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ABSTRACT

A method is presented for improving current coding efficiency in DSD signals. The goal of this work is to explore
new compression techniques which are tailored to the DSD format and which are meant to complement the current
lossless DST compression practice used for SACD. The new technique builds on principles illustrated in previous
papers. The method makes use of the highly oversampled character of DSD. Example implementations and results
have been obtained. Losses to stability and signal-to-noise ratio have been measured and their audio effects have
been minimised and quantified. Lower bounds are established on the compression ratio of these methods. This is
viewed as afirst step for a potentially constant bitrate compression scheme.

INTRODUCTION

Recently, Philips and Sony have devised and implemented a new
audio storage format known as Super Audio Compact Disc, or
SACD. At the core of this format is its primary enabling
technology, Direct Stream Digital (DSD). DSD is a new recording
format that employs 1-bit oversampling sigma-delta modulation.
Whereas traditional compact discs use 16 bit PCM encoding at
44.1kHz, DSD uses 1-bit sampling of audio at 64x44.1kHz. Thus,
DSD requires four times the data to record the same amount of
time. To support this additional data requirement, the Super Audio
CD has a 4.7 Gigabyte layer that holds both a 2-channel stereo, and
a 6 channel multichannel recording. For a typical 74 minutes
recording, this would require about 12 Gigabytes of data storage.
This is accomplished using a lossless coding scheme referred to as

Direct Stream Transfer (DST), which involves data framing,
prediction and entropy encoding. The coding gains that are
achieved in practical situations alow this amount of DSD to be
stored on a single disk [1]. Compact Discs, on the other hand, fit
74 minutes of 2 channel audio into approximately 780 Megabytes.
Thus, despite vastly improved storage technology, there has been
no advantage in the total playback time of the audio. All benefits
have been to audio quality and additional functionality.

Furthermore, DSD and related sigma delta modulation based
systems may see use in areas such as internet audio streaming.
Should DSD become popular as a consumer distribution format,
one would expect there to be a demand for internet streaming of a
DSD encoded signal, rather than conversion to 16 bit PCM with all
the losses that that might entail. This would call for constant bit
rate compressed DSD, which is in contradiction with the lossless
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DST compression scheme that is currently applied to DSD[2]
which isinherently not constant bit rate.

Then there is the issue of storing a DSD encoded signal on other
media, such as hard disk drives. For 6 channel DSD, this would
require 12 times as much storage space as that of a stereo 16 bit
Wavefile.

For all these reasons, compression becomes a primary concern. The
goal of the work presented here is to explore some new
compression techniques, which are tailored to the DSD format and
which are meant to complement the current DST compression
practice in that they are not lossless. The main aim of this paper is
to establish lower bounds on the compression ratio of these
methods. This is to be viewed as a first step for a potentialy
constant bitrate compression scheme.

BACKGROUND

Sigma-delta (or delta-sigma) modulation is a popular method for
high-resolution A/D and D/A converters. Sigma-delta modulators
operate using a trade-off between oversampling and low-resolution
quantization. That is, a signd is sampled at much higher than the
Nyquist frequency, typicaly with one bit quantization, so that the
signa may be effectively quantized with a resolution on the order
of 14-20 bits[3]. Recent work has concentrated on tone
suppression[4], multibit modulation[5] and chaotic modulation[6,
7].

The simplest, first order sigma-delta modulator consists of a 1-bit
quantizer embedded in a negative feedback loop that also contains
a discrete-time integrator. The analogue output is sampled at a
frequency higher than the Nyquist frequency and is converted into
abinary output. The system may be represented by the map[8]

Un)=U-)+X(n-1)-Q(n-1
where X represents the analogue input signal and Q is the quantizer

1 ifu(m=0
Q(n)_{—l if U(n)<0

In this representation, Q(n) represents the quantization of input
X(n-1) . The actual quantised output is converted into binary
data, 1 and O (as opposed to 1 and -1, respectively). This system
works by quantizing the difference between the input and the
accumulated error. Thus when the error grows sufficiently large,
the quantizer will flip in order to reduce the error. On average, the
quantization output will be approximately equal to the input.
Higher order modulators are typicaly used in commercial
applications since they often yield improved signal-to-noise ratios.
However, the essential structure: oversampling, quantization, and
noise shaping, remains the same.

In this paper, we only consider oversampling and quantization that
is relevant to Direct Stream Digital. Thus, a1 bit quantizer is used,
and, unless otherwise noted, al simulations were performed with
64 times oversampling of signals with Nyquist frequency no
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greater than 44.1kHz. However, the sigma delta modulator used in
DSD implements a complicated 5" order sigma delta modulator
and incorporates other sophisticated technologies. In order to
concentrate on the essential properties of our compression scheme,
we chose to investigate a simpler sigma delta modulator. First and
second order modulators are inappropriate models because they do
not exhibit the instability problems commonly found in higher
order modulators. Thus our analysis concentrated on a 3 order
sigma delta modulator, which may be implemented as depicted in
Figure 1.

Thisresultsin the following difference equations.

U(n) =201,(n) +61,(n) + 1,(n)
1+ = 1,(n) +1,(n)
1 (n+2) = 1,(n) + 1,(n)
1,(n+1) = 1,(n) + X (n) ~Q(n)

PULSE GROUP MODULATION

The average pulse repetition frequency (PRF) is defined as the
reciproca of the average time between consecutive rising edges of
the pulse stream. The PRF of the output of a sigma-delta modulator
depends on the oversampling ratio L, the sampling frequency fs and
the composition of the limit cycles in the output. The maximum
possible pulse repetition frequency of a SDM is L¥,/2, which

occurs for the repeating limit cycle 1,-1,1,-1,1... A straightforward
method of reducing the Pulse Repetition Frequency of the SDM
bitstream and forcing it to be constant is to group together samples
with the same sign, so that after the sample-and-hold the transitions
are reduced. This technique is sometimes referred to as pul se group
modulation (PGM) [9]. The output is divided into frames of length
N and the samples in each frame are reordered so that all the 1s
occur in a single group at the end. For instance, if N=4, then the
sequence 0100101101101101 would become
0001,0111,0011,0111.

PGM may be applied selectively, and a number of different
implementations of PGM are described in [9]. Typicaly, the errors
introduced by PGM are shaped by the use of an additional
feedback loop. However, PGM may also be applied as a post-
processing procedure. In which case there is no PGM feedback and
the pulse grouping may be applied directly on the output bitstream.

Post-Processing PGM

To analyze the effect of post-processing PGM, consider a sequence
v(n) of 1-bit data from the SDM. At each sample instant, the sum

of the present sample and the previous N-1 samplesis taken.

Qn

Figure 1. A block diagram of the third order sigma delta modulator used in simulations.
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Y =Y v(n-K)

Or equivalently, in the z-domain:
z

Y@ =Y V(@) :V(z)[l_ _N]

1-z*

1-z"
M(2)=Y(2)/V(2) =( _1J

1-z
Thus the summation is equivalent to a moving average filter of
length N. Every N" sample of the summation corresponds in
amplitude to the group size of each PGM pulse. The operation of
taking every N sample and discarding the remaining samples is
that of decimation, and the conversion to a pulse group is
uniformly sampled pulse width modulation (PWM), which
involves a sample rate increase by a factor N. The decimation
produces aliassing and the PWM introduces harmonic distortion,
carrier and sideband tones and intermodulation noise.

Noise Shaping PGM

/1
| |
|

|
.
() Q |—»lpom|——»

Figure 2. The structure of PGM applied to a sigma delta
modulator with noise shaping.

To overcome the problems associated with PGM applied as a
‘post-processing’ step, Magrath and Sandler proposed a feedback
loop after the PGM modul€[9]. This structure is depicted in Figure
2. This generic structure applies to sigma delta modulators of any
order. A specific implementation can be summarized as follows:

1. At each clock cycle, store the integrator states;

2. After N cycles, replace the N bits with a fixed pattern of -1
and +1 (PGM), and re-calcul ate the integrator states asif the
SDM gave this output.

3. Continue with these new integrator states.

The recalculation of the integrator states serves as noise shaping
and error correction of the effects of PGM, athough it is aso a
potential cause of instability.

For the case of the third order modulator described previously, the
filter H is made up by the cascade of integrators whose output is
summed with weights 20, 6 and 1 to form the quantizer (Q) input.

Window Size Maximum Input SNR (dB)
1 0.83 75

2 0.69 65

3 0.56 62

4 0.47 58

5 Not Stable

Table 1. Maximum input and signal-to-noise ratio for full
noise-shaping PGM.

Table 1 depicts how stability and signal quality are affected by
PGM. Both decrease until a window size of 5 is used. At which
point the design becomes unstable. Modifications of the modulator
coefficients can permit both higher maximum input and improved
SNR. These modifications are justified because the extradelays in
the feedback loop due to PGM change the nature of the noise

shaping.
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Several ways exist to apply such feedback in a control loop; and
other examples of such systems can be found [10]. A systemin the
spirit of the architecture advocated by the latter authors can be built
as shown in Figure 3.

System runs at 16fg i System runs at 64f

@ S e

V-

Figure 3. Block diagram depicting an equivalent system to
noise shaping PGM.

The basic principle of operation is that a sigma delta modulator
running at a low oversampling ratio of, say, 16, is accommodated
with a 5-level quantizer. The code that is produced by this
quantizer is subsequently passed through a paralel to series
convertor (PSC), which aso functions as a PGM block. The PSC
transates the 5 level code to a series of 4 equally weighted bits,
which hencerun at arate of 64 fs.

After the PSC, feedback is applied to the input of the system. In
this feedback path, down sampling must be applied as the input of
the system runs at 16 fs only. This downsampling function must be
such that aliasing components in the baseband are small. On the
other hand, if the delays in the feedback path are too large,
instability of the system occurs quickly and rendersit useless.

Window Size | Maximum Input SNR (dB)
1 0.83 75

2 0.79 68

4 0.67 46

8 0.52 32

16 Not Stable

Table 2. Maximum input and signal-to-noise ratio for
downsampling PGM.

In Table 2, results are presented depicting how stability and SNR
are affected as a function of PGM window size for this system,
Figure 3, Clearly, stability is increased due to the modified
structure. This is likely due to the fact that errors take longer to
accumulate due to the downsampling. Although the maximum
input is improved, the signal-to-noise ratio remains in roughly the
same range, and in fact deteriorates at a slightly quicker rate.

Adaptive PGM

Noise shaping PGM can lead to increased instability. PGM also
introduces complications such as SNR degradation. Thus another
grouping procedure has been proposed. The concept behind this
procedure, is to minimise the application of PGM while still
shaping its effects to compensate for aiasing and distortion.
Therefore it is only applied when it would have the largest impact
on the compression rate. In this situation, only the bit combination
with an equal number of 1s and —1s in the output is reordered. All
other bit combinations have no grouping applied. This is
equivalent to saying that PGM is applied only on windows where
the sum of the bitstream is zero. The procedureis as follows.



REISS ET AL.

1. At each clock cycle, store the integrator states;

2. After N cycles, calculate the integrated signal;

3. If itiszero, replace the N bits with a fixed pattern of -1 and
+1, and re-calculate the integrator states asif the SDM gave this
output.

4. Continue with these new integrator states, or with the old ones
if the previous set of N was not totaling zero.

Table 2 depicts how stability and signal quality are affected by
adaptive PGM. This should be contrasted with Table 1. Stability
and signal-to-noise ratio both compare favorably with those
achieved under noise-shaping PGM. This is further indication that
there is no one method of pulse group modulation that is preferred.
The choice of PGM that is applied should be determined by the
constraints of the system, and the desired compression ratio.

W| ndow | Maximum SNR
Size Input

1 0.83 75

2 0.75 71

3 0.68 68

4 0.61 64

5 0.56 59

6 Not Stable

Table 2. Maximum input and signal-to-noise ratio for adaptive
PGM.

COMPRESSION USING PULSE GROUP MODULATION

In previous work [11], it was shown that the expected compression
ratio of random data using post-processing PGM or noise shaping
PGM is
N
N Ny !
—i@ |Og @
— 2N 2 2N
and the worst case compression ratio for nonuniform dataiis

1.  Compression Ratio (random signal)=

N
log,(N +1)
where N isthe length of the applied PGM window.
It should be noted here that the worst case compression ratio is an
extreme example, since it would require all possible output bit
combinations to occur with equal probability. For instance, if N=8,
then it would require that the probability of an N bit sequence
containing no 1s must be the same as it containing 4 1s. Sequences
with such a property have to be carefully constructed, and sliding
the window over by just one bit would, in almost all cases, destroy
this unusual nature.
The case of adaptive PGM needs to be treated differently. Thisis
because PGM is applied in only certain situations. That is,
unordered bit combinations may exist in the output that could not
occur in post-processing or full noise shaping PGM. The choice of
which combinations to reorder is dictated by the effects of
reordering on the compression ratio.
Consider a window of length N in the bitstream without PGM
where we assume a uniform and uncorrelated distribution. The
number of possible outputs with exactly i 1s in the window is N

2. Compression Ratio (worst case)=

choose i, or [

N N
[Zi—leog2 [Z'—N] to the entropy of the bitstream. Thus, the combination
that contributes to the most to the entropy is the one with an equal

N 1
) - Nt . Combined, these outputs contribute

i )T (N=i)!
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number of 1s and —1s in the output, which contributes exactly

[w7) o e

2_N|0922_Nt0 the entropy. If PGM is to be applied selectively,
thisisalogical choice for where it would have the most significant
impact in increasing the Compression Ratio. Also, it is expected
that the impacts on SDM stability are minimal in this case because
combinations with an equal number of 1s and —1s typically occur
at relatively small input values. As was accomplished in the case of
full PGM, bounds on the compression ratio can be derived.

We can use the entropy formula to estimate the typical
compression ratio achieved. The probability of any of the
combinations with N/2 Os followed by N/2 1s occuring is

N N
2V . After PGM, there are 2" -
N/2 N/2

combinations. Thus, the best expected number of bits required to
encode N symbolsis

j+1 possible

N N ZN{NI\:ZJ
H(P) = —%I%%— 21: ZingzziN

N N N
) _[;_/NJ'O“’Z[;_/NJ+ N _zﬁ”(r\sz] N {;/”2] 'ng(Nh;z]

Therefore, N-window PGM gives a best expected compression of
N

el o [ N
> 'ng(N/zj

3. Compression Ratio (random signal)=
N —_

Of course, output prior to PGM is not expected to be completely
random and uncorrelated. Thus we can consider the input which
would result in random and uncorrelated output after PGM.

For a nonrandom sequence, the worst case for the compression

N
ratio occurs when each of the 2" —
N/2

orderings occurs with equal probability. Then the expected number
of bits  required to encode N symbols  is

] +1 combinations of bit

N
H(P) =log,(2" —[lejﬂ) , which provides a lower bound on

an optimal compression scheme
N

N N
log,(2 —[N/2]+1)

Furthermore, Stirling's formula, N! =27 "N""? | can be used
to show that this partial compression is very limited in its
effectiveness as the window size isincreased.

4.  Compression Ratio (worst case)=

N NI _
N/2)  (N/20)(N/2Y)
J2me N NN
V2me N2 (N 12)N PR 2me VP (N [ 2)V
e“N N+1 g NN+

LN J2rN

02— N Je1=2va-Z ) s N w.
N/2 J2nN

Therefore, the worst case Compression Ratio approaches 1, which
is the same as if there was no PGM applied. In fact, we can show
that the expected compression aso approaches 1 for signals which
are random when PGM is not applied.
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N N

N ] N 2N —N
[ N e e
_N/2 N - |
N=x Iogz[lej JNI2 % N2
These limiting cases serve to indicate a trend, but they are not
applicable to any practical implementation. Any PGM scheme

where the window size is larger than the oversampling ratio would
have far too much noise introduced to be of use.

PGM Compression | Adaptive PGM
Window | Ratio Compression Ratio
Size Random | Worst | Random | Worst
Signal Case Signd Case
1.3333 1.2619 | 1.3333 1.2619
1.9698 1.7227 | 1.3199 1.1563
25714 21372 | 1.2905 1.0925
3.1444 25237 | 1.2591 1.0590
0 3.6949 2.8906 | 1.2443 1.0423
Table 3. Theoretical Compression Ratios for full and adaptive
PGM.

Rl (N

Actua bounds on the compression ratio for each of these cases are
given in Table 3 The expected compression ratio for a random
signal, and the worst case compression ratio for a nonrandom
signal are calculated for full PGM and adaptive PGM. These
values are fairly low, but they indicate worst case scenarios and are
still asignificant improvement over lossless schemes (which would
give a lower bound of 1 for the compression ratio of a random,
uncorrelated signal.

Again its important to note that these are the upper bounds on the
compression that can be achieved under such a distribution. Thus,
Equations 1 and 3 referred to the best compression that PGM (post-
processing or adaptive respectively) can achieve given that the
bitstream would have a uniform, random and uncorrelated
distribution if PGM had not been applied. Similarly, Equations 2
and 4 referred to the best compression that PGM can achieve given
the worst case scenario for the distribution of the bitstream after
PGM has been applied. Here, we have ignored the effects of noise
shaping (which can improve compression) and of the use of
inferior compression agorithms (which would lower the
compression rétio).

RESULTS

In [11] it was confirmed that adaptive arithmetic coding algorithms
can give compression ratios very close to those predicted from
Table 3 for post-processing PGM of a random signal. Here, we
consider how practical compression methods perform on more
realistic data. In Table 4, the resulting compression ratios are given
for the application of noise shaping PGM for two inputs each
under adifferent lossless compression scheme.

First, a 4kHz sine wave of amplitude 0.25 was used as input to a
third order modulator of the form given in Figure 3. The resulting
bitstream was compressed using the Direct Stream Transfer
algorithm that is implemented in the SuperAudioCD. The
compression ratios are all quite high. With the exception of a
window size N=2, the compression ratio increases with PGM
window size. Then random input between 0.8 and —0.8 with
rectangular pdf was used as input to the same modulator. The
resulting bitstream was compressed using gzip, a popular
compression utility based on the Lempel-Ziv agorithm [12]. The
compression here dtill increased with window size, but was
considerably lower than that of the sine wave.
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Compression Ratio
Window Sine noise-shaped Worst
Size Wave | random signal Case
1 3.3 1.48 1.00
2 3.1 1.84 1.26
4 4.2 1.79 1.72
8 5.4 2.86 2.52

Table 4. Compression ratio as a function of window size for
sine wave input with the DST encoding algorithm and for a
bandlimited noise shaped random signal with the gzip
compression algorithm applied. The worst case compression
ratios are also depicted for comparison.

Clearly, the compression ratios that were achieved were better than
the worst case values. Sinusoidal input has far more structure than
random input and thus gave very high compression ratios.
However, in many cases the expected compression of a random
bitstream with post-processing PGM applied actually outperformed
the actual compression achieved with a random input signal. This
implies that noise-shaping in some cases made compression more
difficult, or that there were imperfections in the encoding
agorithm. The latter is known to be correct at least in part, because
the Lempel-Ziv agorithm typically performs dightly worse than
compression algorithms such as arithmetic encoding [13]. The
compression ratio is also dependent on the choice of sigma delta
modulator, the specific implementation of the compression
agorithm and any unknown structure in the input.

CONCLUSION

In this paper we have discussed techniques by which sigma delta
bitstreams can be highly compressed. PGM based compression
schemes are a potentially useful, lossy method of compressing the
DSD bitstream. The losses in stability and in the signal-to-noise
ratio can be compensated for by selectively applying PGM only
when it ismost beneficial or has the least impact.

In many cases, the signal-to-noise ratio drops to low values. This
proves unacceptable for use with high quality formats as DSD. The
attempted solution, adaptive PGM as proposed here, may, as yet,
not be a sufficient remedy because it results in only minimal
compression ratio gains. Still, the methods presented allow strong
lower bounds to be derived, and therefore such schemes may be
particularly useful in the development of constant bit-rate
streaming of DSD audio. It isthus clear that further investigation is
both necessary and warranted.
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