18 integrator output. Values follow a path 
around half an ellipse, until the quantizer flips, and 
the mirror image of the path is followed. 

8. CONCLUSION 

We showed that a compact form can be used to 
represent high order sigma delta modulators. This 
representation allows us to prove that periodic 
integrator output implies periodic input, and that the 
average output over one period depends on the 
average input. Because the two periods may differ, a 
limit cycle in the input signal may result in a limit cycle 
of different length occurring in the output.  
For a first order modulator, equivalence of average 
input and average quantized output over a number of 
iterations is a necessary and sufficient condition that 
will guarantee periodic behavior. For second and 
higher order modulators, this is only a necessary 
condition. Initial conditions must also be found. 
Nevertheless, as verified by simulations in high order 
sigma delta modularors, these limit cycles do exist and 
can result in the input frequency being removed in the 
output, or replaced by different frequencies. 
The theoretical results can be used to analyze the 
conditions for periodic output in the case of 
sinusoidal input. For instance, it was shown that a 
pure sine wave input with a Nyquist frequency that is 
a multiple of the sampling frequency can produce 
periodic output only if the sum of the quantizer 
output is zero over one period.  
A framework has been laid down for further analysis. 
Ongoing work is being made to show both necessary 
and sufficient conditions for limit cycle behavior in a 
variety of sigma delta modulator designs. Cascaded or 
multistage modulator designs may be analyzed using 
similar techniques. An inverse approach, assuming 
limit cycles in the input, may be used with some 
designs to prove the existence of limit cycles in the 

output. This is more difficult because of the effects of 
initial conditions on quantizer and integrator outputs.  
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