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ABSTRACT

Sigma delta modulation is a popular technique for high-resolution analog-to-digital conversion and digital-to-
analog-conversion. It has been considered as a new format for recording and storage of audio signals. To reduce
the storage capacity, a lossess compression scheme can be applied. However, this scheme offers less than 3:1
compression. This may not be sufficient for storage on media such as a Digital Versatile Disk (DVD). We
propose a scheme based on a technique known as bit-grouping. Errors are introduced in the compression, but
they are confined to frequencies outside the audible range. Our studies indicate that bit-grouping allows one to

achieve greater than 4.1 compression.

INTRODUCTION

Sigma-delta (or delta-sigma) modulation is a popular method for
high-resolution A/D and D/A converters. It is frequently used in
audio processing and has awide range of applications. Sigma-delta
modulators operate using a trade-off between oversampling and
low-resolution quantization. That is, a signal is sampled at much
higher than the Nyquist frequency, typicaly with one bit
quantization, so that the signal may be effectively quantized with a
resolution on the order of 14-20 bits[1] Recent work has
concentrated on tone suppression[ 2, 3], multibit modulation[4] and
chaotic modulation[5-7].

A new recording format for audio signals, Direct Stream Digital,
employing 1-bit oversampling sigma-delta modulation, has
recently been proposed and employed as an alternative to the
currently widely used multi-bit recording format.[8] The

oversampling rate is chosen to be 64CF, with f, =44.1kHz . One
of the drawbacks of sigma-delta modulation is the high

oversampling rate. Thisresultsin araw (uncompressed) audio data
capacity which is typically 4 times as high as that needed for
current CD signals. Thus compression becomes essential.
However, the theoretical limits on lossless compression of 1-bit
sigma delta signals are prohibitive. Fortunately, the signal is
intended for audio. Thus only a narrow frequency range needs to
be undistorted. This implies that some loss is alowable if it does
not degrade the audio. Therefore it might be possible to modify the
signal so that afar better compression ratio might be achieved, yet
without causing a significant degradation of the output. Thisisthe
main focus of this paper.

BACKGROUND

The simplest, first order sigma-delta modulator consists of a 1-bit
quantizer embedded in a negative feedback loop that also contains
a discrete-time integrator. The analogue output is sampled at a
frequency higher than the Nyquist frequency and is converted into
abinary output. The system may be represented by the map[9]
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where X represents the anal ogue input signal and Q isthe quantizer
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In this representation, QU ,,,) representsthe quantization of input

X, This system works by quantizing the difference between the
input and the accumulated error. Thus when the error grows
sufficiently large, the quantizer will flip in order to reduce the
error. On average, the quantization output will be approximately
equal to the input. Higher order modulators are typically used in
commercia applications since they often yield improved signal-to-
noise ratios. However, the essential structure: oversampling,
quantization, and noise shaping, remains the same.

PULSE GROUP MODULATION

The average pulse repetition frequency (PRF) is defined as the
reciprocal of the average time between consecutive rising edges of
the pulse stream. The PRF of the output of a sigma-delta modulator
depends on the oversampling ratio L and the composition of the
limit cycles in the output. The maximum possible pulse repetition

frequency of a SDM is L[¥,/2, which occurs for the repeating

limit cycle 1,-1,1,-1,1... A straightforward method of reducing the
Pulse Repetition Frequency of the SDM bitstream and forcing it to
be constant isto group together samples with the same sign, so that
after the sample-and-hold the transitions are reduced. This
technique is sometimes referred to as pulse group modulation
(PGM).[10] The output is divided into frames of length N and the
samples in each frame are reordered so that al the 1s occur in a
single group at the end. For instance, if N=4, then the sequence
0100101101101101 would become 0001011100110111.

To analyze the effect of the pulse grouping, consider a sequence
v(n) of 1-bit data from the SDM, assumed for clarity to have the

values 0 and 1 rather than -1 and 1. At each sample instant, the

sum of the present sample and the previous N-1 samples is taken.
N-1

y(n) = ZV(n- k)
Or equivalently, in the zdomain:
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thus the summation is equivalent to a moving average filter of
length N. Every N sample of the summation corresponds in
amplitude to the group size of each PGM pulse. The operation of
taking every N™ sample and discarding the remaining samples is
that of decimation, and the conversion to a pulse group is
uniformly sampled pulse width modulation (PWM), which
involves a sample rate increase by a factor N. The decimation
produces aliassing and the PWM introduces harmonic distortion,
carrier and sideband tones and intermodulation noise.

COMPRESSION OF 1 BIT AUDIO

COMPRESSION USING PULSE GROUP MODULATION

For a sequence of M events, the best expected number of bits
required to encode this sequence is given by the Shannon entropy,
M

H(P)=—Z pi logy p
1=

So, for truly random sequences, an N bit sequence could be in one
of 2" possible combinations, each with equal probability. That is,
the best expected number of bits required to encode this sequence
N
is H(P) =—ZziNlog22iN= N . In other words, a pure random
sequence with no redundancy can’t be compressed. However, if
pulse group modulation is applied and the N bits are ordered so
that all Os appear at the beginning and all 1s at the end, then there
are only N+1 possible combinations. For N=4, they are 0000, 0001,
0011, to 0111, and 1111. Out of the 2" combinations before

ordering ND _ N

N ETY
Therefore, frequencies can be assigned to the N+1 possible
combinations that result from PGM. The combination with k Os
followed by N-k 1s occurs as output of an N-window from the
PGM with an expected frequency of
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So, the best expected number of bits required to encode N symbols
is

of them have k Os followed by N-k 1s.

« B B
H(P)=-3 log,
and the minimum expected bits required per symbol for encoding
18 8B g, B0
is _W.: 2—N|0922—N.

Thus, the application of an N-window PGM gives a best expected
compression of

Compression Ratio (expected)=

Since the high sampling rate ensures that the input to the
modulator appears nearly constant over short time periods, the
output of a sigma delta modulator is not expected to be random.
For a nonrandom sequence, the worst case for the compression

ratio occurs when each of the E:E combinations of bit orderings

occurs with equal probability. Then the expected number of bits
required to encode N symbols is

PGM window Compressed Compressed Compression Predicted compression
size file size (no PGM) | file size (PGM) | ratio (PGM) ratio (PGM)

1 100378 100378 1 1

2 100374 75301 1.333 1.333

4 100386 50980 1.969 1.970

6 100414 39050 2.570 2571

8 100392 31940 3.142 3.144

Table 1. Compressed file sizes for a random sequence of 1s and 0s with and without pulse group
modulation. The original file consisted of 800,000 points and had a file size of 100361 bytes.
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H(P)=- | I | N+1), hich d
(P) 2 N+1ogzN+1 0g,( ), which provides a
lower bound on an optimal compression scheme
Compression Ratio (worst case)= N ?3)
log, (N +1)

Equations (2) and (3) completely describe the effectiveness of
PGM in a compression technique. In effect, (2) can be used to
estimate the compression of pure random data and hence provides
a rough lower bound on the compression of actual data. On the
other hand, (3) provides an absolute lower bound, where this worst
case performance would only be achieved in highly unusual
circumstances.

It is important to note here that the ‘expected number of bits’ refers
to the use of the best encoder possible. It is well known that
arithmetic coding does very close to this.[11] Thus although many
different encoding schemes are possible (Huffmann coding and
predictive encoding are among the schemes that have been
applied[12]), this work will concentrate on arithmetic coding and
assume that the results of arithmetic coding are close to the
theoretical limits.

Table 1 gives the results of the application of an adaptive
arithmetic coding algorithm to a file of 800,000 binary outputs
with and without the application of PGM. The procedure described
in [13] was used to encode the data, and similar results were also
obtained using a fixed frequency arithmetic encoding scheme
based on the frequencies given by (1). A small amount of error is
present in the resulting file sizes because of overhead in the
arithmetic coding and slight variations in the determination of file
size. There is little or no compression without the application of
PGM. This is as expected because the input was a random
sequence. For the case of PGM, the resulting file sizes are slightly
larger than the predicted values from (2). This is because the
arithmetic compression algorithm has a small amount of overhead.
This can be reduced through a more efficient implementation of
arithmetic coding. It is also worthwhile to note that this
compression method can be easily implemented using integer
arithmetic, variable frequency models and windowing. Thus it is
ideally suited for use in realtime applications with simple circuits.

FEEDBACK IN PGM

An additional noise shaping (beyond that already in sigma delta
modulation) can be applied that takes into account the pulse group
modulation scheme. This is depicted in Figure 2. However, now
the error incorporates aliasing noise, intermodulation noise and
harmonic distortion, as well as the quantization noise. The PGM
nonlinearity may then be modeled in the z-domain as an additive
sequence W(2)

naise shaper

Y(2) =27V (2) +W(2)

A more thorough discussion of the noise introduced by PGM and
the appropriate feedback model is available in [10]. It is enough to
note here that both theoretical and simulated results have been
found which provide a thorough description of the noise
introduced due to PGM, with or without feedback. For example,
both theory and simulation confirm that, for a 64 times
oversampled signal, feedback in an 8-window pulse group
modulation scheme would result in an ~9 dB improvement in the
SNR over the same system without feedback. Given knowledge of
the SNR of a given sigma delta modulator and the specifications it
must meet, it is relatively straightforward to estimate the maximum
allowable PGM window size.
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Figure 1. Block diagram depicting the basic structure of
compression used in a 1 bit A/D converter.

PGM AND FILTER DESIGN

When applied to compression, pulse group modulation is
sometimes more complicated than necessary. If the sigma delta
modulator is used in A/D conversion, then the output of the
modulator is typically passed through a digital filter in order to
downsample and convert from 1 bit to multibit. Just prior to this
stage is the most appropriate place for compression to occur (see
Figure 1). This implies that the structure of the digital filter may
dictate the preferred compression scheme. For instance, if the first
stage of the filter is decimation through the use of a
(nonoverlapping) moving average filter, i.e., N-tap Finite Impulse
Response digital filter with coefficients of 1/N, then the ordering
of the bits within each averaged window is irrelevant. Therefore
pulse group modulation can be applied using the same window size
as is used for the filter with no effect whatsoever on the
downsampled data. In fact, if any FIR filter is used where 2
coefficients are equal, then those bits may be interchanged without
affecting the output of the filter. Thus a bit reordering scheme
specific to the symmetric properties of the filter is recommended in
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Figure 2. Model of pulse group modulation with feedback.



order to optimize compression. This applies without the use
of feedback in the pulse group modulation scheme.

CONCLUSION

In this paper we have discussed a technique by which sigma
delta bitstreams can be highly compressed. Under certain
conditions, such as when averaging decimation filters are
applied, this technique is effectively lossless. That is, the
final output after decoding and filtering is exactly the same as
if no compression had been applied. In other situations, a
noise shaped feedback mechanism can be applied around the
pulse grouper in order to reduce the noise and distortion.
Since sigma delta signals are often grossly oversampled, this
may be sufficient to make any losses through PGM based
compression inaudible when this is used in a sigma delta
converter for audio applications.
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