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ABSTRACT 
Sigma delta modulation is a popular technique for high-resolution analog-to-digital conversion and digital-to-
analog-conversion. It has been considered as a new format for recording and storage of audio signals. To reduce 
the storage capacity, a lossless compression scheme can be applied. However, this scheme offers less than 3:1 
compression. This may not be sufficient for storage on media such as a Digital Versatile Disk (DVD). We 
propose a scheme based on a technique known as bit-grouping. Errors are introduced in the compression, but 
they are confined to frequencies outside the audible range. Our studies indicate that bit-grouping allows one to 
achieve greater than 4:1 compression. 
 
 

INTRODUCTION 
 
Sigma-delta (or delta-sigma) modulation is a popular method for 
high-resolution A/D and D/A converters. It is frequently used in 
audio processing and has a wide range of applications. Sigma-delta 
modulators operate using a trade-off between oversampling and 
low-resolution quantization. That is, a signal is sampled at much 
higher than the Nyquist frequency, typically with one bit 
quantization, so that the signal may be effectively quantized with a 
resolution on the order of 14-20 bits.[1] Recent work has 
concentrated on tone suppression[2, 3], multibit modulation[4] and 
chaotic modulation[5-7]. 
A new recording format for audio signals, Direct Stream Digital, 
employing 1-bit oversampling sigma-delta modulation, has 
recently been proposed and employed as an alternative to the 
currently widely used multi-bit recording format.[8] The 
oversampling rate is chosen to be 64 sf⋅  with 44.1kHzsf = . One 

of the drawbacks of sigma-delta modulation is the high 

oversampling rate. This results in a raw (uncompressed) audio data 
capacity which is typically 4 times as high as that needed for 
current CD signals. Thus compression becomes essential. 
However, the theoretical limits on lossless compression of 1-bit 
sigma delta signals are prohibitive. Fortunately, the signal is 
intended for audio. Thus only a narrow frequency range needs to 
be undistorted. This implies that some loss is allowable if it does 
not degrade the audio. Therefore it might be possible to modify the 
signal so that a far better compression ratio might be achieved, yet 
without causing a significant degradation of the output. This is the 
main focus of this paper. 
 
BACKGROUND 
 
The simplest, first order sigma-delta modulator consists of a 1-bit 
quantizer embedded in a negative feedback loop that also contains 
a discrete-time integrator. The analogue output is sampled at a 
frequency higher than the Nyquist frequency and is converted into 
a binary output. The system may be represented by the map[9]  
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In this representation, 1( )nQ U +  represents the quantization of input 

Xn. This system works by quantizing the difference between the 
input and the accumulated error. Thus when the error grows 
sufficiently large, the quantizer will flip in order to reduce the 
error. On average, the quantization output will be approximately 
equal to the input.  Higher order modulators are typically used in 
commercial applications since they often yield improved signal-to-
noise ratios. However, the essential structure: oversampling, 
quantization, and noise shaping, remains the same. 
 
PULSE GROUP MODULATION 
 
The average pulse repetition frequency (PRF) is defined as the 
reciprocal of the average time between consecutive rising edges of 
the pulse stream. The PRF of the output of a sigma-delta modulator 
depends on the oversampling ratio L and the composition of the 
limit cycles in the output. The maximum possible pulse repetition 
frequency of a SDM is / 2sL f⋅ , which occurs for the repeating 

limit cycle 1,-1,1,-1,1... A straightforward method of reducing the 
Pulse Repetition Frequency of the SDM bitstream and forcing it to 
be constant is to group together samples with the same sign, so that 
after the sample-and-hold the transitions are reduced. This 
technique is sometimes referred to as pulse group modulation 
(PGM).[10] The output is divided into frames of length N and the 
samples in each frame are reordered so that all the 1s occur in a 
single group at the end. For instance, if N=4, then the sequence 
0100101101101101 would become 0001011100110111. 
To analyze the effect of the pulse grouping, consider a sequence 

( )v n  of 1-bit data from the SDM, assumed for clarity to have the 

values 0 and 1 rather than –1 and 1. At each sample instant, the 
sum of the present sample and the previous N-1 samples is taken. 
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thus the summation is equivalent to a moving average filter of 
length N. Every Nth sample of the summation corresponds in 
amplitude to the group size of each PGM pulse. The operation of 
taking every Nth sample and discarding the remaining samples is 
that of decimation, and the conversion to a pulse group is 
uniformly sampled pulse width modulation (PWM), which 
involves a sample rate increase by a factor N. The decimation 
produces aliassing and the PWM introduces harmonic distortion, 
carrier and sideband tones and intermodulation noise. 
 
 

COMPRESSION USING PULSE GROUP MODULATION 
 
For a sequence of M events, the best expected number of bits 
required to encode this sequence is given by the Shannon entropy,  
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 So, for truly random sequences, an N bit sequence could be in one 
of 2N possible combinations, each with equal probability. That is, 
the best expected number of bits required to encode this sequence 

is 
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sequence with no redundancy can’t be compressed. However, if 
pulse group modulation is applied and the N bits are ordered so 
that all 0s appear at the beginning and all 1s at the end, then there 
are only N+1 possible combinations. For N=4, they are 0000, 0001, 
0011, to 0111, and 1111. Out of the 2N  combinations before 

ordering, 
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of them have k 0s followed by N-k 1s.  

Therefore, frequencies can be assigned to the N+1 possible 
combinations that result from PGM. The combination with k 0s 
followed by N-k 1s occurs as output of an N-window from the 
PGM with an expected frequency of  
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So, the best expected number of bits required to encode N symbols 
is 
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and the minimum expected bits required per symbol for encoding 
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Thus, the application of an N-window PGM gives a best expected 
compression of  
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Since the high sampling rate ensures that the input to the 
modulator appears nearly constant over short time periods, the 
output of a sigma delta modulator is not expected to be random. 
For a nonrandom sequence, the worst case for the compression 

ratio occurs when each of the N
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 combinations of bit orderings  

occurs with equal probability. Then the expected number of bits 
required to encode N symbols is  
 

 
PGM window 
size 

Compressed 
file size (no PGM) 

Compressed 
file size (PGM) 

Compression 
ratio (PGM) 

Predicted compression 
ratio (PGM) 

1 100378 100378 1 1 
2 100374 75301 1.333 1.333 
4 100386 50980 1.969 1.970 
6 100414 39050 2.570 2.571 
8 100392 31940 3.142 3.144 

Table 1. Compressed file sizes for a random sequence of 1s and 0s with and without pulse group 
modulation. The original file consisted of 800,000 points and had a file size of 100361 bytes. 
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Equations (2) and (3) completely describe the effectiveness of 
PGM in a compression technique. In effect, (2) can be used to 
estimate the compression of pure random data and hence provides 
a rough lower bound on the compression of actual data.  On the 
other hand, (3) provides an absolute lower bound, where this worst 
case performance would only be achieved in highly unusual 
circumstances.  
It is important to note here that the ‘expected number of bits’ refers 
to the use of the best encoder possible. It is well known that 
arithmetic coding does very close to this.[11] Thus although many 
different encoding schemes are possible (Huffmann coding and 
predictive encoding are among the schemes that have been 
applied[12]), this work will concentrate on arithmetic coding and 
assume that the results of arithmetic coding are close to the 
theoretical limits. 
Table 1 gives the results of the application of an adaptive 
arithmetic coding algorithm to a file of 800,000 binary outputs 
with and without the application of PGM. The procedure described 
in [13] was used to encode the data, and similar results were also 
obtained using a fixed frequency arithmetic encoding scheme 
based on the frequencies given by (1). A small amount of error is 
present in the resulting file sizes because of overhead in the 
arithmetic coding and slight variations in the determination of file 
size. There is little or no compression without the application of 
PGM. This is as expected because the input was a random 
sequence. For the case of PGM, the resulting file sizes are slightly 
larger than the predicted values from (2). This is because the 
arithmetic compression algorithm has a small amount of overhead. 
This can be reduced through a more efficient implementation of 
arithmetic coding. It is also worthwhile to note that this 
compression method can be easily implemented using integer 
arithmetic, variable frequency models and windowing. Thus it is 
ideally suited for use in realtime applications with simple circuits. 
 
FEEDBACK IN PGM 
 
An additional noise shaping (beyond that already in sigma delta 
modulation) can be applied that takes into account the pulse group 
modulation scheme. This is depicted in Figure 2. However, now 
the error incorporates aliasing noise, intermodulation noise and 
harmonic distortion, as well as the quantization noise. The PGM 
nonlinearity may then be modeled in the z-domain as an additive 
sequence ( )W z  

( 1)( ) ( ) ( )NY z z V z W z− −= +  

 
A more thorough discussion of the noise introduced by PGM and 
the appropriate feedback model is available in [10]. It is enough to 
note here that both theoretical and simulated results have been 
found which provide a thorough description of the noise 
introduced due to PGM, with or without feedback. For example, 
both theory and simulation confirm that, for a 64 times 
oversampled signal, feedback in an 8-window pulse group 
modulation scheme would result in an ~9 dB improvement in the 
SNR over the same system without feedback. Given knowledge of 
the SNR of a given sigma delta modulator and the specifications it 
must meet, it is relatively straightforward to estimate the maximum 
allowable PGM window size.   
 

 
Figure 1. Block diagram depicting the basic structure of 
compression used in a 1 bit A/D converter. 
 
PGM AND FILTER DESIGN 
 
When applied to compression, pulse group modulation is 
sometimes more  complicated than necessary. If the sigma delta 
modulator is used in A/D conversion, then the output of the 
modulator is typically passed through a digital filter in order to 
downsample and convert from 1 bit to multibit. Just prior to this 
stage is the most appropriate place for compression to occur (see 
Figure 1). This implies that the structure of the digital filter may 
dictate the preferred compression scheme. For instance, if the first 
stage of the filter is decimation through the use of a 
(nonoverlapping) moving average filter, i.e., N-tap Finite Impulse 
Response digital filter with coefficients of 1/N, then the ordering 
of the bits within each averaged window is irrelevant. Therefore 
pulse group modulation can be applied using the same window size 
as is used for the filter with no effect whatsoever on the 
downsampled data. In fact, if any FIR filter is used where 2 
coefficients are equal, then those bits may be interchanged without 
affecting the output of the filter. Thus a bit reordering scheme 
specific to the symmetric properties of the filter is recommended in  
 

 
 

 
Figure 2. Model of pulse group modulation with feedback. 



 
order to optimize compression. This applies without the use 
of feedback in the pulse group modulation scheme. 
 
 
CONCLUSION 
 
In this paper we have discussed a technique by which sigma 
delta bitstreams can be highly compressed. Under certain 
conditions, such as when averaging decimation filters are 
applied, this technique is effectively lossless. That is, the 
final output after decoding and filtering is exactly the same as 
if no compression had been applied. In other situations, a 
noise shaped feedback mechanism can be applied around the 
pulse grouper in order to reduce the noise and distortion. 
Since sigma delta signals are often grossly oversampled, this 
may be sufficient to make any losses through PGM based 
compression inaudible when this is used in a sigma delta 
converter for audio applications. 
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