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ABSTRACT 
 
We present a mathematical framework, based on state space modelling, for the description of limit cycles of Sigma 
Delta Modulators (SDMs). Using a dynamical systems approach, the authors treat sigma delta modulators as 
piecewise linear maps. This enables us to find all possible limit cycles that might exist in an arbitrary sigma delta 
modulator with predefined input. We then focus on a DC input analyse their stability and show exactly the amount 
of dither that is necessary to remove any given limit cycle. Using several different SDM designs, we locate and 
analyse the limit cycles and thus verify the results by simulation.  
 
1. INTRODUCTION 

Although many aspects of sigma delta modulation 
can be understood in the approximation of linear 
modelling the device(see, for example, [1]), limit 
cycles (LCs) are a phenomenon occurring in sigma 
delta modulators (SDMs) which can not be explained 
in this model. There have been several important 
advances towards a theory of limit cycles[2-4], but 
there is no unified description[5]. Instead, different 
models are applicable to different SDM designs, with 
limited results. 

In practical implementations it is important that 
measures are known to sufficiently prevent limit  
cycles. In order to be able to achieve this, proper 

understanding of the phenomenon is  mandatory. The 
work described in this paper aims at exactly this, thus 
handing the practical engineer the necessary tools to 
design and build a modulator, without the need to 
perform numerous simulations afterwards to check 
for phenomena such as limit cycles.  

2. LIMIT CYCLES 

2.1. State Space Description 

A highly convenient way to describe the time domain 
behaviour of an SDM is the state space description. 
This represents the state of the SDM at any time as a 
matrix operation applied to the state at the previous 
clock cycle. The power of the state space description 
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is that it allows us to create a very compact 
description of the propagation of the SDM from time 
t=0 to time t=n.  
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Figure 1. States in a 5 th order SDM. 

For an Nth order SDM,  
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A is the transition matrix and d describes how input 
and feedback are distributed. This  description gives 
the state of the SDM in terms of a transition matrix 
applied to the previous state vector, and a vector 
applied to the scalar quantisation error, u(n)-y(n).  
For the 5th order modulator described in Figure 1, 
d=(1,0,0,0,0)T and the transition matrix is  
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Repeated application of (1) leads to  
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From this representation, we see that the initial 
integrator states are an offset to the signal. The 
spectrum of the signal is determined completely by 
terms independent of the initial state. Hence, this 
confirms the known fact that the signal content of a 
modulator is not determined by its initial integrator 
states.  

2.2. Limit Cycle Conditions 

The compact representation gives the means to 
directly view the consequences of a limit cycle. If the 
limit cycle has period P we have, by definition, 

 ( ) ( ) n P n+ =s s  (5) 
By combining, (5) and (4), and rearranging terms , we 
obtain 
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As a consequence, we have a strict set of necessary 
(but not sufficient!) equalities that need to hold for 
the initial states if such a limit cycle is sustained.  
From this, we can obtain a unique value for the initial 
state s(0) if, and only if, the inverse of the matrix (I –  
AP ) exists. We assume that a solution or solution 
space exists.  
So far, the appearance of the limit cycle has not been 
specified, except that it is of period P. However, if 
the limit cycle is now defined as a sequence of 
quantiser inputs, we can produce a set of inequalities 
required by the limit cycle. For each yi, 

 ( ) 0T i
i iv y = >c s  (7) 

For SDMs which do have a pole at DC, and thus have 
infinite gain for DC, the sequence also completely 
determines the input u = u(i) to the SDM in case the 
input is a DC value. 
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The inaccuracy made here is that the possibility that 
v(i)y(i) = 0 has been left out. As this  equality occurs 
with probability zero over the continuously variable 
value of v(i)y(i), this  is supposed to be not much of a 
problem. We thus have a set of equalities, and a set of 
inequalities that need to be fulfilled in order to have a 
valid limit cycle. 

3. Disturbing the limit cycle 

In the previous section, the remark has been made 
that the matrix (I – AP) may not be invertible. This is 
a rather interesting observation, which can be 
exemplified by the following. The zeroes of the NTF 
of a SDM are given by the eigenvalues of the 
transition matrix A. Hence, for a classical SDM 
which has all its loop filter poles at DC, all 
eigenvalues of A will be one, as a result of which the 
inverse does not exist - hence, there is no unique 
solution to s (0). On the other hand, if we have a SDM 
of even order O resonator sections, all loop filter 
poles will occur for frequencies other than DC. As a 
result, there will exist one - and one only – initial 
state s (0) that results in a limit cycle of period P! Most 
often, SDMs have at least a single zero at DC to 
avoid DC drift. In the following, we will make a 
separation in two main categories of SDMs: those 
with and without poles at DC. The SDMs with poles 
at DC will be further subdivided in two categories: 
those with poles at DC for the last two integrator 
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sections; and those with poles away from DC for the 
last two integrator sections. 

3.1. SDMs with DC Poles 

In the case that the SDM has at least one of its poles 
at DC, the matrix (I – AP ) is  singular, and, hence, not 
invertible. To still solve (6) for that case, we create 
the singular value decomposition (SVD) of (I –  
AP)[6]: 
 P T− = ΣI A U V  (9) 
The matrices U and V are the left and right singular 
vectors, respectively, and Σ is a diagonal matrix 
containing the singular values of (I – AP ). When the 
SDM is not reducible, exactly one of the singular 
values will be zero. This has the interesting 
consequence that the last column of V, i.e., the null 
space of (I – AP ), is a non-relevant direction since it 
is always multiplied by zero. Thus the complete set 
of solutions is a line. 
The SVD comes in helpful too, in obtaining an initial 
solution smn as a minimum norm solution. For each 
inequality we can write an equality which determines 
a critical distance from the initial point smn at which 
the kth constraint is on the edge of being violated. The 
distance is a measure for the maximum disturbance 
that can be applied to a limit cycle before it breaks 
up.  
We will now investigate the nature of the disturbance 
that can be applied to the SDM, before the limit cycle 
breaks up. We will separate this for SDMs with only 
DC poles, and SDMs with at least one DC pole.   

3.1.1.Last integrators with DC Poles 

The question that needs to be answered is what the 
null-space looks like. For the current case, we have 
DC poles for the last two integrator sections, which 
translates to the fact that the last column of the 
transition matrix A is given by (0, 0, …0, 1) . This 
means that we can alter the state of the last integrator 
over a range without breaking up the limit cycle. 
However, the effect of changing the last integrator 
state is nothing else but adding dither just before the 
quantizer, as depicted in Figure 1. For example, when 
the last integrator state is changed by an amount δ, 
this is equivalent to adding a value cδ to the input of 
the quantizer. Thus, the approach in Sec. 2 provides 
us with the means to define a minimum dither level 
which is necessary to break up a limit cycle.  

3.1.2.At least one DC Poles (but not made by last 
2 integrators) 

In case the last two integrator sections form a 
resonator, the null space doesn't have the simple 
shape anymore as in the previous section. In fact, if 
the feedback coefficient in the last two integrator 

sections equals f, it can be shown that to very good 
approximation the null-space is given by v0 = (0,… f, 
0, 1)T Hence, in order not to disturb a limit cycle 
when changing the last integrator section, the third 
integrator state should also be changed. Although it is 
not as easy to define the exact minimum level of 
dither that needs to be added to the quantizer (i.e., 
change the last integrator state), it still is possible to 
define a value of dither which is at equal or larger 
than the minimum amount. 

3.2. No DC Poles 

A special situation arises when the SDM has no DC 
poles. In that case, the null space is  zero: there is only 
one solution. If this solution also complies with all 
inequalities, this  solution results in a limit cycle. 
Because the null space is zero, any change of the 
integrator states would result in a break-up of the 
limit cycle.  

4. EXAMPLES 

The results of the work detailed in the preceding part, 
have been used to obtain some results on 4 different 
Noise transfer functions (NTFs), which have been 
implemented in both feedforward as well as feedback 
SDMs. The SDMs are indicated in the table below.  

Table 1. List of SDMs analysed in simulation, and 
their corresponding codes in the text. 

NTF Type Code 
Aggressive, with resonators 1a 
Aggressive, without resonators 1b 
Non-aggressive, with resonators  2a 
Non-aggressive, without resonators 2b 

 
In the following sections, we will discuss results for 
both SDM types (which implement identical NTFs) 
to judge whether how the implementation topology 
influences the limit cycle behaviour. 

4.1. Feedforward SDMs 

In Figure 2, the occurrence of limit cycles as a 
function of the feedback coefficients is presented. 
The figure represents all independent limit cycles1 
that could exist with lengths ranging from 3 to 30 
bits. All possible DC values are represented by these 
limit cycles, and it should be mentioned that, while 
some of these limit cycles theoretically exist, cannot 
occur in practice. For example, it is possible to define 
a limit cycle corresponding to an input of 0.9, where 
none of the SDMs studied would be capable of 
representing this DC level without running into 
instability. 
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Figure 2 Occurrence of limit cycles of SDM 2a and 
2b. 

It is apparent immediately from Figure 2, that the 
presence or absence of resonator coeficients is 
immaterial to the number of limit cycles that can 
occur. The same is approximately true when 
comparing SDM 1a and 1b (not shown). However, 
this is not so anymore when comparing the 
aggressive SDM 1a and the non-aggressive SDM 2a 
in Figure 3.  
Rather counterintuitive, the SDM 1a displays more 
limit cycles than SDM 2a; one would expect the 
reverse to be true. While the number of limit cycles 
for SDM 2a is increasing exponentially, SDM 1a 
shows two different regions, where up to a limit cycle  
length of about 20, the number of possible limit 
cycles increases exponentially. For larger limit 
cycles, the growth reduces significantly - and, in fact, 
one could wonder whether at some point the two 
curves in Figure 3  cross.  
While the absolute number of limit cycles increases 
rapidly, relative to the number of possible permutions 
of +1s and -1s it is reducing rapidly as is 
demonstrated in Figure 4. The total number NP of 
permutations for a limit cycle of length P is 
approximately given by[3]:  
 2 /P

PN P≈  (10) 

The division by P corrects for the fact that of all 2P 
permutations, exactly P represent a cyclicly shifted 
version of the same basic limit cycle. To obtain the 
exact number of irreducible limit cycles, correction 
should be made too for the number of limit cycles 
that are a concatenation of smaller limit cycles. 
However, for reasonable P, this number is much 
smaller compared to NP and thus ignored.  

 
Figure 3 Occurrence of limit cycles of SDM 1a and 
2a. 

In Figure 5, the minimum dither level that is needed 
to certainly break up the most stable limit cycle is 
depicted. In red and blue, the most stable limit cycle 
for SDM 1a and 2a, respectively, for DC input is 
depicted. While slightly more stable limit cycles can 
sometimes be found for non-DC inputs, these 
situations do not represent a practical situation. The 
first interesting observation is that the limit cycles for 
the aggressive SDM 1a are more stable than those of 
the less aggressive SMD 2a. This is quite counter-
intuitive. Also, we can see that there is a very stable 
limit cycle occurring around limit cycle length 22 for 
SDM 1a, and for limit cycle length 32 for SDM 2a. 
Upon investigation of these limit cycles, it appeared 
that they consist of a series of 11 1s followed by 11 -
1s for SDM 1a, and likewise 16 1s and 16 -1s for 
SDM 2a. This corresponds to a square wave of 
frequency 120 kHz and 80 kHz, respectively, which 
are exactly the corner frequencies of the NTF design 
of the SDMs. In practice, however, these limit cycles 
could never occur; upon the slightest disturbance of 
the integrators, the SDM becomes unstable.  

 
Figure 4 Relative occurrence of limit cycles of 
SDM 1a and 2a with respect to all permutations 
of bits. 
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This is to be contrasted with the limit cycle behavior 
for other limit cycle lengths. The shortest limit cycle, 
the sequence {1,-1}, appears to be most stable 
(disregarding the previously discussed limit cycles) 
for both SDMs. For longer limit cycles, the amount 
of dither needed for break-up decreases to a 
minimum value close to the peak, after which the 
limit cycle becomes more stable. All these limit 
cycles consist of the sequence {-1,1,-1,1, ... -1,1,-1,-
1,1,1}, which represents the minimally possible 
deviation for the simple {-1,1} sequence. While these 
most stable limit cycles slightly increase in stability 
for longer limit cycles, on average the amount of 
dither necessary for break-up decreases. This is 
indicated in green and magenta for SDM 1a and 1b, 
respectively, in Figure 5. The average amount of 
dither is defined as the average of the minimum 
dither levels that are needed to break up the 
individual limit cycles. Again, we see that SDM 1a 
presents limit cycles that are in general more stable 
than those of SDM 2a. At limit cycle lengths of 42, 
the average amount of dither is reduced to about 0.03 
and 0.017 for SDM 1a and 2a, respectively, which is 
consists with the intuition that longer limit cycles 
represent more boundary conditions to be fulfilled 
and are thus more easy to break up.  

 
Figure 5. Minimum level of dither needed to break 
up a limit cycle corresponding to DC input zero. 

Another interesting characteristic to study is the 
relative preference of the SDM for limit cycles of a 
certain DC level. These results are displayed in 
Figure 6 through 8. Conforming to the results in 
Figure 3, in general SDM 1 exhibits many more 
possible limit cycles for any DC level than SDM 2. 
Also, we see that (as anticipated) the number of limit 
cycles is identical for a certain DC level and the 
negative DC level. However, whereas SDM 1 has 
strong preference for limit cycle with small absolute 
DC level, SDM2 apparently has little preference! 
Moreover, where SDM 2 displays little dependence 
on the presence of resonator sections, SDM 1 shows, 
especially for the smallest DC levels some 

dependence, displaying most limit cycles when no 
resonators are present. The reason for this behavior is 
unclear. 

 

Figure 6. Occurrence of limit cycles as a function 
of the number of ones in the limit cycle for SDM 
1a and 2a. 

 

Figure 7. Occurrence of limit cycles as a function 
of the number of ones in the limit cycle for SDM 
1a and 1b. 

 
Figure 8. Occurrence of limit cycles as a function 
of the number of ones in the limit cycle for SDM 
1a and 2b. 
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Figure 9. Occurrence of limit cycles for SDM 
1a_fb and 2a_fb. 

4.2. Feedback SDMs 

In order to see how much of the limit cycle behavior 
is determined by the implementation of the NTF in 
either a feedforward or feedback structure, we have 
performed some calculations on SDMs in feedback 
topology, which implement identical NTFs as those 
of SDM 1a and 2a[7]. We will refer to these SDMs as 
1a_fb and 2a_fb.  
In Figure 9, the occurrence (for all DC values) of 
limit cycles is indicated. When we compare these 
results to the equivalent for a feedforward SDM, 
Figure 3, hardly any difference in behaviour can be 
observed. Perhaps even more informative is the 
comparison with the stability of limit cycles. The 
equivalent of Figure 5 for feedback type SDMs also 
reveals a close correspondence between both 
topologies.  

5. CONCLUSION 

This work is an attempt to construct and apply a 
theory describing limit cycles in sigma delta 
modulators. It has been shown that limit cycle 
behavior can occur in a wide variety of situations, 
often with unexpected results. This paper differs from 

previous work in that it is not limited to specific 
modulator designs, strong constraints on the limit 
cycle, or unproven conjectures. We have been able to 
quantify how common the existence of limit cycles is 
for a given design, (in general need at least n-1 init 
conditions filled) how stable they are, and how much 
dither is required to remove them. Ongoing work 
concerns how to put these results onto a more 
rigorous mathematical basis , as will be shown in a 
forthcoming paper. 
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