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ABSTRACT

We present a mathematical framework, based on state space modelling, for the description of limit cycles of Sigma
Delta Modulators (SDMs). Using a dynamical systems approach, the authors treat sigma delta modulators as
piecewise linear maps. This enables us to find all possible limit cycles that might exist in an arbitrary sigma delta
modulator with predefined input. We then focus on a DC input analyse their stability and show exactly the amount
of dither that is necessary to remove any given limit cycle. Using several different SDM designs, we locate and
analyse thelimit cycles and thus verify the results by simulation.

1. INTRODUCTION

Although many aspects of sigma delta modulation
can be understood in the approximation of linear
modelling the device(see, for example, [1]), limit
cycles (LCs) are a phenomenon occurring in sigma
delta modulators (SDMs) which can not be explained
in this model. There have been several important
advances towards a theory of limit cycles[2-4], but
there is no unified description[5]. Instead, different
models are applicable to different SDM designs, with
limited results.

In practica implementations it is important that
measures are known to sufficiently prevent limit
cycles. In order to be able to achieve this, proper

understanding of the phenomenon is mandatory. The
work described in this paper aims at exactly this, thus
handing the practical engineer the necessary tools to
design and build a modulator, without the need to
perform numerous simulations afterwards to check
for phenomena such as limit cycles.

2. LIMIT CYCLES
2.1. State Space Description

A highly convenient way to describe the time domain
behaviour of an SDM is the state space description.
This represents the state of the SDM at any time as a
matrix operation applied to the state at the previous
clock cycle. The power of the state space description
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is that it alows us to create a very compact
description of the propagation of the SDM from time
t=0totimet=n.
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Figurel. Statesin a5™ order SDM.

For an N order SDM,
S(”*'l) =A S(”) + (u(n) - y(n)) d (1)
where (ignoring dither)

N
o
v = § cs™ =c"s™

=1 2
Y =sgn(i")

A is the transition matrix and d describes how input
and feedback are distributed. This description gives
the state of the SDM in terms of a transition matrix
applied to te previous state vector, and a vector
applied to the scalar quantisation error, u™-y™.

For the 8" order modulator described in Figure 1,
d=(1,0,0,0,0)" and the transition matrix is

a0 0 0 06
gll-flo 0>
A=G0 1 1 0 0+ (3)
(; -
©O0 1 1-f.
0 0 0 1 14

Repeated application of (1) leads to
n-1
S(n) = A" S(0) +[é @(i) _y(i))An-i-l ] d (4)

i=0

From this representation, we see that the initia
integrator states are an offset to the signal. The
spectrum of the signal is determined completely by
terms independent of the initial state. Hence, this
confirms the known fact that the signal content of a
modulator is not determined by its initial integrator
states.

2.2. Limit Cycle Conditions
The compact representation gives the means to

directly view the consequences of alimit cycle. If the
limit cycle has period P we have, by definition,
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gmP) = & (5)
By combining, (5) and (4), and rearranging terms, we
obtain

p-1
s =(1-AP) @ UV -y)A™ 1 d (6
i=0
As a conseguence, we have a strict set of necessary
(but not sufficient!) equalities that need to hold for
theinitial statesif such alimit cycleis sustained.
From this, we can obtain a unique value for the initial
state s¥ if, and only if, the inverse of the matrix (I —
A") exists. We assume that a solution or solution
space exists.

So far, the appearance of the limit cycle has not been
specified, except that it is of period P. However, if
the limit cycle is now defined as a sequence of
guantiser inputs, we can produce a set of inequalities
required by the limit cycle. For eachyy;,

vy =c's"” >0 )

For SDMswhich do have apole at DC, and thus have
infinite gain for DC, the sequence aso completely
determines the input u = u(i) to the SDM in case the
inputisaDC value.

_ 151
u® oy ==a y(l) (8)
i=0
The inaccuracy made here is that the possibility that
v(i)y(i) = O has been left out. As this equality occurs
with probability zero over the continuously variable
value of v(i)y(i), this is supposed to be not much of a
problem. We thus have a set of equalities, and a set of
inequalities that need to be fulfilled in order to have a
valid limit cycle.

3. Disturbing the limit cycle

In the previous section, the remark has been made
that the matrix (I — AP) may not be invertible. Thisis
a rather interesting observation, which can be
exemplified by the following. The zeroes of the NTF
of a SDM are given by the eigenvalues of the
transition matrix A. Hence, for a classical SDM
which has al its loop filter poles a DC, al
eigenvalues of A will be one, as aresult of which the
inverse does not exist - hence, there is no unique
solution to s%. On the other hand, if we have a SDM
of even order O resonator sections, al loop filter
poles will occur for frequencies other than DC. As a
result, there will exist one - and one only — initial
state s© that results in a limit cycle of period P! Most
often, SDMs have at least a single zero at DC to
avoid DC drift. In the following, we will make a
separation in two main categories of SDMs: those
with and without poles at DC. The SDMs with poles
at DC will be further subdivided in two categories:
those with poles at DC for the last two integrator
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sections; and those with poles away from DC for the
last two integrator sections.

3.1. SDMs with DC Poles

In the case that the SDM has at least one of its poles
at DC, the matrix (I — A" ) is singular, and, hence, not
invertible. To still solve (6) for that case, we create
the singular value decomposition (SVD) of (I —
AP)6]:

- AP =Usv’ 9)
The matrices U and V are the left and right singular
vectors, respectively, and Sis a diagona matrix
containing the singular values of (I — A" ). When the
SDM is not reducible, exactly one of the singular
values will be zero. This has the interesting
consequence that the last column of V, i.e, the null
spaceof (I — A7), is a non-relevant direction since it
is always multiplied by zero. Thus the complete set
of solutionsisaline.
The SVD comes in helpful too, in obtaining an initial
solution s, as a minimum norm solution. For each
inequality we can write an equality which determines
a critical distance from the initial point sy, a which
the k™ constraint is on the edge of being violated. The
distance is a measure for the maximum disturbance
that can be applied to alimit cycle before it breaks
up.
We will now investigate the nature of the disturbance
that can be applied to the SDM, before the limit cycle
breaks up. We will separate this for SDMs with only
DC poles, and SDMswith at |east one DC pole.

3.1.1.Last integratorswith DC Poles

The question that needs to be answered is what the
null-space looks like. For the current case, we have
DC poles for the last two integrator sections, which
translates to the fact that the last column of the
transition matrix A is given by (0, 0, ...0, 1) . This
means that we can alter the state of the last integrator
over a range without breaking up the limit cycle.
However, the effect of changing the last integrator
state is nothing else but adding dither just before the
quantizer, as depicted inFigure 1. For example, when
the last integrator state is changed by an amount d
thisis equivalent to adding a value cdto the input of
the quantizer. Thus, the approach in Sec. 2 provides
us with the means to define a minimumdither level
which is necessary to break up alimit cycle.

3.1.2.At least one DC Poles (but not made by last
2 integrators)

In case the last two integrator sections form a
resonator, the null space doesn't have the simple
shape anymore as in the previous section. In fact, if
the feedback coefficient in the last two integrator
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sections equals f, it can be shown that to very good
approximation the null-space is given by v0=(0,... f,
0, )" Hence, in order not to disturb a limit cycle
when changing the last integrator section, the third
integrator state should also be changed. Althoughiitis
not as easy to define the exact minimum level of
dither that needs to be added to the quantizer (i.e.,
change the last integrator state), it till is possible to
define a value of dither which is at equal or bBrger
than the minimum amount.

3.2. No DC Poles

A special situation arises when the SDM has no DC
poles. In that case, the null spaceis zero: thereis only
one solution. If this solution also complies with al
inequalities, this solution results in a limit cycle.
Because the null space is zero, any change of the
integrator states would result in a break-up of the
limit cycle.

4. EXAMPLES

The results of the work detailed in the preceding part,
have been used to obtain some results on 4 different
Noise transfer functions (NTFs), which have been
implemented in both feedforward as well as feedback
SDMs. The SDMs areindicated in the table below.

Table 1. List of SDMsanalysed in simulation, and
their corresponding codesin the text.

NTF Type Code
Aggressive, with resonators la
Aggressive, without resonators 1b
Non-aggressive, with resonators 2a
Non-aggressive, without resonators | 2b

In the following sections, we will discuss results for
both SDM types (which implement identical NTFs)
to judge whether how the implementation topology
influences the limit cycle behaviour.

4.1. Feedforward SDMs

In Figure 2, the occurrence of limit cycles as a
function of the feedback coefficients is presented.
The figure represents all independent limit cyclesl
that could exist with lengths ranging from 3 to 30
bits. All possible DC values are represented by these
limit cycles, and it should be mentioned that, while
some of these limit cycles theoretically exist, cannot
occur in practice. For example, it is possible to define
alimit cycle corresponding to an input of 0.9, where
none of the SDMs studied would be capable of
representing this DC level without running into
instability.
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Figure2 Occurrence of limit cycles of SDM 2a and
2b.

It is apparent immediately from Figure 2, that the
presence or absence of resonator coeficients is
immaterial to the number of limit cycles that can
occur. The same is approximately true when
comparing SDM 1a and 1b (not shown). However,
this is not so anymore when comparing the
aggressive SDM 1a and the non-aggressive SDM 2a
in Figure 3.
Rather counterintuitive, the SDM 1la displays more
limit cycles than SDM 2a; one would expect the
reverse to be true. While the number of limit cycles
for SDM 2a is increasing exponentially, SDM 1la
shows two different regions, where up to alimit cycle
length of about 20, the number of possible limit
cycles increases exponentialy. For larger limit
cycles, the growth reduces significantly - and, in fact,
one could wonder whether at some point the two
curvesin Figure 3 cross.
While the absolute number of limit cycles increases
rapidly, relative to the number of possible permutions
of +1s and -1s it is reducing rapidly as is
demonstrated in Figure 4. The total number Np of
permutations for a limit cycle of length P is
approximately given by[3]:

N, » 2P/P (10)

The division by P corrects for the fact that of al 2P
permutations, exactly P represent a cyclicly shifted
version of the same basic limit cycle. To obtain the
exact number of irreducible limit cycles, correction
should be made too for the number of limit cycles
that are a concatenation of smaller limit cycles.
However, for reasonable P, this number is much
smaller compared to Np and thusignored.
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Figure 3 Occurrence of limit cycles of SDM 1a and
2a.

In Figure 5, the minimum dither level that is needed
to certainly break up the most stable limit cycle is
depicted. In red and blue, the most stable limit cycle
for SDM 1la and 2a, respectively, for DC input is
depicted. While slightly more stable limit cycles can
sometimes be found for non-DC inputs, these
situations do not represent a practical situation. The
first interesting observation is that the limit cycles for
the aggressive SDM 1a are more stable than those of
the less aggressive SMD 2a. This is quite counter-
intuitive. Also, we can see that there is a very stable
limit cycle occurring around limit cycle length 22 for
SDM 1a, and for limit cycle length 32 for SDM 2a.
Upon investigation of these limit cycles, it appeared
that they consist of a series of 11 1sfollowed by 11 -
1s for SDM 1a, and likewise 16 1s and 16 -1s for
SDM 2a. This corresponds to a square wave of
frequency 120 kHz and 80 kHz, respectively, which
are exactly the corner frequencies of the NTF design
of the SDMs. In practice, however, these limit cycles
could never occur; upon the slightest disturbance of

the integrators, the SDM becomes unstable.
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Figure 4 Relative occurrence of limit cycles of
SDM 1la and 2a with respect to all permutations
of bits.
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This is to be contrasted with the limit cycle behavior
for other limit cycle lengths. The shortest limit cycle,
the sequence {1,-1}, appears to be most stable
(disregarding the previously discussed limit cycles)
for both SDMs. For longer limit cycles, the amount
of dither needed for break-up decreases to a
minimum value close to the peak, after which the
limit cycle becomes more stable. All these limit
cycles consist of the sequence {-1,1,-1,1, ... -1,1,-1-
1,1,1}, which represents the minimally possible
deviation for the simple {-1,1} sequence. While these
most stable limit cycles slightly increase in stability
for longer limit cycles, on average the amount of
dither necessary for break-up decreases. This is
indicated in green and magenta for SDM 1a and 1b,
respectively, in Figure 5. The average amount of
dither is defined as the average of the minimum
dither levels that are needed to break up the
individual limit cycles. Again, we see that SDM la
presents limit cycles that are in general more stable
than those of SDM 2a. At limit cycle lengths of 42,
the average amount of dither is reduced to about 0.03
and 0.017 for SDM 1a and 2a, respectively, which is
consists with the intuition that longer limit cycles
represent more boundary conditions to be fulfilled
and are thus more easy to break up.
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Figure5. Minimum level of dither needed to break
up alimit cycle corresponding to DC input zero.

Another interesting characteristic to study is the
relative preference of the SDM for limit cycles of a
certain DC level. These results are displayed in
Figure 6 through 8 Conforming to the results in
Figure 3, in general SDM 1 exhibits many more
possible limit cycles for any DC level than SDM 2.
Also, we see that (as anticipated) the number of limit
cycles is identical for a certain DC level and the
negative DC level. However, whereas SDM 1 has
strong preference for limit cycle with small absolute
DC level, SDM2 apparently has little preference!
Moreover, where SDM 2 displays little dependence
on the presence of resonator sections, SDM 1 shows,
especially for the smalest DC levels some

Limit Cyclesin Sigma Delta Modulators

dependence, displaying most limit cycles when no
resonators are present. The reason for this behavior is

unclear.
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Figure 6. Occurrence of limit cycles as a function
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Figure9. Occurrence of limit cycles for SDM
la fb and 2a fb.

4.2. Feedback SDMs

In order to see how much of the limit cycle behavior
is determined by the implementation of the NTF in
either a feedforward or feedback structure, we have
performed some calculations on SDMs in feedback
topology, which implement identical NTFs as those
of SDM laand 2a[7]. We will refer to these SDMs as
la fband2a fb.

In Figure 9, the occurrence (for all DC values) of
limit cycles is indicated. When we compare these
results to the equivalent for a feedforward SDM,
Figure 3, hardly any difference in behaviour can be
observed. Perhaps even more informative is the
comparison with the stability of limit cycles. The
equivalent of Figure 5 for feedback type SDMs aso
reveadls a close correspondence between both
topologies.

5. CONCLUSION

This work is an attempt to construct and apply a
theory describing limit cycles in sigma delta
modulators. It has been shown that limit cycle
behavior can occur in a wide variety of situations,
often with unexpected results. This paper differs from
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previous work in that it is not limited to specific
modulator designs, strong constraints on the limit
cycle, or unproven conjectures. We have been able to
quantify how common the existence of limit cyclesis
for a given design, (in general need at least n-1 init
conditions filled) how stable they are, and how much
dither is required to remove them. Ongoing work
concerns how to put these results onto a more
rigorous mathematical basis, as will be shown in a
forthcoming paper.
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