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ABSTRACT 
A method is presented for improving current coding efficiency in DSD signals. The goal of this work is to explore 
new compression techniques which are tailored to the DSD format and which are meant to complement the current 
lossless DST compression practice used for SACD. The new technique builds on principles illustrated in previous 
papers. The method makes use of the highly  oversampled character of DSD. Example implementations and results 
have been obtained. Losses to stability and signal-to-noise ratio have been measured and their audio effects have 
been minimised and quantified. Lower bounds are established on the compression ratio of these methods. This is 
viewed as a first step for a potentially constant bitrate compression scheme. 

 
 

INTRODUCTION 
 
Recently, Philips and Sony have devised and implemented a new 
audio storage format known as Super Audio Compact Disc, or 
SACD. At the core of this format is its primary enabling 
technology, Direct Stream Digital (DSD). DSD is a new recording 
format that employs 1-bit oversampling sigma-delta modulation. 
Whereas traditional compact discs use 16 bit PCM encoding at 
44.1kHz, DSD uses 1-bit sampling of audio at 64x44.1kHz. Thus, 
DSD requires four times the data to record the same amount of 
time. To support this additional data requirement, the Super Audio 
CD has a 4.7 Gigabyte layer that holds both a 2-channel stereo, and 
a 6 channel multichannel recording. For a typical 74 minutes 
recording, this would require about 12 Gigabytes of data storage. 
This is accomplished using a lossless coding scheme referred to as 

Direct Stream Transfer (DST), which involves data framing, 
prediction and entropy encoding. The coding gains that are 
achieved in practical situations allow this amount of DSD to be 
stored on a single disk [1]. Compact Discs, on the other hand, fit 
74 minutes of 2 channel audio into approximately 780 Megabytes. 
Thus, despite vastly improved storage technology, there has been 
no advantage in the total playback time of the audio. All benefits 
have been to audio quality and additional functionality. 
Furthermore, DSD and related sigma delta modulation based 
systems may see use in areas such as internet audio streaming. 
Should DSD become popular as a consumer distribution format, 
one would expect there to be a demand for internet streaming of a 
DSD encoded signal, rather than conversion to 16 bit PCM with all 
the losses that that might entail. This would call for constant bit 
rate compressed DSD, which is in contradiction with the lossless 
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DST compression scheme that is currently applied to DSD[2] 
which is inherently not constant bit rate.  
Then there is the issue of storing a DSD encoded signal on other 
media, such as hard disk drives. For 6 channel DSD, this would 
require 12 times as much storage space as that of a stereo 16 bit 
Wave file. 
For all these reasons, compression becomes a primary concern. The 
goal of the work presented here is to explore some new 
compression techniques, which are tailored to the DSD format and 
which are meant to complement the current DST compression 
practice in that they are not lossless. The main aim of this paper is 
to establish lower bounds on the compression ratio of these 
methods. This is to be viewed as a first step for a potentially 
constant bitrate compression scheme. 
 
BACKGROUND 
 
Sigma-delta (or delta-sigma) modulation is a popular method for 
high-resolution A/D and D/A converters. Sigma-delta modulators 
operate using a trade-off between oversampling and low-resolution 
quantization. That is, a signal is sampled at much higher than the 
Nyquist frequency, typically with one bit quantization, so that the 
signal may be effectively quantized with a resolution on the order 
of 14-20 bits[3]. Recent work has concentrated on tone 
suppression[4], multibit modulation[5] and chaotic modulation[6, 
7].  
The simplest, first order sigma-delta modulator consists of a 1-bit 
quantizer embedded in a negative feedback loop that also contains 
a discrete-time integrator. The analogue output is sampled at a 
frequency higher than the Nyquist frequency and is converted into 
a binary output. The system may be represented by the map[8]  
 ( ) ( 1) ( 1) ( 1)U n U n X n Q n= − + − − −   

where X represents the analogue input signal and Q is the quantizer 

 
1 if ( ) 0

( )
1 if ( ) 0

U n
Q n

U n

≥= − <    

In this representation, ( )Q n  represents the quantization of input 

( 1)X n − . The actual quantised output is converted into binary 

data, 1 and 0 (as opposed to 1 and –1, respectively). This system 
works by quantizing the difference between the input and the 
accumulated error. Thus when the error grows sufficiently large, 
the quantizer will flip in order to reduce the error. On average, the 
quantization output will be approximately equal to the input.  
Higher order modulators are typically used in commercial 
applications since they often yield improved signal-to-noise ratios. 
However, the essential structure: oversampling, quantization, and 
noise shaping, remains the same. 
In this paper, we only consider oversampling and quantization that 
is relevant to Direct Stream Digital. Thus, a 1 bit quantizer is used, 
and, unless otherwise noted, all simulations were performed with 
64 times oversampling of signals with Nyquist frequency no 

greater than 44.1kHz. However, the sigma delta modulator used in 
DSD implements a complicated 5th order sigma delta modulator 
and incorporates other sophisticated technologies. In order to 
concentrate on the essential properties of our compression scheme,  
we chose to investigate a simpler sigma delta modulator. First and 
second order modulators are inappropriate models because they do 
not exhibit the instability problems commonly found in higher 
order modulators. Thus our analysis concentrated on a 3rd order 
sigma delta modulator, which may be implemented as depicted in 
Figure 1. 
This results in the following difference equations. 
 

1 2 3

3 3 2

2 2 1

1 1

( ) 20 ( ) 6 ( ) ( )

( 1) ( ) ( )

( 1) ( ) ( )

( 1) ( ) ( ) ( )

U n I n I n I n

I n I n I n
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= + +
+ = +
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+ = + −

 

 
PULSE GROUP MODULATION 
 
The average pulse repetition frequency (PRF) is defined as the 
reciprocal of the average time between consecutive rising edges of 
the pulse stream. The PRF of the output of a sigma-delta modulator 
depends on the oversampling ratio L, the sampling frequency fs and 
the composition of the limit cycles in the output. The maximum 
possible pulse repetition frequency of a SDM is / 2sL f⋅ , which 

occurs for the repeating limit cycle 1,-1,1,-1,1... A straightforward 
method of reducing the Pulse Repetition Frequency of the SDM 
bitstream and forcing it to be constant is to group together samples 
with the same sign, so that after the sample-and-hold the transitions 
are reduced. This technique is sometimes referred to as pulse group 
modulation (PGM) [9]. The output is divided into frames of length 
N and the samples in each frame are reordered so that all the 1s 
occur in a single group at the end. For instance, if N=4, then the 
sequence 0100101101101101 would become 
0001,0111,0011,0111.  
PGM may be applied selectively, and a number of different 
implementations of PGM are described in [9]. Typically, the errors 
introduced by PGM are shaped by the use of an additional 
feedback loop.  However, PGM may also be applied as a post-
processing procedure. In which case there is no PGM feedback and 
the pulse grouping may be applied directly on the output bitstream.  
 
Post-Processing PGM 
 
To analyze the effect of post-processing PGM, consider a sequence 

( )v n  of 1-bit data from the SDM. At each sample instant, the sum 

of the present sample and the previous N-1 samples is taken. 
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 Figure 1. A block diagram of the third order sigma delta modulator used in simulations. 
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Or equivalently, in the z-domain: 
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Thus the summation is equivalent to a moving average filter of 
length N. Every Nth sample of the summation corresponds in 
amplitude to the group size of each PGM pulse. The operation of 
taking every Nth sample and discarding the remaining samples is 
that of decimation, and the conversion to a pulse group is 
uniformly sampled pulse width modulation (PWM), which 
involves a sample rate increase by a factor N. The decimation 
produces aliassing and the PWM introduces harmonic distortion, 
carrier and sideband tones and intermodulation noise. 
 
Noise Shaping PGM 
 

+

+

-

H(z) Q PGM

 
Figure 2. The structure of PGM applied to a sigma delta 
modulator with noise shaping. 
 
To overcome the problems associated with PGM applied as a 
`post-processing’  step, Magrath and Sandler proposed a feedback 
loop after the PGM module[9]. This structure is depicted in Figure 
2. This generic structure applies to sigma delta modulators of any 
order. A specific implementation can be summarized as follows: 
 

1. At each clock cycle, store the integrator states;  
2. After N cycles, replace the N bits with a fixed pattern of -1 
and +1 (PGM), and re-calculate the integrator states as if the 
SDM gave this output.  

3. Continue with these new integrator states. 
 
The recalculation of the integrator states serves as noise shaping 
and error correction of the effects of PGM, although it is also a 
potential cause of instability. 
For the case of the third order modulator described previously, the 
filter H is made up by the cascade of integrators whose output is 
summed with weights 20, 6 and 1 to form the quantizer (Q) input. 
 

Window Size Maximum Input SNR (dB) 
1 0.83 75 
2 0.69 65 
3 0.56 62 
4 0.47 58 
5 Not Stable 

Table 1. Maximum input and signal-to-noise ratio  for full 
noise-shaping PGM. 
 
Table 1 depicts how  stability and signal quality are affected by 
PGM. Both decrease until a window size of 5 is used. At which 
point the design becomes unstable. Modifications of the modulator 
coefficients can permit both higher maximum input and improved 
SNR. These modifications are justified because the extra delays  in 
the feedback loop due to PGM change the nature of the noise 
shaping. 

Several ways exist to apply such feedback in a control loop; and 
other examples of such systems can be found [10]. A system in the 
spirit of the architecture advocated by the latter authors can be built 
as shown in Figure 3. 
 

+
+

-
H(z) PSC

System runs at 16fs System runs at 64fs

 
Figure 3. Block diagram depicting an equivalent system to 
noise shaping PGM. 
 
The basic principle of operation is that a sigma delta modulator 
running at a low oversampling ratio of, say, 16, is accommodated 
with a 5-level quantizer. The code that is produced by this 
quantizer is subsequently passed through a parallel to series 
convertor (PSC), which also functions as a PGM block. The PSC 
translates the 5 level code to a series of 4 equally weighted bits, 
which hence run at a rate of 64 fs. 
After the PSC, feedback is applied to the input of the system. In 
this feedback path, down sampling must be applied as the input of 
the system runs at 16 fs only. This downsampling function must be 
such that aliasing components in the baseband are small. On the 
other hand, if the delays in the feedback path are too large, 
instability of the system occurs quickly and renders it useless. 

 
Window Size Maximum Input SNR (dB) 
1 0.83 75 
2 0.79 68 
4 0.67 46 
8 0.52 32 
16 Not Stable 

Table 2. Maximum input and signal-to-noise ratio  for 
downsampling PGM. 
 
In Table 2, results are presented depicting how stability and SNR 
are affected as a function of PGM window size for this system, 
Figure 3, Clearly, stability is increased due to the modified 
structure. This is likely due to the fact that errors take longer to 
accumulate due to the downsampling. Although the maximum 
input is improved, the signal-to-noise ratio remains in roughly the 
same range, and in fact deteriorates at a slightly quicker rate. 
 
Adaptive PGM 
 
Noise shaping PGM can lead to increased instability. PGM also 
introduces complications such as SNR degradation. Thus another 
grouping procedure has been proposed. The concept behind this 
procedure, is to minimise the application of PGM while still 
shaping its effects to compensate for aliasing and distortion. 
Therefore it is only applied when it would have the largest impact 
on the compression rate. In this situation, only the bit combination 
with an equal number of 1s and –1s in the output is reordered. All 
other bit combinations have no grouping applied. This is 
equivalent to saying that PGM is applied only on windows where 
the sum of the bitstream is zero. The procedure is as follows. 
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1. At each clock cycle, store the integrator states;  
2. After N cycles, calculate the integrated signal;  
3. If it is zero, replace the N bits with a fixed pattern of -1 and 
+1, and re-calculate the integrator states as if the SDM gave this 
output.  

4. Continue with these new integrator states, or with the old ones 
if the previous set of N was not totaling zero. 

 
Table 2 depicts how  stability and signal quality are affected by  
adaptive PGM. This should be contrasted with Table 1. Stability 
and signal-to-noise ratio both compare favorably with those 
achieved under noise-shaping PGM. This is further indication that 
there is no one method of pulse group modulation that is preferred. 
The choice of PGM that is applied should be determined by the 
constraints of the system, and the desired compression ratio. 

 
Window 
Size 

Maximum 
Input 

SNR 

1 0.83 75 
2 0.75 71 
3 0.68 68 
4 0.61 64 
5 0.56 59 
6 Not Stable 

Table 2. Maximum input and signal-to-noise ratio for adaptive 
PGM. 
 
 
COMPRESSION USING PULSE GROUP MODULATION 
 
In previous work [11], it was shown that the expected compression 
ratio of random data using post-processing PGM or noise shaping 
PGM is 

1. Compression Ratio (random signal)=

2
0

log
2 2

N N
N

i i

N N
i

N��� ������ ������ �����	 ��	

=

−∑
, 

and the worst case compression ratio for nonuniform data is  
 

2. Compression Ratio (worst case)=
2log ( 1)

N

N +
. 

where N is the length of the applied PGM window.  
It should be noted here that the worst case compression ratio is an 
extreme example, since it would require all possible output bit 
combinations to occur with equal probability. For instance, if N=8, 
then it would require that the probability of an N bit sequence 
containing no 1s must be the same as it containing 4 1s. Sequences 
with such a property have to be carefully constructed, and sliding 
the window over by just one bit would, in almost all cases, destroy 
this unusual nature. 
The case of adaptive PGM needs to be treated differently. This is 
because PGM is applied in only certain situations. That is, 
unordered bit combinations may exist in the output that could not 
occur in post-processing or full noise shaping PGM. The choice of 
which combinations to reorder is dictated by the effects of 
reordering on the compression ratio.  
Consider a window of length N in the bitstream without PGM 
where we assume a uniform and uncorrelated distribution. The 
number of possible outputs with exactly i 1s in the window is N 

choose i, or 
!

( )! !

N

i

N

N i i
  =  −  . Combined, these outputs contribute 

2log
2 2

N N

i i

N N


�� 
��
�� 
��
�� 
����� ���
to the entropy of the bitstream. Thus, the combination 

that contributes to the most to the entropy is the one with an equal 

number of 1s and –1s in the output, which contributes exactly 

/ 2 / 2
2log

2 2

N N

N N

N N

� � � �� � � �� � � �� � � �
to the entropy. If PGM is to be applied selectively, 

this is a logical choice for where it would have the most significant 
impact in increasing the Compression Ratio. Also, it is expected 
that the impacts on SDM stability are minimal in this case because 
combinations with an equal number of 1s and –1s typically occur 
at relatively small input values. As was accomplished in the case of 
full PGM, bounds on the compression ratio can be derived. 
We can use the entropy formula to estimate the typical 
compression ratio achieved. The probability of any of the  
combinations with N/2 0s followed by N/2 1s occuring is 

2
/ 2

NN

N

    .  After PGM, there are 2 1
/2

N N

N

 − +    possible 

combinations.  Thus, the best expected number of bits required to 
encode N symbols is  

2
/ 2

/ 2 / 2
2 2

1

/ 2 / 2 / 2
2 2

1 1
( ) log log

2 2 2 2

log log
/2 /22 2 2 2

N N
N N N
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N N N N
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N N N

N N N

N N N N

H P

N NN
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� �
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= − −

   
= − + − = −      

∑

… 
Therefore, N-window PGM gives a best expected compression of  

3. Compression Ratio (random signal)=
/ 2

2log
/22

N

N

N

N

N
N

N

� � ! !" #  
−   

 

Of course, output prior to PGM is not expected to be completely 
random and uncorrelated. Thus we can consider the input which 
would result in random and uncorrelated output after PGM. 
For a nonrandom sequence, the worst case for the compression 

ratio occurs when each of the 2 1
/2

N N

N

 − +    combinations of bit 

orderings occurs with equal probability. Then the expected number 
of bits required to encode N symbols is 

2( ) log (2 1)
/2

N N
H P

N

 
= − +  

, which provides a lower bound on 

an optimal compression scheme 

4. Compression Ratio (worst case)=

2log (2 1)
/ 2

N

N

N

N

 
− +  

 

Furthermore, Stirling’s formula, 
1
2! 2 NNN e Nπ +−≈ , can be used 

to show that this partial compression is very limited in its 
effectiveness as the window size is increased.  

!
/ 2 ( / 2!)( / 2!)

N N

N N N
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So 
2

2 1 2 (1 ) 2
/2 2

N
N N NN e

N Nπ

− − + ≈ − →    as N → ∞ .  

Therefore, the worst case Compression Ratio approaches 1, which 
is the same as if there was no PGM applied. In fact, we can show 
that the expected compression also approaches 1 for signals which 
are random when PGM is not applied. 
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These limiting cases serve to indicate a trend, but they are not 
applicable to any practical implementation. Any PGM scheme 
where the window size is larger than the oversampling ratio would 
have far too much noise introduced to be of use.  
 

PGM Compression 
Ratio 

Adaptive PGM 
Compression Ratio Window 

Size Random 
Signal 

Worst 
Case 

Random 
Signal 

Worst 
Case 

2 1.3333 1.2619 1.3333 1.2619 
4 1.9698 1.7227 1.3199 1.1563 
6 2.5714 2.1372 1.2905 1.0925 
8 3.1444 2.5237 1.2591 1.0590 
10 3.6949 2.8906 1.2443 1.0423 

Table 3. Theoretical Compression Ratios for full and adaptive 
PGM. 

 
Actual bounds on the compression ratio for each of these cases are 
given in Table 3 The expected compression ratio for a random 
signal, and the worst case compression ratio for a nonrandom 
signal are calculated for full PGM and adaptive PGM. These 
values are fairly low, but they indicate worst case scenarios and are 
still a significant improvement over lossless schemes (which would 
give a lower bound of 1 for the compression ratio of a random, 
uncorrelated signal. 
Again its important to note that these are the upper bounds on the 
compression that can be achieved under such a distribution. Thus, 
Equations 1 and 3 referred to the best compression that PGM (post-
processing or  adaptive respectively) can achieve given that the 
bitstream would have a uniform, random and uncorrelated 
distribution if PGM had not been applied. Similarly, Equations 2 
and 4 referred to the best compression that PGM can achieve given 
the worst case scenario for the distribution of the bitstream after 
PGM has been applied. Here, we have ignored the effects of noise 
shaping (which can improve compression) and of the use of 
inferior compression algorithms (which would lower the 
compression ratio). 
 
RESULTS 
 
In [11] it was confirmed that adaptive arithmetic coding algorithms 
can give compression ratios very close to those predicted from 
Table 3 for post-processing PGM of a random signal. Here, we 
consider how practical compression methods perform on more 
realistic data. In Table 4, the resulting compression ratios are given 
for the application of noise shaping PGM for two inputs each 
under a different lossless compression scheme.  
First, a  4kHz sine wave of amplitude 0.25 was used as input to a 
third order modulator of the form given in Figure 3. The resulting 
bitstream was compressed using the Direct Stream Transfer 
algorithm that is implemented in the SuperAudioCD. The 
compression ratios are all quite high. With the exception of a 
window size N=2, the compression ratio increases with PGM 
window size. Then random input between 0.8 and –0.8 with 
rectangular pdf was used as input to the same modulator. The 
resulting bitstream was compressed using gzip, a popular 
compression utility based on the Lempel-Ziv algorithm [12]. The 
compression here still increased with window size, but was 
considerably lower than that of the sine wave.  

 
 Compression Ratio 

Window 
Size 

Sine 
Wave 

noise-shaped 
random signal 

Worst 
Case 

1 3.3 1.48 1.00 
2 3.1 1.84 1.26 
4 4.2 1.79 1.72 
8 5.4 2.86 2.52 

Table 4. Compression ratio as a function of window size for 
sine wave input with the DST encoding algorithm and for a 
bandlimited noise shaped random signal with the gzip 
compression algorithm applied. The worst case compression 
ratios are also depicted for comparison. 

   
Clearly, the compression ratios that were achieved were better than 
the worst case values. Sinusoidal input has far more structure than 
random input and thus gave very high compression ratios. 
However, in many cases the expected compression of a random 
bitstream with post-processing PGM applied actually outperformed 
the actual compression achieved with a random input signal. This 
implies that noise-shaping in some cases made compression more 
difficult, or that there were imperfections in the encoding 
algorithm. The latter is known to be correct at least in part, because 
the Lempel-Ziv algorithm typically performs slightly worse than 
compression algorithms such as arithmetic encoding [13]. The 
compression ratio is also dependent on the choice of sigma delta 
modulator, the specific implementation of the compression 
algorithm and any unknown structure in the input.  
 
CONCLUSION 
 
In this paper we have discussed techniques by which sigma delta 
bitstreams can be highly compressed. PGM based compression 
schemes are a potentially useful, lossy method of compressing the 
DSD bitstream. The losses in stability and in the signal-to-noise 
ratio can be compensated for by selectively applying PGM only 
when it is most beneficial or has the least impact.  
In many cases, the signal-to-noise ratio drops to low values. This 
proves unacceptable for use with high quality formats as DSD. The 
attempted solution, adaptive PGM as proposed here, may, as yet, 
not be a sufficient remedy because it results in only minimal 
compression ratio gains. Still, the methods presented allow strong 
lower bounds to be derived, and therefore such schemes may be 
particularly useful in the development of constant bit-rate 
streaming of DSD audio. It is thus clear that further investigation is 
both necessary and warranted. 
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